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Abstract—A computational treatment is presented for
the mathematically rigorous analysis of civil engineering
structures, which have been environmentally damaged and
subsequently strengthened by cable-elements. The problem
is treated as an inequality one, where the governing
conditions are equalities as well as inequalities. The cable
behavior is considered as nonconvex and nonmonotone one
and is described by generalized subdifferential relations
including loosening, elastoplastic - fracturing and other ef-
fects. Using piece-wise linearization for the cable behavior,
a linear complementarity problem, with a reduced number
of unknowns, is solved by optimization algorithms. Finally,
an example from Civil and Environmental Engineering
praxis is presented.
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I. INTRODUCTION

Environmental actions can often cause significant
damages to civil engineering structures, see e.g. [lLl], [2].
Main such defect is the strength degradation, causing a
reduction of the load bearing capacity. To handle such
defects, sometimes cable-like members are used as a first
strengthening and repairing procedure. These cable-like
members can undertake tension but buckle and become
slack and structurally ineffective when subjected to a
sufficiently large compressive force. Thus the governing
conditions take an equality as well as an inequality form
and the problem becomes nonlinear. So, the problem of
structures containing as above cable-like members be-
longs to the so-called Inequality Problems of Mechanics,
as their governing conditions are of both, equality and
inequality type [3[]-[6] .

A realistic numerical treatment of such problems
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can be obtained by mathematical programming methods
(optimization algorithms) [3]—[5]. The early numerical
realizations of these approaches were based mainly upon
the principle of minimum complementary energy. Thus,
an equivalence principle for the analysis of statically
undetermined structures with unilateral constraints has
been proposed and proven by G. Nitsiotas [3].

Further, for the rigorous mathematical investigation
of the problem, convex analysis and the variational or
hemivariational inequality concept have been introduced
and used, see Panagiotopoulos [6], [7] and [11]].

The aim of this paper is to deal with the develop-
ment of a simple numerical procedure for the rigorous
analysis of civil engineering structures containing cable-
like members by using a version of the direct stiffness
(displacement) method of structural analysis. The present
procedure is based on the finite element method and the
equivalence principle, proposed by G. Nitsiotas in [3]].
Using this principle, the analysis of such structures can
be reduced to a Linear Complementarity Problem (LCP),
which can be solved by various effective quadratic pro-
gramming algorithms [S]. A numerical example shows
the direct applicability on the computer and the effec-
tiveness of the procedure presented herein.

II. METHOD OF ANALYSIS
A. Problem formulation

A frame structure containing N cable-like members is
considered. The structure is discretized according to the
natural finite element method [4]], [6]. For the cables,
pin-jointed bar elements with unilateral behavior are
used. Following Panagiotopoulos [6], [7]. the behavior
of the cables, including loosening, elastoplastic or/and
elastoplastic-softening-fracturing and unloading - reload-
ing effects, can be expressed mathematically by the
subdifferential relation:

si(d;) € 8S;(d;) (1)

Here s; and d; are the (tensile) force and the de-
formation (elongation), respectively, of the i-th cable
element, 9 is the generalized gradient and S; is the
superpotential function [6]], [7], [10], [11]]. By definition,
relation (1)) is equivalent to the following hemivariational
inequality, expressing the Virtual Work Principle for
inequality problems:

SH(di, e — di) > si(d;).(e; — dy) (2)

Here SZ-T denotes the subderivative of S; , and e;, d;
are kinematically admissible (virtual) deformations. For
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numerical treatments of practical inequality problems, a
piece-wise linearization is usually applied to relations
and (2), see e.g. [4], [8]. So, the unilateral behavior for
the ¢-th cable-element (: = 1,..., N) is expressed by
the following relations [3]], [4]:

e; = Foisi +ej0 —v; 3)

520, v; 20, s;.v; =0. 4)

Here e; , Fy;, si, eio, and v; denote the strain (elonga-
tion), natural flexibility constant, stress (tension), initial
strain and slackness, respectively. From (3) it is clear that
the slackness v; can be considered as an unknown initial
strain which constitutes a reversible negative elongation
[3]. Further, relations express that either a non-
negative stress-tension or a non- negative slackness exists
on any cable.

For the remaining structure (besides the cables), the
usual frame finite element models, which exhibit a
bilateral behavior, are used.

B. Numerical solution approach

Now the equivalence principle, proposed by G. Nitsio-
tas in [3l], is applied for the whole structure. According
to this principle, the structure under consideration be-
haves as an equivalent, linearly elastic structure, under
the condition that in each cable-element either a non-
negative stress or a fictitious, unknown, non- negative
slackness appears-see relations (3). Thus, collecting in
(N x 1) vectors t and v the stress and slackness behavior
of all the IV cable-elements, corresponding, the following
Linear Complementarity Conditions hold:

v = 0. Q)

t>0, v>0,

Further, following the Stiffness (Displacement)
Method of Structural Analysis, we consider the cable-
element as solidified rods and we assume that the
so-modified structure is a statically stable one with
bilateral rod-elements. So, the tension vector t is
decomposed as follows [9]:

t=Cuv+t (6)

Here ty is the stress vector of the solidified cable-
elements, now acting as normal bilateral rods, due to
external actions and C' is the natural influence matrix of
v on t. For both it is assumed a linearly elastic, bilateral
behavior for the stable structure, where. the cables are
considered as already solidified bars. So, the natural
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stiffness matrix C' is symmetric and in general positive
semi-definite.

