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Abstract—In this work, the problem of obtaining tight However, as a mathematical model is usually a sim-
output bounds for compartmental in-series models under plified version of a real process, a mismatch between the
parametric uncertainty is addressed. It is .Well—known that  hehaviour of the model and the reality is produced. This
current methods used to compute a solution envelope may ismatch yields non-modelled dynamics. Moreover, this
produce a significant overestimation. However, monotonic- iy processes is also characterized by its variability,
ity analy_S|s e_nabl_es us to estimate a_t|ght solution envelope.Ieading to parametric uncertainty. Therefore, the exact
Our main aim is to get an equivalent model to the ) '
initial one, which is usually non-monotone, by means of vValues of the model parameters are unknown, but they
a suitable combination of equations. In this new model €an be bounded by intervals. While there is only one
the system monotonicity with respect to the uncertain possible behaviour for a model with constant parameters,
parameters depends on the elimination rate values of the parametric uncertainty produces a large set of different
original model. If the equivalent model is monotone, no possible solutions.
overestimation occurs in the computation of the output Traditionally, Monte Carlo methods have been used to
bounds. deal with uncertaintyJ1], owing to the fact that a large

KeywordsUncertainty; Parametric Uncertainty; Com- nhumber of solutions can be easily computed. However,
partmental systems; Interval simulation; Monotonicity independently of the number of simulations executed,

the output bounds obtained cannot ensure the inclusion

of all the possible solution§|[2]. This inclusion guarantee
|. INTRODUCTION is needed for error-bounded parametric identification

and constraint-satisfaction problems. In the former, the

Mathematical models have appeared in many differange (or a tight enclosure) of the output trajectory
ent real situations emerging from biology, economicsust be computed and compared with measurements to
engineering, medicine, human sciences and many otkstimate intervals for the model parameters guaranteeing
research fields. The most common mathematical moddkgta consistency. In the latter, the computed range must
used to mimic real processes are compartmental systebes, compared with the constraints to be satisfied so
in which each compartment represents a state of the to obtain an inner and outer approximation of the
system. output set for the decision variables. Furthermore, the
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computational cost of Monte Carlo methods increasese-step-ahead iteration based on previous approxima-
proportionally to the number of simulations performetions of a set of point-wise trajectories generated by the
to cover the uncertain input space sufficiently. For theselection of particular values of the parametgrs p
reasons, other methods have been considered to comjanig initial conditionszy € x¢ by using heuristics such
output bounds, such as region-based and trajectory-baaeda monotonicity analysis of the system [8].
approaches_[3] mainly founded on interval analysis [4] Monotone systems have very robust dynamical char-
and monotone systems theory [5]] [6]. acteristics, since they respond to perturbations in a pre-
The aim of this work is to compute output boundsdictable way. The interconnection of monotone systems
for compartmental in-series models with parametric umay be studied in an analytical way [9], by considering
certainty. That is, a tight solution envelope must b& flow x(t) = ¢(xo,t). A system is monotone if
computed to ensure the inclusion of all the possibley < yo = ¢(x0,t) < ¢(yo,t) for all ¢ > 0, where
solutions for the model as well as to minimise th& is a given order relation. Cooperative systems form a
overestimation. Otherwise, if the overestimation is higlelass of monotone dynamical systerms [5] in which
it could not be useful from a practical point of view, for
instance, in an insulin therapy for diabetes patients [7]. Afi >0
This work has been organised as follows: In Section 2, Oxj —
a monotonicity analysis approach is introduced. In Sec-
tion 3 compartmental in—s_eries models are presente_d.bl nding model and a lower bounding model are com-
Section 4, a new me.th.od IS proposed for the analysis ted. In an upper bounding model, the cooperative
the system monotonicity with respect to the paramete Tates with respect to the output take their upper bound

In Section 5, the proposed_ method is applied to COMPYEiue, while the monotone but non-cooperative states,
the output bounds of a linear glucose model. Finall

Section 6 outlines the conclusions of this study.

, forallis#j, t>0.

In order to calculate a solution envelope, an upper

¥nown as competitive states, take the value of their lower
bound. On the other hand, a lower bounding model
is obtained taking account of the lower bound of the
Il. UNCERTAIN SYSTEMS cooperative states, and the upper bound of the com-

Continuous-time systems under parametric uncertairt t't'V,e states. In bOt_h cases, the non-monoto.ne. §tates
are described by an initial-value problem (IVP): are still computed as intervals that produce a significant
' overestimation.

