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Abstract—This work presents and simulates a mathe- development of the frogs’ population. When the larvae
matical model for the dynamics of a population of Wood metamorphose and become juveniles, they leave the pond
.Frogs..The.modeI_ consists of a system of f|\{e cogpledover a period of two weeks, and it is found inl [3]
impulsive differential equations for the larvae, juveniles inay there is considerable merit in dividing the juvenile
(early, middle, and late) and the mature adult populations. population into three groups, those who leave the pond
A simulation result depicts possible dynamics of the frogs’ . . ' . .

early, late, and in the middle. In this manner we obtain

population when during one year the larvae population i . i . i
dies out. This provides a tool for the study of the resilience the five compartments with the associated impulsive

of the population and the conditions that may lead to its ODES.
survival and flourishing or extinction. Whereas the applied interest in the model, once it has
been validated by comparison with the data from the
field, is to study the conditions for the survival of the
population, the mathematical interest lies in the facts
that the aquatic larval stage is separate from the other
stages, and the interactions are via transfer conditions at
We present a model for a Wood Frog population andpescribed times, and the resulting impulses.
preliminary simulation of its solutions. This research is The long-time interest in the model lies in its ability
motivated by more than two decades of field observatiottsprovide for qualitative and quantitative predictions on
of a population of Wood Frogs, which has been recentlje overall populations growth that will allow to better
reported in Berveri [3]. The aim is, once the model is valinderstanding and management of the populations.
idated by comparison with experimental data collected The model is described in the following section, then,
in [3], to study the conditions that allow for the survivalwe present the results of a typical computer simulation
and possible flourishing of the population. of the model which shows the dynamics and the recovery
The model is of the compartmental type (see, e.dtom a year without any larvae. In the conclusions
[1], [5], [6] and the references therein) and consists ofsgction we also mention some unresolved questions that
system of five nonlinear ordinary differential equation&e plan to address in the future.
(ODEs), and includes impulses that describe the tran-
sitions from one population to the next. The equations
describe the dynamics of the larval aquatic stage, andWe construct a model for the dynamics of a Wood
juvenile and adult stages, which are terrestrial, in therog population. The stages of the life cycle of the
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frogs that we concentrate on are the larvae, juvenilésipulsive differential equations (see, e.q., [1] and also
and mature adults. The first one is aquatic, and tfd, [2] and the references therein).
other two are terrestrial, a fact that leads to a nonstan\We start the time count = 0 on the day of the
dard model with impulses and possibly time dependesqgs’ fertilization and assume that initially the number
periodic coefficients. The field data obtained from thef larvae that successfully hatch i, and so the larvae
population study in Berveri [3] allows us to use ODEgopulation undergoes a discontinuous change on that day
The model deals with the total populations because thg jumping from no larvae taly. Then, at the same
spatial distribution of the populations is not taken intday at the yeark (for £ = 1,2,...,T), that is at the
account. timest, = 365k, all the eggs hatch and jumps from
The frogs’ life cycle we model is as follows. The egggero larvae (before hatching) to the number that hatched,
are produced in very large numbers in the spring, oved (t;), which is proportional to the mature population
a period of two weeks, and those that survive becomié at that time. The proportionality rate constantis
larvae. The larvae that survive undergo metamorphosigine fertility rate of the mature female frogs (which are a
the summer and become juveniles. These become mathied of the matures).
adults over the next 1-4 years. We note that since theThe splitting of the juveniles into the three groups of
hatching rate of the eggs is constant, at about 90%, fmirly, middle, and late ones is based on the observation
the sake of simplicity we omit the eggs compartmerihat when the larvae population is large, those who
An interesting observation made in [3] leads us to splitetamorphose and leave earlier develop and mature
the juvenile population into three groups, those whaster. We denote by., 7,,, and7; the respective days
leave the pond at the beginning of the first week, and the year on which the first second, and third group of
the beginning and end of the second week, since thdsevae become early,, middle J,,, and lateJ; juveniles,
juveniles’ rates of growth and maturation are differentrespectively. The data in|[3] indicates that we may set
We denote byL and M the total numbers of larvae,approximatelyr, = 75,7,, = 80, and 7, = 85 days,
and mature frogs, respectively, and by, J,, and J; but these choices are somewhat arbitrary, however, in
the three subpopulations, early, middle, and late, of thee model we keep the general notation. We assume that
juveniles, all functions of time (measured in days). at the timest; + 7. the fractiond.L becomes ‘early’
We let [0,7] denote the time interval over which thguveniles, at the times; + 7,,, the fractiond,,, L becomes
populations grow, or have been under observation. ‘middle’ juveniles, and at; + 7; the rest of the larvae
We describe the rate of change of each population gecome ‘late’ juveniles. At the exceptional times the
day. The model is of the compartmental type, and kgrvae population jumps discontinuously, that is impulses

depicted schematically in Fig. 1. take place. At the beginning of each year, at tifpefor
k=1,2,3,..., the larvae population is

g Je Lty +0) = o M ().

