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Abstract—In this work, the problem of obtaining tight
output bounds for compartmental in-series models under
parametric uncertainty is addressed. It is well-known that
current methods used to compute a solution envelope may
produce a significant overestimation. However, monotonic-
ity analysis enables us to estimate a tight solution envelope.
Our main aim is to get an equivalent model to the
initial one, which is usually non-monotone, by means of
a suitable combination of equations. In this new model
the system monotonicity with respect to the uncertain
parameters depends on the elimination rate values of the
original model. If the equivalent model is monotone, no
overestimation occurs in the computation of the output
bounds.

Keywords-Uncertainty; Parametric Uncertainty; Com-
partmental systems; Interval simulation; Monotonicity

I. I NTRODUCTION

Mathematical models have appeared in many differ-
ent real situations emerging from biology, economics,
engineering, medicine, human sciences and many other
research fields. The most common mathematical models
used to mimic real processes are compartmental systems,
in which each compartment represents a state of the
system.

However, as a mathematical model is usually a sim-
plified version of a real process, a mismatch between the
behaviour of the model and the reality is produced. This
mismatch yields non-modelled dynamics. Moreover, this
kind of processes is also characterized by its variability,
leading to parametric uncertainty. Therefore, the exact
values of the model parameters are unknown, but they
can be bounded by intervals. While there is only one
possible behaviour for a model with constant parameters,
parametric uncertainty produces a large set of different
possible solutions.

Traditionally, Monte Carlo methods have been used to
deal with uncertainty [1], owing to the fact that a large
number of solutions can be easily computed. However,
independently of the number of simulations executed,
the output bounds obtained cannot ensure the inclusion
of all the possible solutions [2]. This inclusion guarantee
is needed for error-bounded parametric identification
and constraint-satisfaction problems. In the former, the
range (or a tight enclosure) of the output trajectory
must be computed and compared with measurements to
estimate intervals for the model parameters guaranteeing
data consistency. In the latter, the computed range must
be compared with the constraints to be satisfied so
as to obtain an inner and outer approximation of the
output set for the decision variables. Furthermore, the
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computational cost of Monte Carlo methods increases
proportionally to the number of simulations performed
to cover the uncertain input space sufficiently. For these
reasons, other methods have been considered to compute
output bounds, such as region-based and trajectory-based
approaches [3] mainly founded on interval analysis [4]
and monotone systems theory [5], [6].

The aim of this work is to compute output bounds
for compartmental in-series models with parametric un-
certainty. That is, a tight solution envelope must be
computed to ensure the inclusion of all the possible
solutions for the model as well as to minimise the
overestimation. Otherwise, if the overestimation is high,
it could not be useful from a practical point of view, for
instance, in an insulin therapy for diabetes patients [7].

This work has been organised as follows: In Section 2,
a monotonicity analysis approach is introduced. In Sec-
tion 3, compartmental in-series models are presented. In
Section 4, a new method is proposed for the analysis of
the system monotonicity with respect to the parameters.
In Section 5, the proposed method is applied to compute
the output bounds of a linear glucose model. Finally,
Section 6 outlines the conclusions of this study.

II. U NCERTAIN SYSTEMS

Continuous-time systems under parametric uncertainty
are described by an initial-value problem (IVP):

ẋ(t, p) = f(x, p), x(t0) = x0,

x ∈ Rn, t ∈ R, p ∈ Rnp

(1)

wheref is the vector function with componentsfi, x is
the state vector,p is the parameter vector, andnp is the
number of parameters. The solution of (1) is denoted by
x(t; t0, x0, p).

We consider that the parameters and the initial condi-
tions are unknown, but they can be bounded by intervals.
Representing intervals in bold, interval vectorsp andx0

include all the possible values for the parametersp and
for the initial conditionsx0 of the model, respectively.
The set of possible solutions considering parametric
uncertainty is denoted byx(t; t0,x0,p):

x(t; t0,x0,p) = {x(t; t0, x0, p) | x0 ∈ x0, p ∈ p}.

