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Abstract—Convection-induced instability in reaction-
diffusion systems produces complicated patterns of oscil-
lations behind propagating wavefronts. We transform the
system twice: into lambda-omega form, then into polar
variables. We find analytical estimates for the wavefront
speed which we confirm numerically. Our previous work
examined a simpler system [E. H. Flach, S. Schnell, and
J. Norbury, Phys. Rev. E 76, 036216 (2007)]; the onset of
instability is qualitatively different in numerical solutions
of this system. We modify our estimates and connect
the two different behaviours. Our estimate explains how
the Turing instability fits with pattern found in reaction-
diffusion-convection systems. Our results can have im-
portant applications to the pattern formation analysis of
biological systems.

Keywords- reaction-diffusion; convection; limit cycle;
Schnakenberg; travelling wave

I. INTRODUCTION

Reaction-diffusion systems have been studied since
Turing suggested them as an explanation of morphogenic
patterns [1]. Mathematical biologists have shown that
Turing-type models can mimic patterns during develop-
mental processes, such as pigmentation patterns on ani-
mals [2], feather germ patterns form in a hexagonal array
behind a propagating maturation front [3] or traveling
stripes on the skin of a mutant mouse [4]. More recently,
this system has been found in mouse hair follicle dis-

tribution [5]. Here we investigate the effect of adding
convection on a general model of pattern formation.
Pattern formation occurs as organisms grow, and this
increase in size could be modelled as convection. More
generally, adding convection to the reaction-diffusion
system is a disturbance to the system. This means our
approach can be considered a stability analysis of the
original system. We see that the convection gives rise
to Turing-type pattern more readily. That the system
produces pattern more easily under a disturbance gives
us more confidence in the mechanism for biological
applications.

The reactions often chosen for study are those pro-
posed by Schnakenberg [6], since he demonstrated that
they originated from the simplest two-species chemical
reaction capable of producing limit cycles in an ODE.
Cubic auto catalysis is a model for several chemical
reactions [7]. As discussed by Schnakenberg, the limit
cycle requires an unstable spiral and bounding on the
instability. These two properties give functions suitable
for pattern formation in a PDE.

More recently, Rovinsky and Metzinger [8] showed
that pattern could be induced by convective flow. They
employ the more complicated, but chemically valid,
chlorite-iodide-malonic acid system. Subsequently, dif-
fusion was introduced to this system and instability ob-
served experimentally [9]. Satnoianu et al. [10] showed
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Figure 1. Pattern found for a diffusion system with convection and
limit-cycle reaction kinetics (1). The initial disturbance propagates
and becomes pronounced, forming a regular pattern with aligned
oscillations. The propagation is linear, forming a V-shape. This is
a numerical solution using NAG D03PCF, plotting species u with
µ = 1.1, D1 = 0.01, D2 = 0.01, ρ = 1. The reactants are initially
at steady state: (u, v) = (1/µ, µ), with a small disturbance at x = 0.
The boundaries are held at zero derivative: ux, vx = 0.

that an initial point disturbance in this system can cause
a pattern to propagate. The pattern is an oscillatory
form, two wave packets joined together, and increasing
in width. We show this pattern in Figure 1. This is
the propagation of a small disturbance from the steady
state, and so the initial conditions are the steady state
with a unit width disturbance an order of magnitude
smaller than the pattern at x = 0 in the first species
u only. This disturbance is apparent in Figure 1. For
simplicity we imagine an infinite domain; for numerical
solutions we keep the boundaries at the steady state
value. These conditions are retained throughout this
study. This propagating pattern shown in Figure 1 is
interesting but poorly understood, in the general case.

The speed of propagation has been given for a two-
species system with no convection [11] and one with
equal convection [12]. A related theoretical study con-
siders the relationship between the onset of the instability
and the longer-term behaviour of the non-equilibrium
state [13]. Here the simplest reaction-diffusion system
with oscillatory kinetics was considered, and complex
behaviours were found.

In a previous paper, we examined a similar but simpler
system [14] using λ-ω reactions because their symmetry
is such that the chemical species convert readily into
polar form. Murray’s book Mathematical Biology gives
a good introduction to λ-ω systems and their applica-
tion [15]. We analysed the pattern propagation as two

travelling waves of oscillations emanating outwards from
a central axis. Our analytical predictions were confirmed
by numerical observation. This result in our previous
paper led us to the technique we present here for the
general analysis of a physical reaction-diffusion system
with convection. We focus our attention to the physical
reaction-diffusion system introduced by Satnoianu et
al. [10]. This is the reaction-diffusion-convection system
with Schnakenberg reaction kinetics.

