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Abstract—The totally asymmetric simple exclusion
processes (TASEP) has been used since 1968 to model
different biochemical processes, including kinetics of pro-
tein synthesis, molecular motors traffic, collective effects
in genetic transcription. Here, we consider TASEP defined
on an open network consisting of simple head and tail
chains with a double-chain section in-between. Our results
of Monte Carlo simulations show a novel property of the
model when the simple chains are in the maximum-current
phase: upon moving the double-chain defect from the
central position forward or backward along the network,
keeping fixed the length of both the defect and the whole
network, a position-induced phase change in the parallel
defect chains takes place. This phenomenon is explained
in terms of finite-size dependence of the effective injection
and removal rates at the ends of the double-chain defect.
Some implications of the results for molecular motors
cellular transport along such networks are suggested.
However, at present these are just speculations which need
further examinations.

Keywords-TASEP; Molecular motors traffic; kinetics of
protein synthesis; traffic flow models; non-equilibrium
phase transitions; non-equilibrium statistical physics

I. I NTRODUCTION

The world of non-equilibrium phenomena is more
diverse and much more interesting as compared to
our experience with its equilibrium counterpart. Rigor-

ously put, true equilibrium phenomena are an idealiza-
tion which is seldom met in nature. The development
of a fundamental and comprehensive understanding of
physics far from equilibrium is currently under way.
That is why the study of simple non-equilibrium models
like the totally asymmetric simple exclusion process
(TASEP) (see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9]) is very
informative and helpful. This approach—the study of
simple model systems, has shown to be very effective
in the equilibrium statistical mechanics and now it is in-
tensively exploited also in the non-equilibrium case. One
can see that recently more methods and concepts from
non-equilibrium statistical physics are applied to model
processes in living systems and biological phenomena
[10, 11, 12, 13, 14, 15, 16, 17, 18]. This is quite natural
since the object of non-equilibrium statistical physics are
open many-particle systems with macroscopic currents
of energy and/or particles. Biological systems, on the
other hand, are rather complex systems which in order
to function properly need energy and matter flows. There
are biological transport phenomena which can be con-
sidered to be restricted to an effectively one-dimensional
track, e.g., stepping of kinesins and dyneins along mi-
crotubules, translocation of RNA polymerase (RNAP) on
DNA during transcription, ribosomes on messenger RNA
(mRNA) during protein syntheses—a process referred
to as translation. Kinesins and dyneins are cytoskeletal
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motors: kinesin moves cargo inside cells away from
the nucleus along microtubules and dynein transports
cargo along microtubules towards the cell nucleus. All
these stochastic processes are of special interest due
to their fundamental importance for the functioning of
living cells. Hence, they are a challenging object for
mathematical modeling and discrete stochastic models
seem adequate for that purpose. Usually a large number
of such agents move unidirectionally along the same
track with excluded volume interaction, which makes
the simple models of vehicular traffic appropriate for
incorporation in more sophisticated ones. For example,
stochasticity and traffic jams in the transcription of ribo-
somal RNA have been considered by Klumpp and Hwa
[14]. In the present study, we are concerned with one spe-
cific example of application of a simple non-equilibrium
model, the TASEP, to the protein synthesis. Since 1968
this model has been used to model different biological
processes [10, 11, 12, 13, 14, 15, 16, 17, 18] including
the phenomenon of protein synthesis [10]. In the last
twenty years, the non-equilibrium statistical physicists
[19, 20, 21, 22, 23, 24] are very much interested in the
study of different kind of models which are expected to
provide deep understanding of the generic behavior of
non-equilibrium systems. Another challenging problem,
from both biological and mathematical point of view, is
the consideration of biochemical transport phenomena on
networks with non-trivial topology. Our goal here is to
present a study of the effects, arising in TASEP, defined
on a simple example of such a network: a linear chain
of attachment sites with a double-chain defect inserted
in it [25]. For other studies of TASEP on topologies
more complex than a single segment see [26, 27, 28, 29].
Recently, applications to biological transport have mo-
tivated generalizations of the TASEP to cases when the
entry rate is chosen to depend on the number of particles
in the reservoir (TASEP with finite resources) [30, 31].
This year, the cases of multiple competing TASEPs with
a shared reservoir of particles [32, 33], and TASEP
with Langmuir kinetics and memory reservoirs [34] were
studied too. The next section is devoted to the single
chain TASEP, then a short overview is given on the
TASEP with a double-chain section in-between [25]. The
last section is devoted to our new Monte Carlo simulation
results displaying a novel property of the model with the
double-chain section in the maximum-current phase.