The computation of solution envelopes plays a key
role in the simulation of systems under parametric un-
certainty. Such a computation can be performed by using

one-step-ahead iteration based on previous approxima-
tions of a set of point-wise trajectories generated by the
selection of particular values of the parametersp ∈ p
and initial conditionsx0 ∈ x0 by using heuristics such
as a monotonicity analysis of the system [8].

Monotone systems have very robust dynamical char-
acteristics, since they respond to perturbations in a pre-
dictable way. The interconnection of monotone systems
may be studied in an analytical way [9], by considering
a flow x(t) = φ(x0, t). A system is monotone if
x0 � y0 ⇒ φ(x0, t) � φ(y0, t) for all t ≥ 0, where
� is a given order relation. Cooperative systems form a
class of monotone dynamical systems [5] in which

∂fi

∂xj
≥ 0, for all i 6= j, t ≥ 0.

In order to calculate a solution envelope, an upper
bounding model and a lower bounding model are com-
puted. In an upper bounding model, the cooperative
states with respect to the output take their upper bound
value, while the monotone but non-cooperative states,
known as competitive states, take the value of their lower
bound. On the other hand, a lower bounding model
is obtained taking account of the lower bound of the
cooperative states, and the upper bound of the com-
petitive states. In both cases, the non-monotone states
are still computed as intervals that produce a significant
overestimation.

The model parameters are considered as invariant
states to carry out the monotonicity analysis, where

ẋ1(t) = f1(t, x1(t), x2(t), ..., xn(t), p1(t), p2(t), ...)
...

ẋn(t) = fn(t, x1(t), x2(t), ..., xn(t), p1(t), p2(t), ...)

ṗi(t) = 0

III. C OMPARTMENTAL IN-SERIESMODELS

It is well known that a compartmental system consists
of a finite number of interconnected subsystems called
compartments. The interactions among compartments are
transfers of material according to the law of conservation
of mass. These are natural models useful for many
application areas subject to that law, which appear in
physiology, chemistry, medicine, epidemiology, ecology,
pharmacokinetics and economy [10]. The state variables
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of these systems represent the amount of material con-
tained in each compartment and then they are restricted
to be non-negative over time; that is, they belong to the
broader class of positive systems.

A general in-series model composed ofn compart-
ments is represented in Figure 1.
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un 

Fig. 1. Diagram of a compartmental in-series model.

An in-series model is named bidirectional if the fluxes
between the compartments go forward and backward.
However, if the fluxes just go forward, the in-series
system is called unidirectional. Bidirectional in-series
models are given by the equations:

Q̇1(t) = u(t)− (k1,2(·) + e1)Q1(t)

+k2,1(·)Q2(t)

Q̇i(t) = ki−1,i(·)Qi−1(t) + ki+1,i(·)Qi+1(t)

−(ki,i−1(·) + ki,i+1(·) + ei)Qi(t)

Q̇n(t) = un(t) + kn−1,n(·)Qn−1(t)

−(kn,n−1(·) + en)Qn(t)

Q1(0) = Q10 , Qi(0) = Qi0 Qn(0) = Qn0

(2)

for i ∈ {2, ..., n − 1}, where the states of the model
Qj(t), j ∈ {1, ..., n}, are the in-series compartments,
andQn(t) is the output of the model. Furthermore,u(t)
and un(t) represent the inputs and the parametersej ,
j ∈ {1, ..., n}, are the elimination rates for each com-
partment, whileki,i+1(·) andki+1,i(·), i ∈ {1, ..., n−1},
are non-negative scalar functions that represent the flux
from the compartmenti to the compartmentj and they
may depend on the states of the model, i.e.,ki,j(·) =
ki,j(Q1(t), . . . , Qn(t)) ≥ 0.

IV. A NALYSIS OF THE SYSTEM MONOTONICITY

In this section, we analyse compartmental in-series
models by focusing on the monotonicity of the dynami-
cal system with respect to the states and the parameters.