The model parameters are considered as invariant
i(t,p) = f(x,p), x(to) = o, (1) States to carry out the monotonicity analysis, where

reR™ teR, peR™

where f is the vector function with componengs, z is  @1(t) = fi(t,z1(t), z2(t), ..., zn(t), p1(t), p2(t), ...)
the state vector is the parameter vector, ang, is the
number of parameters. The solution of (1) is denoted by

x(t; to, o, p). in(t) = folt,z1(t),22(8), ooy zn(t), p1(t), pa(t), ...
We consider that the parameters and the initial condi- (¥ (&, @1 (8), v2(t) (®),21(8), p2(0), )
tions are unknown, but they can be bounded by intervalsp;(t) = 0

Representing intervals in bold, interval vectprandxg
include all the possible values for the parameteend
for the initial conditionsxy of the model, respectively. 1. COMPARTMENTAL IN-SERIESMODELS

The se.t of.possmle solutions  considering parametrlclt is well known that a compartmental system consists
uncertainty is denoted by(%; to, xo, p): of a finite number of interconnected subsystems called
compartments. The interactions among compartments are
transfers of material according to the law of conservation
of mass. These are natural models useful for many
The computation of solution envelopes plays a keypplication areas subject to that law, which appear in
role in the simulation of systems under parametric uphysiology, chemistry, medicine, epidemiology, ecology,
certainty. Such a computation can be performed by usipgarmacokinetics and economy [10]. The state variables

X(ta to,Xo,p) = {.’ﬂ(t, t07$07p) | To € X0,P € p}
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of these systems represent the amount of material conThe general system described by equatidris (2) can
tained in each compartment and then they are restrictsel non-monotone with respect to the states since it is
to be non-negative over time; that is, they belong to thwt possible to determine the exact sign of the partial

broader class of positive systems. derlvat|ves , 4,7 € {1,....,n},i # j. Notice that,
A general in-series model composed fcompart-  for mstance ti1e sign of the following partial equation
ments is represented in Figdre 1. cannot be determined:
Ny T 00 okial) Dhaa()
1(t 1,2\ 2,1\"
e k5 6) LN )B/D 90,() ~ 9051 Q1(t) +k21(-) + 90a () Q2(t)
- 0 T - |
e, Therefore the monotonicity analysis cannot be accom-
plished with respect to the states and the parameters

of the model. Nevertheless, as we are focused on the
Fig. 1. Diagram of a compartmental in-series model. output of the model, this fact can be avoided by the
transformation of this system into an equivalent system
An in-series model is named bidirectional if the fluxeBaving the same output, given by:
between the compartments go forward and backward.
However, if the fluxes just go forward, the in-series
system is called unidirectional. Bidirectional in-series S, (t) = ut) + un(t) — an e;(S;(t) — Sj41(1)

models are given by the equations: o i=1
—enSp(t
Q1(t) = u(t) — (k12(-) +e1)Qu(t) Si(t) = un(t) + ki—1,4(-)(Si—1(t) — Si(t))
+h2,1(-)Q2(t) —kii—1(-)(Si(t) = Siva(t))
Qi(t) = ki—1,i()Qi—1(t) + kir1:(-)Qit1(t) =205 ei(S(t) = Sjra(t) — enSn(t)
—(kiio1() + kign () + ) Qilt) @ Sult) = un(t) + kn-1.0() (S 1(t) = Su(t))
Qu(t) = un(t) + kn-1,2()Qu-1(1) —(knn-1() +€n)Sn(?) -
—(knn-1(") + en)Qn(t) for i € {2,..,n — 1}, where $; = 27, Q;(t), Vi €
{1,...,n}. It is worth mentioning that all the fluxe’s; ;
Q1(0) = Qu,, Qi(0) = Qiy @n(0) = Qng in this new system may depend on the new states

for i € {2,...,n — 1}, where the states of the modebuch thatk;;(-) = k;;(S2(t) — Si(t),...,Sit1(t) —
Q;i(t), j € {1,..,n}, are the in-series compartmentsgi(t). - .., Sn(t))