\ At times ¢, + 7, t;, + T, andt; + 7, we have,
— L Im M

W Lty +7e +0) = (1 — §.) Lty + 7 — 0),

Jp

M}, T« N?\/] Lty + 7m +0) = (1 — 0y) L(tg + 7o — 0),

Fig. 1. Compartmental structure and flow chart L(tk T 0> =0.

The equation for the larvae population is
The eggs hatch within two weeks after fertilization.

The larval period lasts about eight to ten weeks. So o —ur L, t £ty ty + Te, te + T, te + 71,
counting from the laying and fertilization of the eggs, ) )
the early larvae metamorphose into juveniles within 18" & = 1,2,3,.... Here, the mortality rate is

weeks, and the later ones one and two weeks later. Since
C . =pr(t,L) = + t)L(t),

these periods are relatively short, compared to the rest ue = welt L) = i + e (OL(1)

of the dynamics of the population, e.g., the life spamhere, following [7], we letu,; represent the density

or growing to maturity, we model these changes usinigdependent part ang,; (¢)L(¢) is the density dependent
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part that depends on the available resources and, henc@he model for the dynamics of the Wood Frog popu-

may be time dependent. lation is:
We turn to the describe the rates of growth of the jL’:md five functions{ L(t), Jo(t), Jum(t), Ji(t), M(t)), for
venile populations. In normal circumstances, e.g., wh B ¢ < T, such that, fort;, — 365k, k=0,1,2,...

food is sufficient or the weather is mild, a juvenile is
ready for reproduction in the next mating and egg laying

season, that is the next spring. However, some, especially dL(t) = —(uir + por (L) L(),

the late ones, may become fertile only in the second year. dt

We assume that the different juvenile populations have tF# byt + Tes t + T te + 11, (1)

different mortality rates, set as L(0) = Lo, (2)

= oM(ty), k#0, 3

pir () = par + pror () (2), L(ty) oM (t) a (3

. ! wh he d v ind Ltk+Te+0> = (1—66)L(tk—|—7'e—0), (4)

or r = e, m, [, whereuy, represent the density indepen-

L(ts + Tm = (1—=06,)L(tx + T — 0), 5
dent rates, andiy,J, are the density dependent parts. (b + 7m +0) ( VLt +7 0) ©)
We denote bya.,a,,, and a; the rates at which the L(tx +7+0) = 0, (6)
juveniles mature and move to thd population, which
may be time dependent, to take into account possible
changes in the environmental conditions and, also, a®/c(t)

. . . . . ’. .’. - - e+ etl]tt]et_ez]et
likely to be periodic functions reflecting the availability dt (hae + p12e(8) Je(t)) Je(t) — ave Je(t)
of food and growth rates of the juveniles. We denote by —Brdm (t) Je(t) — Bf Ji(t) Je(t),
B (r,s = e,m,l, r # s) the influence of population 0<t#ty+Te, (7)
L, on L,., which may describe the competition for fooddjm(t)
However, the experimental data is not clear about it, S0 gy  ~ —(p1m + p2m () T (1)) I (t) — atm Im (1)
we assume that these rate coefficients are small. =B T () I (8) — BT Te(t) T (),
Thus, the population growth equations f@r are 0<t#ty+ Tm, (8)
dJe . dJ(t
e e ®20) — e )Ie®) — BB D (0510 0) — w0
! !
BT () Je(t), t £ty + Te, —BeJe(t) Ji(t) = B Jm (8)J1(2),
O<t#t , 9
and similar equations hold fov,,, and J;. Here, k = # et ®
0,1,2,... is the kth year. Moreover, we assume that
the competition for food between the juveniles and the — Je(ty + 7 +0) = Je(tp +7 —0)
mature frpgs is negligiblg, since the mature frogs feed +6L(ty + 7. —0), (10)
on larger insects. Otherwise, a term of the fo#mjwM Tt + T +0) = Jon(tr + T — 0)
for r,s = e,m,l, has to be added to the equations that 5L 1
describe the dynamics of., J,,, and J;. +0m L(ty + 7 — 0), (11)
The compartment of mature frogs is assumed to con- Sty +1+0) = Jite +7-0)
tain a homogeneous population the growth of which is +L(tym — 0), (12)
governed by the equation
dM
ede + amdm J M, dM (¢
g T ede T Omdmt Qrli = iy dt( ) () + o din(®) + ar (1)
where iy = par(t, M) = pan + pan (t)M(t) is the —(pans + pope M(E))M (),  (13)
mortality rate consisting of density independent term
) M) = Moy, (14)
uim, and density dependent tenm,.
Je(0) = Jm(0) = J(0) = 0. (15)

