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Abstract—This paper is devoted to the introduction of a
numerical scheme for a bone healing model and simulation
of skull fractures. The mathematical model describes the
evolution of mesenchymal stem cells, osteoblasts, bone
matrix and osteogenic growth factor. We propose a nu-
merical scheme based on an implicit finite volume method
constructed on an orthogonal mesh. The efficiency and
robustness of the scheme are shown in simulating a skull
fracture in rats.
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I. I NTRODUCTION

Bone is a tissue with a remarkable ability to regenerate
itself. But for large gap sizes bone fails to heal itself
in a clinically reasonable period of time, this problem
is called non-union or delayed union. Approximately
5− 10% of the5.6 million fractures occurring annually
in the United States develop into non-unions or delayed
unions [1]. There exists different methods to help bone
healing, such as autograft or synthesis materials. In
Europe,1.5 million bone grafts are carried out to treat
these fractures [2]. An exterior help often allows the
complete bone healing but there is still clinical cases
which don’t heal. For these complex cases, biology and
medicine researchers would create ex vivo tissues that
would then be reimplanted. The most common process
therefore consists in the growth, in a bioreactor, of

mesenchymal stem cells seeded on a synthesis material
[3]. Currently, this process yields good results only for
two-dimensional bone growth in Petri dishes. Under-
standing the bone healing is fundamental to create tri-
dimensional ex vivo bones and it is an important field
of tissue engineering researches. There exists several
mathematical models that simulate the bone healing [4],
[5], [6]. In this paper, we propose one such mathematical
model (based on the one developed in [7]), describe
a numerical scheme to approximate its solution and
show some numerical illustrations that simulate a healing
process in skull bones. Stability and convergence results
for the numerical scheme are stated.

II. A MODEL FOR POPULATION DYNAMICS

The bone healing is a complex phenomenon involving
a cascade of cellular and tissue events [8], [9]. In this
paper, we study a simplistic model but well-adapted to
the bone growth in bioreactor describing the rates of
change, with respect to time and space, of the concen-
trations in the mesenchymal stem cellss, the osteoblasts
b, the extracellular bone matrixm and the osteogenic
growth factorg. This dimensionless model is a simplified
version of the model proposed by Bailón-Plaza and Van
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Der Meulen in [7] that reads

∂ts = f1(s,m, g) + div(Λ(m)∇s︸ ︷︷ ︸
diffusion

− V (m)χ(s)∇m︸ ︷︷ ︸
haptotaxis

), (1)

∂tb = f2(s, b, m, g), (2)

∂tm = f3(b, m), (3)

∂tg = f4(b, g) + div (Λg∇g)︸ ︷︷ ︸
diffusion

, (4)

for t > 0 and x ∈ Ω, where Ω is an open bounded
polyhedral and connected subset ofRd (d = 2, 3). The
reaction termsfi (i = 1, . . . 4) describe the exchange,
production, decay, etc of the four populations of interest.
The evolution of the stem cells is described by a diffusion
term, a haptotaxis term (directional motility of the cells
up a gradient of cellular adhesion sites, here the bone
matrix) and a reaction termf1 describing the mitosis
and the differentiation into osteoblasts of the stem cells

f1(s,m, g) =
α1

β2
1 + m2

ms (1− s)︸ ︷︷ ︸
mitosis

− γ1

η1 + g
gs︸ ︷︷ ︸

differentiation

.

The coefficient of diffusionΛ and the velocityV of
haptotaxis of the stem cells are non-linear functions. The
function χ is given by

χ(s) = s(1− s).

It allows to avoid an infinite accumulation of the stem
cells due to the haptotaxis term. The osteoblasts are only
regulated by a reaction termf2 because they are cling
on the bone matrix. This term describes the mitosis, the
decay of the osteoblasts and the osteoblastic differentia-
tion

f2(s, b, m, g) =
α2

β2
2 + m2

mb (1− b)︸ ︷︷ ︸
mitosis

+ ρ
γ1

η1 + g
gs︸ ︷︷ ︸

differentiation

− δ1b︸︷︷︸
removal

.

The termf3 describes the synthesis and the degradation
of the bone matrix by the osteoblasts

f3(b, m) = λ (1− κm) b︸ ︷︷ ︸
synthesis and degradation

.

The rate of change of the growth factor is described by
a diffusion term and a reaction termf4 describing the

production by the osteoblasts and the decay of the growth
factor

f4(b, g) =
γ2

(η2 + g)2
gb︸ ︷︷ ︸

production

− δ2g︸︷︷︸
decay

.