and@, () is the output of the model. Furthermore(t) Note that this equivalent system has been obtained
and u,(t) represent the inputs and the parameters by the combination of equation$](2) and the output
j € {1,...,n}, are the elimination rates for each comeompartment is not modified, becauSg(t) = Q,(t),
partment, whilek; ;11 (-) andk;+1,(-), i € {1,...,n—1}, Wwhich enable us to compute the output bounds of original
are non-negative scalar functions that represent the fieystem[(R) by means of the conclusions obtained by the
from the compartment to the compartmenj and they monotonicity analysis of new equivalent systgm (3) for
may depend on the states of the model, ikg;(-) = € {2,..,n—1}

ki,j(Ql(t>v te 7Qn(t)) >0

as .
IV. ANALYSIS OF THE SYSTEM MONOTONICITY 1(” =ej-1— (2<j<n),

S;(t) —
In this section, we analyse compartmental in-series  95:.() _ akq,_l,q,()(s, (t) — Si(t))
. . . . a5, (1) 95;(t) i—1 1
models by focusing on the monotonicity of the dynami- o
cal system with respect to the states and the parameters. fﬁ(lﬂ(')(&,(t) — Sit1(t)) (j<i—1),
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fluxes satisfy thaf 5@() — 35/5) <0, Vi, j:

. . N Oki ()
03, ki1 i (- ie{l,...,n—1},7 € {2,...,n}, where =352 =
asi(lt()w - asm(gf)) (Si-1(t) = Si(t)) Okit1i() _ -
P 0Qo -
Okii—1( : ; iofi
- as;,l(i)) (Si(t) = Si1() + ki—1,4(), Then, there is an equivalent modg] (3) that satisfies the
agsi(t()t) _ %kgfl”'(i'))(SH(t) — 8(1)) following properties:
i+1 i+1 . . . . .
(i) The equivalent system is cooperative with respect
— D= (85(t) = Sipa (1) + ki1 () + (e — eitn), to the statesS;, i € {1,...,n}, the inputsu(t) and

un(t), and the fluxes; j11(-), j € {1,....,n —1}.
(i) The equivalent system is competitive with respect

38 (t) _ Oki—1,:() .. .
95,0 = 05,0 Dim1(t) = Si(t)) to the elimination rates;, j € {1,...,n}, and the
Bt (8,(0) — Sea () e 1 —ey) (i), XK () T E L1

25, Okn1n(:
95 ((:)) = asjl(t)( ) (Sn—1(t) — Sn(t))

akn.n— N -
—th)()sn(t) (J <n_1)7

V. LINEAR GLUCOSEMODEL
In the sequel, we illustrate the result presented in

05u(t) - _ Fknrn() (g (1) = S, (1)) the previous section through a linear glucose example.
95, _1(t) S, _1(t) \Pn—1 n o
Namely, we turn the non-monotone system describing
—%jjg)sn(t) +En1,n(") the Cobelli et al.model [11] into an equivalent monotone

system, in which output bounds are easily computed

Under the conditionsa%jl(') >0 and %575]() <0, without overestimation.
Vi,j:ie{l,..,n—1},5 € {1,...,n}, we remark that  Plasma glucose concentration in blood is maintained
the compartments of mod€l|(3) are cooperative amongthin a narrow range with the help of the insulin
each other ife; > e;1, Vj € {1,...,n — 1}, since the hormone. Insulin is secreted by the pancreas with the
partial derivative equationg%, i,j € {1,...,n},i #j role of reducing glucose concentration in blood. Under
are always non-negative. Fdrt%ermore, in this same cakermal circumstances, a decrease in plasma glucose con-
the inputsu(t) andu,,(t), and the functions; ;11(-), j € centration is followed by a decrease in insulin secretion.
{1,...,n—1} are also cooperative, while the eliminatiofPn the other hand, insulin secretion increases when
ratese;, j € {1,...,n} and the functiongc; 1 ;(-), j € plasma glucose concentration increases, for instance after
{1,...,n — 1} are competitive. an ingestion.