Collecting the equations and conditions above yields
the following model consisting of five impulsive dif-Here, Ly is the number of larvae antly is the number
ferential equations for the larvae, juvenile and matud adult frogs att = 0, i.e., at the beginning of the first
populations. year ( = 0). At that time there are no juvenile$, (15).
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Fig. 2. Larvae vs. t for 41 years

IIl. SIMULATIONS

An algorithm for the numerical solutions of the model
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Fig. 3. Matures vs. t for 41 years

24000

220004

was constructed and implemented in Maple, using the
numerical solverdsolve The main issue in designing
the algorithm was the need to solve the equations be-
tween the various times of impulse or transfer, and over
different time intervals in each year different equations
were solved. In particular, the equation for the larvae,
(I), was solved in yeak only in the intervals356k <

t < 365k + 75, 356k + 75 < t < 365k + 82, and
356k + 82 < t < 365k + 90, and thenL(t) = 0 for
356k + 90 < t < 365(k + 1), that is until the first day

20000
18000+
16000

Jle]
14000

oo, 11T TR

10000+ \

8000

6000+

of the following year.

The various input data were either taken or estimated
from [3], or chosen reasonably, and taken as follows.

pr1 =281073 prpo=110"", pe =61077,
fez =2107%  fi1 = 61073, e = 3.331077,
pn =6107%, g =1107°%,
pan = 351072 ppp =1.6107%;
ae=610"% a, =510"% «a;=4107%,
B.=610"°% B3,=510"5 B =410,
e =0 = 0, = 0.5,
=175 T,=282, T, =90.

2000 4000 6000 8000 10000 12000 14000
t

—J, (1)

e

Fig. 4. Early juveniles vs. t for 41 years

o = 600 (a characteristic of Wood Frogd {[3])), and a
third of the mature population was females. Under these
initial conditions, there is a large drop in year= 1,

and then the populations grow steadily, and in longer
simulations (not presented here) they level off to what
seems to be steady oscillations. The yearly oscillations
are of interest since they cannot be observes directly.
To study the effects of a year with harsh conditions, the
larvae population was set to be zero in the year 21.

The figures depict a typical run of 41 years, starting The larvae population in Fig.] 2 is set to zero at day
with Ly = 540, 000 larvae, no juveniles, antlfy, = 3000 90 of each year, since all the larvae leave the pond by
mature frogs. The number of eggs per mature female wiagn. Then, on the first day of the next year a batch of
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50001 ing 10 years, reaching a similar behavior as before the
drop. Unfortunately, the weather conditions in Michigan

this year were such that the larvae in the pond were
wiped out completely, and this result allows us to hope
that next year the population will begin to recover.

4000+

30001 The trends in the behavior of the system seem to be
J[m] similar to what was observed inl[3], however the details
2000 were not observed, and a number of the coefficients were

chosen ‘reasonably.” Finally, there is strong indication

1000) that periodic solutions are possible.

IV. CONCLUSION

: : LA : UL The paper presents a new compartmental model, using
20004000 6000" 8100° 10000 12000 14000 impulsive ODEs, for the dynamics of a population of
7, (1) Wood Frogs, based on the field observations of Berven

[B]. Then, it depicts computational results for the devel-
opment of the larvae, juveniles (early, middle, and late)
and the mature frogs populations. Under the given choice
of the parameters the populations grow and stabilize
in about 20 years. The introduction of environmental

Fig. 5. Middle juveniles vs. t for 41 years

1800 adverse conditions that wiped out the larvae population
16001 in year 21 show that it takes about 10 years for the
14001 population to fully recover.

The next stages in this research will be to validate
the model by comparing the relevant predictions to the
observations in[]3]. Once we have confidence in the
8007 model, we plan to use it to assess the possible behavior
6001 of the population when the environmental conditions are
adverse as a result of bad weather. We plan to use the
model and the numerical simulations to study various
possible future scenarios for the population.

2000 4000 6000 8000 10000 12000 14000 The well-posedness of the model, its analysis and

! stability will be described elsewhere. Moreover, is seems
A from the numerical results, that the model has periodic

solutions, and it is of interest to establish this mathema-
Fig. 6. Late juveniles vs. t for 41 years tically.

12007

Jf1] 1000

4004

200+
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