The parametersαi, βi, γi, ηi, δi (i = 1, 2), ρ, λ and κ
are real positive numbers. These four equations are
completed by the homogeneous Neumann boundary con-
ditions ons andg:

(Λ(m)∇s− V (m)χ(s)∇m) · n = 0, (Λg∇g) · n = 0

for t > 0 and x ∈ ∂Ω, wheren is the outward unit
normal of ∂Ω; and by the data of initial conditions on
s, b, m andg:

s(0, x) = s0(x), b(0, x) = b0(x),

m(0, x) = m0(x), g(0, x) = g0(x),

for x ∈ Ω.

III. T HE NUMERICAL SCHEME

In order to simulate bone healing, we need a nu-
merical scheme that approximate the solutions to the
equations (1) to (4). The approximate solution must
remain bounded in the region of physically bounded
solutionss, b, m andg, defined byA = [0, 1]×[0, ργ1

δ1
]×

[0, 1
κ ] × [0, ργ1γ2

4δ1η2δ2
] ⊂ R4 for ργ1

δ1
≥ 1. Hence the

approximate solution converges towards a weak solution
of the equations.

The space discretization is based on an admissible
mesh as defined in [10]. It is a finite familyT of
polygonal open convex subsetsK of Ω, called the control
volumes such that̄Ω = ∪K∈T K̄, together with a finite
family E of disjoint subsets of̄Ω consisting in non-empty
open convex subsetsσ of affine hyperplanes ofRd, called
the edges, and a familyP = {xK , K ∈ T } of points in
Ω, called the centers verifying the following properties.

• Eachσ ∈ E is contained in∂K for someK ∈ T
and for anyK ∈ T , there exists a subsetEK of
E such that∂K = ∪σ∈EK

σ̄. For any edgeσ ∈ E ,
eitherσ ⊂ ∂Ω or σ = K̄ ∩ L̄ for someK 6= L in
T . In the latter case, we denoteσ = σKL, called
the interfaces. We denote byE? ⊂ E the subset of
all the interfaces and, for anyK ∈ T , by N(K) =
{L ∈ T , σKL ∈ EK ∩ E?} ⊂ T the neighbors of
K.

• For anyK ∈ T , the pointxK belongs toK. For
any σKL ∈ E , the line (xK , xL) is orthogonal to
σKL.
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Additionally, for anyσKL ∈ E?, we denote bynKL and
dKL, respectively, the unit vector normal toσKL outward
of K and the distance|xK−xL|. The measure ofK ∈ T
is denoted by|K| and the(d− 1)-dimensional measure
of σ ∈ E is denoted by|σ|.

The time discretization is the sequence of discrete
times tn = n∆t for n ∈ N where∆t > 0 is a given
time-step.

The numerical scheme is obtained by using the finite
volume method: equations (1) to (4) of the model are
integrated on each control volumeK and interval of time
(tn, tn+1). By using the divergence theorem, we obtain
the following scheme

|K|(sn+1
K − sn

K)−∆t
∑

L∈N(K)

Λn+1
KL

sn+1
L − sn

K

dKL
|σKL|

+∆t
∑

L∈N(K)

F (sn+1
K , sn+1

L , V n+1
KL

mn+1
L −mn+1

K

dKL
)|σKL|

= ∆t|K|f1(sn+1
K ,mn+1

K , gn+1
K )

|K|(bn+1
K − bn

K) = |K|∆tf2(sn+1
K , bn+1

K ,mn+1
K , gn+1

K )

|K|(mn+1
K −mn

K) = |K|∆tf3(bn+1
K ,mn+1

K ),

|K|(gn+1
K − gn

K)−∆t
∑

L∈N(K)

Λg
gn+1
L − gn+1

K

dKL
|σKL|

= |K|∆tf4(bn+1
K , gn+1

K ),

where the unknownssn+1
K , bn+1

K , mn+1
K and gn+1

K
approximate 1

|K|
∫
K s(tn+1, x)dx, 1

|K|
∫
K b(tn+1, x)dx,

1
|K|

∫
K m(tn+1, x)dx and 1

|K|
∫
K g(tn+1, x)dx. An im-

plicit time stepping strategy is used for all the terms. The
approximations ofΛ andV at an interface are calculated
with an arithmetic mean between the two neighboring
control volumes. The haptotaxis term is approximated
by a flux F . Although an upstream flux would be well-
adapted, it does not ensure a maximum principle on the
discrete solution. Consequently, the flux is defined such
as follow:

F (a, b, c) = c+ (χ↑(a) + χ↓(b))− c− (χ↑(b) + χ↓(a))

where c+ = max(c, 0), c− = max(−c, 0), χ↑(a) =∫ a
0 χ′(s)+ds and χ↓(a) = −

∫ a
0 χ′(s)−ds. This flux

verify the two classical properties of conservativity and
consistency and an additional property of monotony: for
any (a, c) ∈ R2, the mappingb ∈ R 7→ F (a, b, c) is
non-increasing. This ensures the maximum principle.