II. M ODEL AND APPLICATIONS

A. Single Chain TASEP

One of the simplest driven (non-equilibrium) mod-
els of many-particle systems with particle conserving
stochastic dynamics is the asymmetric simple exclusion
process (ASEP). It has been extensively studied on sim-
ple chains with periodic, closed and open boundary con-
ditions. In the extremely asymmetric case particles are
allowed to move with in one direction only - this is the
totally asymmetric simple exclusion process (TASEP).
It was first introduced in [10] as a model of protein
synthesis; in the context of interacting Markov processes,
see [1]. Its steady states are exactly known for both open
and periodic boundary conditions, for continuous-time
and several kinds of discrete-time dynamics. Here we
shall focus our attention on the steady states of the open
TASEP with continuous-time stochastic dynamics on a
simple chain, illustrated in Fig. 1. For a review on the
exact results for the stationary states of TASEP under
different kinds of stochastic dynamics, and its numerous
applications, we refer the reader to [4, 22].

The continuous-time dynamics is modeled by the so
called random-sequential update: in the algorithm one
chooses with equal probability any one of the lattice
sites (the left reservoir is included as an additional site),
and, if the chosen site is occupied by a particle, moves
it (with rate p = 1) to the nearest-neighbor site on
the right, provided the target site is empty. In the case
of open system, particles are injected at the left end
with rate α and removed at the right end with rate
β when the last site is occupied. Whenα, β ∈ (0, 1]
the boundary conditions correspond to coupling of the
system to reservoirs of particles with constant densities
α and1− β, respectively.

As predicted by Krug [21], the change of the boundary
rates induces non-equilibrium phase transitions between
different stationary phases. In the thermodynamic limit,
the phase diagram of the stationary states in the plane of
the particle injection and removal rates is shown in Fig.
2. It exhibits three distinct phases: a low-density free-
flow phase (regionAI ∪AII), a high-density congested
traffic one (regionBI ∪ BII), and a maximum current
phase (regionMC), characterized by a synchronized
flow in which jams and free-flow coexist at interme-
diate densities. These phases are separated by lines
of non-equilibrium first-order and second-order phase
transitions. Here we need to mention some basic facts
obtained in the case of continuous-time dynamics: (a)
the correlations in the bulk of an infinite chain vanish
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Fig. 1. Schematic representation of the open TASEP on a simple
chain; for details see text.

Fig. 2. Phase diagram of the open TASEP on a simple chain. The
regions of the different phases are explained in the text.

and the dependence of the stationary current of particles
J on the average densityρ is given byJ = ρ(1−ρ); (b)
in the maximum current phaseρ = 1/2 and J = 1/4;
when J < 1/4, there are two densities which support
that current:

ρ±(J) = [1± (1− 4J)1/2]/2, (1)

(ρ−) is the bulk density in the low-density (high-density)
phase.

Fig. 3. Schematic representation of the network: a single chain with
a two-chain incertion. The segmentsC2 and C3 have equal length
L2(L3 = L2) in the case under consideration. The particles are
injected at the left end with a rateα and removed at the right end
with a rateβ. The particles move from left to right, at the branching
pointPb = L1 they take with equal probability the upper or the lower
branch.

B. TASEP with a Double-Chain Section

The idea of studying networks, composed of chain
segments, which exhibit the bulk behavior of an open
TASEP under boundary conditions given in terms of
effective input and output rates, was first advanced in
our work [25]. The network considered there is shown
schematically in Fig. 3. The appearance of correlation
effects, close to the ends of the chain segments, as well
as of cross-correlations in the double-chain segment was
found.

The same approach was applied in Ref. [26] to an
open network consisting of one vertex with two incoming
chains, coupled to one reservoir, and one outgoing chain,
coupled to another reservoir. Different versions of simple
networks were studied also in Refs. [25] and [26]. In the
latter work the notion of particle-hole symmetry in the
presence of a junction was carefully analyzed and an
appropriate interpretation on the microscopic level was
given. TASEP with parallel update on single multiple-
input—single-output junctions has been investigated too
[29]. The main concern in the above works was the
construction of the phase diagram under different open
boundary conditions.