The general system described by equations (2) can
be non-monotone with respect to the states since it is
not possible to determine the exact sign of the partial
derivatives ∂Q̇i(t)

∂Qj(t)
, i, j ∈ {1, ..., n}, i 6= j. Notice that,

for instance, the sign of the following partial equation
cannot be determined:

∂Q̇1(t)
∂Q2(t)

= −∂k1,2(·)
∂Q2(t)

Q1(t) + k2,1(·) +
∂k2,1(·)
∂Q2(t)

Q2(t)

Therefore the monotonicity analysis cannot be accom-
plished with respect to the states and the parameters
of the model. Nevertheless, as we are focused on the
output of the model, this fact can be avoided by the
transformation of this system into an equivalent system
having the same output, given by:

Ṡ1(t) = u(t) + un(t)−
∑n−1

j=1 ej(Sj(t)− Sj+1(t))

−enSn(t)

Ṡi(t) = un(t) + ki−1,i(·)(Si−1(t)− Si(t))

−ki,i−1(·)(Si(t)− Si+1(t))

−
∑n−1

j=i ej(Sj(t)− Sj+1(t))− enSn(t)

Ṡn(t) = un(t) + kn−1,n(·)(Sn−1(t)− Sn(t))

−(kn,n−1(·) + en)Sn(t)
(3)

for i ∈ {2, ..., n − 1}, whereSi =
∑n

j=i Qj(t), ∀i ∈
{1, ..., n}. It is worth mentioning that all the fluxeski,j

in this new system may depend on the new statesSi,
such thatki,j(·) = ki,j(S2(t) − S1(t), . . . , Si+1(t) −
Si(t), . . . , Sn(t))

Note that this equivalent system has been obtained
by the combination of equations (2) and the output
compartment is not modified, becauseSn(t) = Qn(t),
which enable us to compute the output bounds of original
system (2) by means of the conclusions obtained by the
monotonicity analysis of new equivalent system (3) for
i ∈ {2, ..., n− 1}:

∂Ṡ1(t)
∂Sj(t)

= ej−1 − ej (2 ≤ j ≤ n),

∂Ṡi(t)
∂Sj(t)

= ∂ki−1,i(·)
∂Sj(t)

(Si−1(t)− Si(t))

−∂ki,i−1(·)
∂Sj(t)

(Si(t)− Si+1(t)) (j < i− 1),
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∂Ṡi(t)
∂Si−1(t)

= ∂ki−1,i(·)
∂Si−1(t)

(Si−1(t)− Si(t))

−∂ki,i−1(·)
∂Si−1(t)

(Si(t)− Si+1(t)) + ki−1,i(·),

∂Ṡi(t)
∂Si+1(t)

= ∂ki−1,i(·)
∂Si+1(t)

(Si−1(t)− Si(t))

−∂ki,i−1(·)
∂Si+1(t)

(Si(t)− Si+1(t)) + ki,i−1(·) + (ei − ei+1),

∂Ṡi(t)
∂Sj(t)

= ∂ki−1,i(·)
∂Sj(t)

(Si−1(t)− Si(t))

−∂ki,i−1(·)
∂Sj(t)

(Si(t)− Si+1(t)) + (ej−1 − ej) (j > i + 1),

∂Ṡn(t)
∂Sj(t)

= ∂kn−1,n(·)
∂Sj(t)

(Sn−1(t)− Sn(t))

−∂kn,n−1(·)
∂Sj(t)

Sn(t) (j < n− 1),

∂Ṡn(t)
∂Sn−1(t)

= ∂kn−1,n(·)
∂Sn−1(t)

(Sn−1(t)− Sn(t))

−∂kn,n−1(·)
∂Sn−1(t)

Sn(t) + kn−1,n(·)

Under the conditions∂ki,i+1(·)
∂Sj

≥ 0 and ∂ki+1,i(·)
∂Sj

≤ 0,
∀i, j : i ∈ {1, ..., n − 1}, j ∈ {1, ..., n}, we remark that
the compartments of model (3) are cooperative among
each other ifej ≥ ej+1, ∀j ∈ {1, ..., n − 1}, since the

partial derivative equations∂Ṡi(t)
∂Sj(t)

, i, j ∈ {1, ..., n}, i 6= j
are always non-negative. Furthermore, in this same case,
the inputsu(t) andun(t), and the functionskj,j+1(·), j ∈
{1, ..., n−1} are also cooperative, while the elimination
ratesej , j ∈ {1, ..., n} and the functionskj+1,j(·), j ∈
{1, ..., n− 1} are competitive.