For this numerical scheme, we have proved the fol-
lowing results.

Theorem 3.1 (Existence of an admissible solution):
If the initial data is physically admissible, specifically if
(s0

K , b0
K ,m0

K , g0
K) belongs toA for all control volumes

K in T , then the discrete system of equations has a
solution un

T = (sn
K , bn

K ,mn
K , gn

K) for all n ∈ N, which
is physically admissible:

∀n ≥ 0, ∀K ∈ T , (sn
K , bn

K ,mn
K , gn

K) ∈ A.

Theorem 3.2 (Convergence to a weak solution):
If the initial data is physically admissible and the
discrete equivalent of theH1 semi-norm [10] of b0

and m0 are bounded, then there exists a subsequence
(uh) of discrete solutions that converges to a function
u = (s, b, m, g) almost everywhere in[0, T ] × Ω (for
any T > 0). This functionu is an admissible (u(t) ∈ A
for all t > 0) weak solution of the model.

IV. N UMERICAL SIMULATION : A SKULL FRACTURE

In order to validate the interest of the model, we
simulate the healing of a skull fracture in rats. It is well-
suited to our model because there is no cartilage in this
kind of fractures although it is essential in many cases.
The simulation corresponds to an experience presented
in [11]. In this article, defects were created using a2.3
mm outer diameter trephine in the parietal bones of 6
adult sprague-Dawley rats and the rats were allowed to
heal for42 days.

Fig. 1: Voronoi diagram used for the simulation of a
skull fracture (5884 control volumes)

To compute numerical solutions, we implement a
simplified semi-implicit time-stepping technique with the
Newton’s method coupled with a biconjugate gradient
method to solve the nonlinear system arising from the
discretization. A difficulty in the implementation is to
construct admissible meshes satisfying the orthogonality
condition. Structured rectangular meshes are admissible
meshes but they can not be used for complex geometries,
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like circular fractures for skull bones. We choose to use
Voronoi diagrams, that verify the property of orthogo-
nality between the interfaces and their respective centers.
But most mesh generators give Voronoi diagrams with
very small interfaces. To avoid this, we give a set of
points well distributed in the domain, next we construct
the Voronoi diagram associated to these points (figure
1), which represents the centers of the control volumes.
Consequently, the number of interfaces is different for
each control volumes.

Fig. 2: Full geometry of the fracture.

Fig. 3: One quarter of the domain where the black area
corresponds to the bone (m0(x, y) = 0.1 g.ml-1) and
cellular cluster (s0(x, y) = 106 cells.ml-1 andg0(x, y) =
2× 103 ng.ml-1). Elsewhere, there is nothing initially.

The geometry of the circular skull fracture is reported
on figure 2. The symmetries about fracture line and bone
axis implies that only one-quarter of the domain needs
to be considered (figure 3). Initially, the domain contains
only the bone and two cell clusters along the broken
bone made up of stem cells and growth factor (figure
3). The mesh used is a Voronoi mesh made up of5884

control volumes (figure 1) and the time-step is fixed at
∆t = 14 minutes and24 seconds. After 3 days, we

(a) Bone matrix density0 ≤
m ≤ 0.1 g.ml-1

(b) Concentration of stem cells
0 ≤ s ≤ 2.29× 103 cells.ml-1

(c) Concentration of osteoblasts
0 ≤ b ≤ 9.9× 105 cells.ml-1

(d) Concentration of the growth
factor 0 ≤ g ≤ 180 ng.ml-1

Fig. 4: Bone matrix density, concentrations of stem cells,
osteoblasts and the growth factor att = 3 days.
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Fig. 5: Bone matrix density along the liney = x as a
function of distance to the origin(x, y) = (0, 0).

observe the formation of osteoblasts (figure 4c) where
the stem cells are initially concentrated, these osteoblasts
synthesized a new bone matrix (figure 4a). The stem cells
moved towards the center of the fracture (figure 4b). The
osteoblasts trapped in the new bone become osteocytes.

This model successfully simulates the evolution of the
mineralization front (figure 5). Att = 42 days, since all
stem cells disappear, we can consider that the healing is
terminated. The defect heals approximatively42% (close
to the results of the article [11]), it is a nonunion fracture
because the initial defect is too large.

V. CONCLUSION

In this article, we proposes a model and a finite
volume numerical method to simulate bone regeneration
that is well-suited to the growth in bioreactor. The
approximate solutions remain in a physically admissible
region, and the convergence to a weak solution of the
equation is guaranteed. The simulation of a skull fracture
allows to validate this model for bone healing without
cartilage. Now, we plan to develop another model in
order to simulate the growth in a bioreactor. It ought to
include the flow environment and its interaction with the
previous model. Modeling this interaction is an important
challenge in order to understand three-dimensional ex
vivo tissue culture.
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