Our previous success with the simpler λ-ω system
suggests that the same approach will be fruitful: trans-
formation of the dependent variables into polar form.
However, the Schnakenberg reactions lack the symme-
try of the λ-ω functions and so a further technique
is required. We employ a simple technique suggested
by Murray [15, pp.336-340] in a novel situation. This
is a matrix transformation, converting the linearised
Schnakenberg reactions into λ-ω form. Having found a
symmetric representation, we convert into polar form,
then apply a Fisher travelling wave analysis. This gives
predictions for the rate of expansion of the envelope
of pattern. We refer to this as the wave speed of the
boundaries.

For this previous system we found two distinct wave
speed classes with the switch a function of the strength of
convection. In the absence of any other information, we
predict that the Schnakenberg system will behave in the
same way as the λ-ω system. We investigate numerically
using NAG D03PCF. We start with the system at the
steady state, and make a small perturbation in u at x =
0. To avoid boundary effects, we hold the derivative at
zero on the boundary. We look at three values for µ,
the source supply term. For each µ, we vary both ε, the
difference in diffusion, and γ, the convection strength.
In each simulation, we automatically determine the lines
of onset of pattern in x-t space: the left and right wave
speeds.

Our analytical approach gives the general estimate for
the wave speeds. However, the Schnakenberg system has
a different switch between behaviours. In particular, the
left wave speed only has one class of behaviour: the
switch found in the λ-ω system is not present. We inves-
tigate further and find an underlying behaviour consistent
with the switch found previously. However, left-hand
stability is retained in the Schnakenberg system.
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II. SCHNAKENBERG

REACTION-DIFFUSION-CONVECTION SYSTEM

The most general form of the reaction-diffusion-
convection system is:

uτ = D1uzz − c1uz + f(u, v)

vτ = D2vzz − c2vz + g(u, v)

with the diffusion coefficients Di positive. We define the
system in abstract form to demonstrate the generality of
the results that follow. We remove one of the convective
terms by a simple change of coordinates from z to Z =
z − c1τ , with T = τ :

uT = D1uZZ + f(u, v)

vT = D2vZZ − ηvZ + g(u, v)

with η = c2 − c1. We can choose the convection
coefficient to be positive with an even simpler coordinate
change, Y = sign(η)Z:

uT = D1uY Y + f(u, v)

vT = D2vY Y − ρvY + g(u, v) (1)

so ρ = sign(η)η, and certainly ρ > 0. (There is the trivial
case too, c1 = c2, for which we ignore this step.) We
expect that a difference in size in morphogens will give a
difference in diffusion coefficients Di and will represent
a biologically realistic pattern formation system [5]. For
passive convection or advection given here by ρ, we look
for a flow of liquid in the system. The morphogen v is
carried by this flow. The liquid flow has no effect on the
morphogen u.

The last step in the reduction is to remove the first
diffusion coefficient with y = Y/

√
D1:

uT = uyy + f(u, v)

vT = εvyy − γvy + g(u, v)

with ε = D2/D1 and γ = ρ/
√
D1. The above applies

in general to this reaction-diffusion-convection system.
Now we introduce the Schnakenberg reaction scheme:

µ
// U + 2V

k // 3V
m //

Using the law of mass action, this reaction scheme
translates into our reactions:

f = µ− kuv2

g = kuv2 −mv

with µ the constant, positive source term. The rate
constant k (a third-order reaction coefficient) and the

sink rate constant m (first-order rate coefficient) are
always positive. In full, the system is

uT = uyy + µ− kuv2

vT = εvyy − γvy + kuv2 −mv

We can remove some of these constants by rescaling
our dependent and independent variables together. We
choose ũ =

√
k/m.u, ṽ =

√
k/m.v, t = mT , x =√

my

ũt = ũxx + µ̃− ũṽ2

ṽt = εṽxx − γ̃ṽx + ũṽ2 − ṽ

where γ̃ = γ/
√
m and µ̃ =

√
k/mµ/m. The rescaled

reactions are simpler:

f̃ = µ̃− ũṽ2

g̃ = ũṽ2 − ṽ

with only a single source parameter, µ. From this point
we drop all the tildes for clarity:

ut = uxx + f

vt = εvxx − γvx + g (2)

with

f = µ− uv2

g = uv2 − v

The remaining constants are: ε denoting the ratio of the
diffusion coefficients, γ the difference in convection, and
µ the relative strength of the chemical source.

III. TRANSFORMING THE REACTIONS INTO λ-ω FORM

We have so far simplified the differential operators
in our reaction-diffusion-convection model. However,
the reaction terms remain complicated. Our approach is
suggested by Murray [15, pp.336-340] when considering
a related problem, that of travelling wave trains. We
consider the behaviour close to the steady state and so
linearise about it. This straightforward transformation
yields a “normalised” form of the reaction system.