Here we continue the investigation of the network con-
sidered in [25], see Fig. 3. Note, that the last sitei = L1

of the head chain is a branching point, from which the
particles can take the upper or the lower branch of the
two-chain section with equal probability. Simultaneous
and independent traffic of particles on the two equivalent
branches was simulated. The parallel branches merge
at site i = L1 + L2, where the particles have to wait
for the first site of the tail chaini = L1 + L2 + 1 to
become empty. We have denoted the phase structure of
the model by(X1, X2,3, X4), whereXk (k = 1, 2, 3, 4)
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stands for one of the stationary phases of the chain seg-
mentCk: LD—low density,HD—high density,MC—
maximum current, andCL—coexistence line. Our an-
alytical analysis of the allowed phase structures, based
on the properties of single chains in the thermodynamic
limit, and the neglect of the pair correlations between
the nearest-neighbor occupation numbers at the junc-
tions of different chain segments, yielded 8 possibilities.
Here we focus our investigation on 3 of the most in-
teresting cases(MC,LD,MC), (MC,CL, MC), and
(MC,HD,MC), which appear under the conditions
α > 1/2, β > 1/2, corresponding to the maximum
current phase of a single chain. The phase state of
the chains in the double-chain defect depends on the
effective injection rateα∗ of particles at the first site
of each of the chain segmentsC2,3 and on the effective
removal rateβ∗ of particles from the last site of each
of these chains. As in the case of a single infinite chain,
the density profiles ofC2 andC3 are similar to the ones
in the LD, CL, andHD phases whenβ∗ < α∗ < 1/2,
β∗ = α∗ < 1/2, andα∗ < β∗ < 1/2, respectively. The
crucial difference now is that the above effective rates
depend on the finite size of the head and tail simple chain
segments.

In the present interpretation, the hard-core particles
represent individual molecular motors.

III. R ESULTS AND DISCUSSION

As a result of Monte Carlo simulations we have found
a novel property of the model in the maximum-current
phase, i.e., whenα > 1/2 and β > 1/2. Then the
currentJ2,3 trough each of the chainsC2,3 equals half of
the maximum current, i.e.,J2,3 = 1/8. Therefore, due
to the fundamental relationshipJ = ρ(1 − ρ), in the
thermodynamic limit these chains can be found either in
a low-density phase with bulk density

J(1/8) = [1−
√

0.5]/2 ≈ 0.14645 , (2)

or in the high-density phase with bulk density

J(1/8) = [1 +
√

0.5]/2 ≈ 0.85355 , (3)

or on the coexistence line of these two phases. Upon
moving the double-chain defect along the network, keep-
ing fixed the lengths of both the defect and the whole
network, a position-induced phase change in the defect
chains takes place. This change from the coexistence line
to a low- or high-density phase is observed in the density
profile of each of the chains forming the defect.

In Fig. 4 we show our simulation results for the
density distributions for a rather small system of fixed

Fig. 4. Simulation results: density profiles as a function of the
scaled distancex = i/Lk, for the system with the(MC, CL, MC)
phase structure, appearing when . The symmetric case withL1 =
L2,3 = L4 = 50 is shown with red squares. The change of the
density profiles in the double-chain section is clearly seen: when
L1 = 25, L4 = 75 its shape is characteristic of theHD phase (blue
circles); whenL1 = 75 and L4 = 25 its shape is characteristic of
the LD phase (green triangles).

total lengthLtot = L1 +L2,3 +L4 = 150 sites and fixed
size of the double-chain section,L2 = L3 = 50. The
ensemble averaging was performed over200 indepen-
dent runs and after3 000 000 Monte Carlo steps were
omitted in order to ensure that the system had reached
a stationary state. One can easily see the sharp change,
which the density profiles undergo, when the position of
the loop is shifted. As a reference, the results for the
density profiles of the system with segments of equal
lengthL1 = L2,3 = L4 = 50 are shown with red squares.
Grey circles In the latter case the two branches of the
defect section are on the coexistence line. However,
when the head chain is shorter, e.g., whenL1 = 25
and, respectively,L4 = 75, the density distribution in
the double-chain section is typical for theHD phase
(see the results shown with blue circles). In the opposite
case, when the head chain is longer than the tail one,
L1 = 75 and L4 = 25, the density distribution of the
double chain-section has the typical shape of theLD
phase (shown with green triangles).

The spatial behavior of the correlations between
nearest-neighbor occupation numbers, shown in Figure
5, is also typical for the corresponding phases.

An explanation of the phenomenon can be given in
terms of finite-size dependence of the effective injection
and removal rates at the ends of the double-chain defect.
In the symmetric case, whenL1 = L4, we observe
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Fig. 5. Simulation results: Nearest-neighbor correlationsFcorr, in
the (MC, CL, MC) phase state of the system, as a function of the
scaled distancex = i/Lk, for different positions of the double-chain
segment.