But, note that asQn(t) = Sn(t) andQi(t) = Si(t)−
Si+1(t), i ∈ {1, ..., n− 1}, then:

∂k(·)
∂S1

=
n∑

s=1

∂k(·)
∂Qs

∂Qs

∂S1
= ∂k(·)

∂Q1

∂k(·)
∂Sj

=
n∑

s=1

∂k(·)
∂Qs

∂Qs

∂Sj
= ∂k(·)

∂Qj
− ∂k(·)

∂Qj−1
(j ∈ {2, ..., n})

where k(·) represents bothki,i+1(·) and ki+1,i(·), i ∈
{1, ..., n − 1}. Thus, we can sum up these relations
between both kinds of systems in the following lemma:

Lemma IV.1. Consider a bidirectional in-series model
(2) that satisfies:

(a) The elimination rate for each compartment is
greater than or equal to the elimination rate for the
next compartment, i.e.ej ≥ ej+1, ∀j ∈ {1, ..., n−
1}.

(b) The forward fluxes among the compartments satisfy
that ∂ki,i+1(·)

∂Qj
− ∂ki,i+1(·)

∂Qj−1
≥ 0, whereas the backward

fluxes satisfy that∂ki+1,i(·)
∂Qj

− ∂ki+1,i(·)
∂Qj−1

≤ 0, ∀i, j :

i ∈ {1, ..., n− 1}, j ∈ {2, ..., n}, where ∂ki,i+1(·)
∂Q0

=
∂ki+1,i(·)

∂Q0
= 0.

Then, there is an equivalent model (3) that satisfies the
following properties:

(i) The equivalent system is cooperative with respect
to the statesSi, i ∈ {1, ..., n}, the inputsu(t) and
un(t), and the fluxeskj,j+1(·), j ∈ {1, ..., n− 1}.

(ii) The equivalent system is competitive with respect
to the elimination ratesej , j ∈ {1, ..., n}, and the
fluxeskj+1,j(·), j ∈ {1, ..., n− 1}.

V. L INEAR GLUCOSEMODEL

In the sequel, we illustrate the result presented in
the previous section through a linear glucose example.
Namely, we turn the non-monotone system describing
theCobelli et al.model [11] into an equivalent monotone
system, in which output bounds are easily computed
without overestimation.

Plasma glucose concentration in blood is maintained
within a narrow range with the help of the insulin
hormone. Insulin is secreted by the pancreas with the
role of reducing glucose concentration in blood. Under
normal circumstances, a decrease in plasma glucose con-
centration is followed by a decrease in insulin secretion.
On the other hand, insulin secretion increases when
plasma glucose concentration increases, for instance after
an ingestion.

Q 2 

k2,1 

k2,0 

k1,2 
k3,0 

Q 3 
Q 1 

k3,1 

k1,3 

EG P
 

Fig. 2. Diagram of the linear glucose model developed by Cobelli
et al.

The analysis of glucose kinetics is essential to analyse
the insulin secretion by the pancreas.Cobelli et al.
developed a physiological model to study the insulin
system and the control exerted by glucose on insulin
secretion. This compartmental model describes the non-
accessible portion of the system, and it is composed of
three compartments, as seen in Figure 2. The output
compartment is the concentration of the accessible pool,
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displayed in the central position. The mass balance and
measurement equations are given by:

Q̇1(t) = −(k1,2 + k1,3)Q1(t) + k2,1Q2(t)

+k3,1Q3(t) + EGP

Q̇2(t) = k1,2Q1(t)− (k2,1 + k2,0)Q2(t)

Q̇3(t) = k1,3Q1(t)− (k3,1 + k3,0)Q3(t)

G(t) = Q1(t)
VI

(4)

whereQ1(t) is the accessible pool of the plasma glucose,
Q2(t) and Q3(t) illustrate peripheral compartments,
respectively, in rapid and slow equilibrium with the
accessible pool, and the output of the model is given by
the plasma glucose concentrationG(t), which depends
on the central compartmentQ1(t). The parameterVI is
the volume of plasma in the accessible compartment, the
parameterEGP denotes the input, the constant parame-
ters k1,2, k1,3, k2,1 and k3,1 are the fluxes between the
compartments, while the parametersk2,0 andk3,0 stand
for the elimination rates of the peripheral compartments.
In this model there is no elimination rate in the accessible
pool. The parameters values have been obtained from
[12].