Thus, if t3 is known, then vectors ¢ and v can
be determined by solving the Linear Complementarity
Problem (LCP) formed by relations (5) and (6). For
the solution of this problem, various effective algorithms
are available [3]-[10]. Most of these algorithms reduce
the above linear complementarity problem to a quadratic
programming one of the form:

1
Min {Q’UTCU +oltg 1 v> 0} (7)
After the previous preparation we can now formulate
the following numerical procedure for the analysis of
structures containing cable like members:

a) Considering the cables as having been solidified
(normal bilateral bars), the vector ¢ty due to external
actions is determined by the Finite Element Method.

b) Under the same assumption and by the same method
as in a), the influence matrix C is determined. In this
matrix, Cj; is the stress (axial force) in the solidified
cable-element 7 caused by a unit-shortening v; = 1
imposed in the solidified cable-member j, (¢,7 =
1,...,N).

¢) The Linear Complementarity Problem of relations
(3) and (6) is solved to provide the sought vector
v. So it is computed which cable-elements are
activated (under tension) and which are not (under
non-zero slackness).

d) The final stress state of the structure is determined
by taking into account the external actions and the
computed forces t of the active cable-elements.

Thus, the whole procedure requires the linear elastic
analysis of the modified (with solidified cable-elements)
structure (N + 2) times, where NN is the number of
the cables, and the solution of a quadratic programming
problem or a LCP. Alternatively, after having computed
t, the structure is analyzed due to external actions by
omitting the slack cables for which the step c) has given
zero tension values.

III. NUMERICAL EXAMPLE

The reinforced concrete plane frame structure of Fig.
1 had been initially analyzed, designed and constructed
to bear the shown loads, without the shown cable-
elements. The concrete class is C40/50 and the elasticity
modulus Ej = 3.5 x 107kN/m?. The shown dimensions
width/height of rectangular sections are in centimeters
[em].
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The analysis of the above frame without cable-
elements is obtained by using any available finite element
method code, e.g. SAP2000 code [13].

Due to environmental actions [1], [2], corrosion and
cracking had been taking place. This had caused a reduc-
tion for the section inertia moments, which, according to
[14], is estimated to be 10% for the columns and 50%
for the beams. So it was necessary for the system to
be strengthened. As a first repairing and strengthening
procedure, ten (N = 10) cable members with cross-
sectional area F,, = 8 ¢m? have been added as shown in
Fig. 1. The steel class is S1400/1600 with an elasticity
modulus F; = 210G Pa. These cables are placed as
counter diagonals. As it is not known in advance which
of them are activated or not by the given loads, the
purpose here is to compute what happens.

The application of the presented numerical procedure
gives first the values of the slackness of the not activated
cable-elements:

v1 = 0.848 x 1073m, vz = 10.321 x 103m,

vs = 1.082 x 1073m, vg = 9.564 x 1073m,

v1p = 1.652 x 10™3m.

Further, the elements of vector ¢, where

t= [Sl, SQ, ey Slo]T,
are computed to have the following values (in kN) for
the non-active cables:

‘91:513:55:‘98:510:0'07
whereas for the active cables it holds:

So = 10.17kEN, S4 = 346.04kN, S = 18.84kN,

S7 = 342.08kN, Sg = 25.81kN.

Thus, cables 2,4,6,7 and 9 are the only ones active,
having zero slackness. The other cables 1,3,5,8 and 10
cannot contribute to the system resistance under the
given loads in Fig. 1.

Using the previous results, the final stress state is
computed. In Fig. 2 is shown indicatively the final
bending moments diagram for the strengthened frame
containing the active cable-elements only. Comparing
the diagram in Fig. 2 with the corresponding one for
the initial frame without cables, the efficiency of the
strengthening can be checked.

IV. CONCLUSION

The inequality problem of the cable-braced civil en-
gineering structures can be treated numerically by the
herein presented approach. This approach takes into ac-
count the unilateral behavior of cable elements, uses the
equivalence principle of G. Nitsiotas [3] and so leads to a
linear complementarity problem, with a reduced number
of problem unknowns. Thus, the numerical realization of
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Fig. 1.

The cable-braced structural system of the numerical example.

Bending moments diagram (in kNm) for the frame with the 5 active cable-elements No 2,4,6,7 and 9.
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the proposed approach is obtained by available computer
codes of the finite element method and of mathematical
programming algorithms. Moreover, as it has been ver-
ified in an example, the herein developed approach can
treat in a realistic way the general problem of cable-
braced structures in civil and environmental engineering
praxis. An extension of the presented approach for the
case of the earthquake response of such structures has
been recently presented [12].
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