α∗ ≈ β∗ and, in the thermodynamic limit, the defect
chains should be on the coexistence line. This fact
is demonstrated by the (almost) linear density profile,
changing fromρ−(1/8) at the left end toρ+(1/8) at the
right end. Such a linear profile is known to result from
a freely moving domain wall separating the low-density
and high-density regions. Due to the size dependence
of the effective rates, on moving the defect to the
left (i.e., whenL1 decreases andL4 increases, so that
L1 + L4 remains constant),α∗ increases andβ∗ slightly
decreases, thus the conditionα∗ > β∗ becomes fulfilled
and the chainsC2,3 obtain a density profile, characteristic
of the high-density phase. In the opposite case, on
moving the defect to the right (i.e., whenL1 increases
and L4 decreases, so thatL1 + L4 is constant),α∗

slightly decreases andβ∗ increases, so that the condition
α∗ < β∗ takes place and the chainsC2,3 obtain a density
profile, characteristic of the low-density phase.

It is interesting to note, that the average velocity of
particlesv, defined from the relationJ = ρv, is higher
(lower) in the low-density (high-density) phase than in
the head and tail chains, for whichvMC = 1/2. Indeed,
in the LD phase

vLD = 1/[4(1−
√

0.5)] ≈ 0.85355 , (4)

and in theHD phase

vHD = 1/[4(1 +
√

0.5)] ≈ 0.14645 , (5)

Another notable observation is, that not only the bulk
density of a single chain in the double-chain segment

in the LD (HD) phase is lower (higher) than the bulk
density of the head and tail chains, for whichρMC =
1/2, but the same relation holds for the sum of the bulk
densities of both chains in the double-chain segment.
Indeed, in theLD phase

2ρ−(1/8) = 1−
√

0.5 ≈ 0.29289 , (6)

and in theHD phase

2ρ+(1/8) = 1 +
√

0.5 ≈ 1.7071 , (7)

In general, for a multi-chain defect, consisting of n
parallel identical chains, in theLD phase we obtain for
the total bulk density of particles in the defect

nρ±(1/4n) = n[1± (1−n−1)1/2]/2 99K 1/4, n 99K∞
(8)

Therefore, the unlimited increase of the number of chains
in the defect part, tends to lower the total bulk density of
particles in it from2ρ−(1/8) ≈ 0.29289 down to 0.25.
This is a very interesting and useful property.

IV. CONCLUSION

A possible biochemical interpretation of the model,
considered here, can be given in terms of molecular
motors moving along linear biopolymers, such as actin
filaments, microtubules, DNA and RNA molecules. Our
model ignores the possibility of backward steps, as well
as the initiation stage, the dissociation from the track
and the sequence of intermediate biochemical states, for
example, the arrival and binding of a fuel molecule. We
have focused on the effect of a non-trivial topology on
the transport of hard-core particles. As pointed out by
Pronina and Kolomeisky [26], the realistic description of
cellular transport, requires also to include the possibility
of motion on lattices with a more complex geometry.
For example, there are indications, that the number of
proto-filaments, that kinesins walk on, may vary in the
microtubules. This indicates the existence of junctions
and other lattice defects, which may be responsible for
some human diseases. The network with a double-chain
defect, considered by us, can be thought of as some sort
of genetic malformation or defect, caused by radiation
or some other source. Our main results concern the
bulk density and the average velocity of particles in
the defect chains, in the regime of maximum current
through the whole network. One can imagine scenarios,
when it is needed to minimize or maximize some of
the above mechanical parameters, presumably, for engi-
neering novel cellular behavior. Then some hints from
models of traffic on tracks with parallel sections could
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be helpful. From the point of view of statistical physics,
one is interested in a number of issues. A fundamental
question concerns the ”stability” of steady-state proper-
ties with respect to model modifications. Which changes
of the microscopic model details will lead to changes of
the macroscopic behavior? Also, while for equilibrium
systems basic notions of universality and independence
from dynamic details are well understood, only initial
steps are taken towards extending these notions towards
non-equilibrium systems and more specifically towards
non-equilibrium steady states [35, 36]. We would like to
conclude by pointing out that even though such simple
models may not permit immediate comparisons with
available experimental data, due to the significant amount
of simplification and/or abstraction involved, they can
still be quite useful in guiding future experimental work.
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