Performing a monotonicity analysis, it is deduced
that the system is cooperative with respect to the com-
partments, as the partial derivatives among the model
compartments are all non-negative. Furthermore, the
input EGP is also a cooperative parameter, whileVI ,
and the elimination ratesk2,0 and k3,0 are competitive
parameters. The monotonicity evaluation with respect to
the fluxesk1,2, k1,3, k2,1 or k3,1 is not possible.

Cobelli et al. model (4) can be analysed as two
compartmental in-series models interconnected, where
the central compartment is the output of both in-series
models. This system is equivalent to

Ṡ1(t) = −(k1,2 + k1,3)S1(t) + k2,1(S2(t)− S1(t))

+k3,1(S3(t)− S1(t)) + EGP

Ṡ2(t) = −k1,3S1(t)− k2,0(S2(t)− S1(t))

+k3,1(S3(t)− S1(t)) + EGP

Ṡ3(t) = −k1,2S1(t)− k3,0(S3(t)− S1(t))

+k2,1(S2(t)− S1(t)) + EGP

G(t) = S1(t)
VI

(5)

whereS1 = Q1, S2 = Q1 + Q2 andS3 = Q1 + Q3.
As ki,i+1(·) and ki+1,i(·), i ∈ {1, ..., n − 1}, are

constant parameters then∂ki,i+1

∂Sj
= 0 and ∂ki+1,i

∂Sj
= 0.

Moreover, as there is no loss in the output compartment
and k2,0 ≥ 0 and k3,0 ≥ 0, then the Lemma IV.1
conditions hold. Thus, equivalent system (5) is coop-
erative with respect to the parametersk2,1 and k3,1,
the initial conditions and the inputEGP . Furthermore,
the equivalent system is competitive with respect to the
parametersk1,2 and k1,3, the elimination ratesk2,0 and
k3,0, and the volumeVI .
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Fig. 3. Output bounds for the linear glucose model developed by
Cobelli et al. (a) Monotonicity approach. (b) Using lemma IV.1.

The black dashed lines in Figure 3 display the com-
puted output bounds, while the light grey lines represent
several numerical simulations executed by the variation
of the parameters and initial conditions values. First
of all, the computation of output bounds is performed
following the traditional monotonicity approach, where
the parametersk1,2, k1,3, k2,1 and k3,1 have to be
considered as intervals. The solution envelope in Figure
3a illustrates the overestimation produced in this case.
On the other hand, when lemma IV.1 is applied the
system is monotone with respect to all the states and
parameters, thus none of them have to be considered as
intervals. Therefore, it is possible to compute the output
bounds without overestimation, as shown in Figure 3b.
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VI. CONCLUSION

Different approaches in the literature have tackled the
problem of parametric uncertainty for ordinary differ-
ential equations. In this work, a new method for the
computation of output bounds on the compartmental
in-series models is proposed. This method has been
compared with previous approaches in a linear glucose
model.

The most common method in the literature to compute
a tight solution envelope is to perform a monotonicity
analysis of the system for a trajectory-based approach.
After this method is applied, only non-monotone com-
partments and parameters produce an overestimation in
the computation of output bounds. This happens in com-
partmental in-series models, as they have non-monotone
compartments and parameters.

Our proposal consists in obtaining an equivalent model
by the combination of the differential equations of the
original model, but without altering the output compart-
ment. Then, by this way, a monotonicity analysis of the
equivalent model is performed, obtaining that the new
model is monotone with respect to all the compartments
and parameters (cooperative or competitive) if the lemma
IV.1 conditions meet. Thus, this approach allows us
to compute a solution envelope adjusted to numerical
simulations, in which no overestimation is produced, and
computing just two simulations, one for the upper bound
and another one for the lower bound.

Our proposed method outperforms previous ap-
proaches for the computation of output bounds on com-
partmental in-series models, as it computes the solution
envelope without overestimation.
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