But, note that as),(t) = S,(t) andQ;(t) = S;(t) —
Siy1(t),1 € {1,...,n — 1}, then:

— 9k()
o

Ok(:) Q. _ Ok() k(- :
] 862(3) agj = aggj _Wfl (] € {27"'7n})

®

=
I

=
)
=
@
Q

Q
O
)
2

Q)
e
»
3
N

Q
e
SO

S

where k(-) represents botlt; ;+1(-) and ki11,(-), @i €

{1,..,m — 1}. Thus, we can sum up these relationSig. 2. Diagram of the linear glucose model developed by Cobelli
between both kinds of systems in the following lemmat al.

Lemma IV.1. Consider a bidirectional in-series model e analysis of glucose kinetics is essential to analyse

@) that satisfies: the insulin secretion by the pancreaSobelli et al.

(@) The elimination rate for each compartment igleveloped a physiological model to study the insulin
greater than or equal to the elimination rate for thesystem and the control exerted by glucose on insulin
next compartment, i.e; > eji1, Vj € {1,...,n — secretion. This compartmental model describes the non-
1}, accessible portion of the system, and it is composed of

(b) The forward fluxes among the compartments satisitee compartments, as seen in Figlife 2. The output
that d’“gg;(‘) - 8@5jjf') > 0, whereas the backward compartment is the concentration of the accessible pool,
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displayed in the central position. The mass balance amtiere S; = Q1, S = Q1 + Q2 andS3 = Q1 + Qs.
measurement equations are given by: As E;i1(-) and kg (- ), 1 € {1 n — 1}, are
constant parameters th _ = 0.
. B Moreover, as there is no Ioss in the output compartment

+k31Qs(t) + EGP conditions hold. Thus, equivalent systefj (5) is coop-
) ’ @) erative with respect to the parametets; and ks,
Q2(t) = k12Q1(t) — (k2,1 + ko,0)Q2(?) the initial conditions and the inpuEG P. Furthermore,

Q3(t) = k1,3Q1(t) — (k31 + k3,0)Q3(1)

G(t) = 4 k30, and the volume/;.

whereQ) (t) is the accessible pool of the plasma glucose.
Q2(t) and Qs(t) illustrate peripheral compartments
respectively, in rapid and slow equilibrium with the—- 250
accessible pool, and the output of the model is given I

300

the plasma glucose concentrati6f{t), which depends & *°°

on the central compartme®; (¢). The parametel; is 3 150
the volume of plasma in the accessible compartment, 13
parametelZG' P denotes the input, the constant parami~ *°°
ters ki o, k13, k2,1 and ks ; are the fluxes between the 5,
compartments, while the parametéss, and k3 stand
for the elimination rates of the peripheral compartment 160
In this model there is no elimination rate in the accessikt
pool. The parameters values have been obtained frtgg 140
[12]. Z
Performing a monotonicity analysis, it is deduce g 120
that the system is cooperative with respect to the coi 8
partments, as the partial derivatives among the moco 190
compartments are all non-negative. Furthermore, t
input EGP is also a cooperative parameter, whilg,
and the elimination rates;( and k3 are competitive
parameters. The monotonicity evaluation with respect to

80
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20

the fluxesk: 2, k1,3, k2,1 OF k31 is not possible. Fig. 3. Output bounds for the linear glucose model developed by
Cobelli et al. model B) can be analysed as tw&obelli et al. (@) Monotonicity approach. (b) Using lemfna JV.1.

compartmental in-series models interconnected, where

the central compartment is the output of both in-series The black dashed lines in Figufé 3 display the com-

models. This system is equivalent to

puted output bounds, while the light grey lines represent

several numerical simulations executed by the variation
Si(t) = — (k12 + k13)S1(t) + ko1 (Sa(t) — S1(1)) of the parameters and initial conditions values. First
of all, the computation of output bounds is performed

+k371(53(t) — Sl(t)) + EGP
So(t) = —k1351(t) — kao(S2(t) — S1(t))

following the traditional monotonicity approach, where
the parameterst; o, ki3, k2,1 and ks; have to be

+k3,1(S3(t) — S1(t)) + EGP

S3(t) = —k1251(t) — k30(S3(t) — S1(t))
+h21(52(t) — S1(1)) + EGP

G(t) = 50

(5)

considered as intervals. The solution envelope in Figure
[Ba illustrates the overestimation produced in this case.
On the other hand, when lemnja V.1 is applied the
system is monotone with respect to all the states and
parameters, thus none of them have to be considered as
intervals. Therefore, it is possible to compute the output
bounds without overestimation, as shown in Figure 3b.
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