To simplify the exposition, we first consider only the
ODE formed using the rescaled Schnakenberg reactions:

u′ = µ− uv2

v′ = uv2 − v (3)

This system is known to form limit cycles from µ < 1
down to µ & 0.90032 [16].
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Figure 2. Phase space for the limit-cycle reaction (3), given by
numerical solution. The phase curve spirals out from the steady state
to meet the limit cycle (broad loop). The Schnakenberg (a) system is
highly elliptical, even at the start of the trajectory, by the steady state.
The transformed Schnakenberg (b) shows a more circular behaviour
initially, but the limit cycle shape remains more complicated. The
parameter here is µ = 0.95. The solution was found using Matlab
ode15s.

We find the non-trivial steady state at (1/µ, µ). We
linearise the reactions about this steady state, yielding:

M =

(
−µ2 −2
µ2 1

)
The Hopf bifurcation point is µ2 = 1. We look for a
transformation matrix P that will convert the Schnaken-
berg matrix M into the symmetric λ-ω form, so that
P−1MP gives:

L ≡
(

α β
−β α

)
Employing some algebraic manipulation, we find that α
must be equal to (1−µ2)/2. For µ near the Hopf bifur-
cation, α will always be small. Since the determinants
of M and L must be the same, then α2 + β2 = µ2, and
so β is also determined. Since α will be small, β will
be similar to µ. We find a transformation matrix:

P ≡
(
α− 1 β
µ2 0

)
and we confirm that L = P−1MP . This matrix P is not
unique; any rotation or enlargement of it is also suitable.

We can use this transformation as a change of vari-
ables, namely u = Pū. This transformation only reg-
ularises the linear part of the Schnakenberg functions.
We hope the transformed system will exhibit symmetry
close to the steady state. However, away from this
point, the non-linear terms will have a more significant
contribution. Therefore we expect increasing asymmetry
as the solution moves away from the steady state.

We can see the effect this transformation has on the
ODE phase plane in Figure 2. The original Schnakenberg

system Figure 2(a) is highly elliptical, even at the start
of the trajectory, by the steady state. The transformed
Schnakenberg Figure 2(b) shows a more circular be-
haviour initially, but the limit cycle shape remains more
complicated. This is as we expected.

We can now write the PDE in matrix notation:

ut =

(
1 0
0 ε

)
uxx

−
(

0 0
0 γ

)
ux +Mu +H

Now we apply the change of variables to this PDE
system. This gives the differential equation as:

Pūt =

(
1 0
0 1 + δ

)
Pūxx

−
(

0 0
0 γ

)
Pūx +MPū +H (4)

whereH represents the higher-order terms. Here we have
introduced a new variable δ = ε − 1, the difference
between the diffusions, to collect terms.

We concern ourselves only with the neighbourhood
of the steady state and so neglect these higher-order
terms. From now on we are dealing with the linear
approximation of the system.

The next step is to pre-multiply the entire differential
equation (4) by the inverse transformation matrix P−1,
yielding:

ūt ≈ P−1
(

1 0
0 1

)
Pūxx + P−1

(
0 0
0 δ

)
Pūxx

−P−1
(

0 0
0 γ

)
Pūx + P−1MPū

We already know that P−1MP = L, and the other two
are calculations are fairly straightforward, yielding:

ūt ≈ ūxx + δ

 1 0
1− α
β

0

 ūxx

−γ

 1 0
1− α
β

0

 ūx + Lū

We can simplify the expression of the system:

ūt ≈ ūxx +

 1
1− α
β

 (δūxx − γūx) + Lū

This clearly shows the connection between the diffusion
difference δ and the convection γ. This combination term
acts as a disturbance to the simple reaction-diffusion
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form. Since the reaction term L is now in classic λ-ω
form, any difference in predicted behaviour is probably
due to the modified differential form. It is possible
that the non-linear terms make some contribution to the
initiation of pattern too.

IV. TRANSFORMING THE CHEMICAL SPECIES INTO

POLAR FORM

The purpose of the previous section was to manipulate
the system into a particular form. This λ-ω form has
a substantial symmetry to it, and is very suitable for
the next stage in our analysis. This next step is a
further transformation of the variables. We convert the
newly-transformed dependent variables (ū, v̄) into a new
coordinate system, a polar form (r, θ) as follows:

ū = r cos θ, v̄ = r sin θ .

The purpose of this transformation is to reduce the
system to one dependent variable, by assuming that r is
the significant term, and that the effect of θ is negligible.

There are some useful identities which we employ:

r2 = ū2 + v̄2 (5)

rrt = ūūt + v̄v̄t (6)

rrxx − r2θ2x = ūūxx + v̄v̄xx (7)

r2θt = −v̄ūt + ūv̄t (8)

r2θxx + 2rrxθx = −v̄ūxx + ūv̄xx (9)

Utilising these, we find the following:

rt ≈ rxx − rθ2x

+

(
cos θ +

1− α
β

sin θ

)
(δūxx − γūx) + αr

θt ≈ θxx + 2
rx

r
θx

+

(
− sin θ +

1− α
β

cos θ

)(
δūxx − γūx

r

)
−β

Observe that the second trigonometric term (in brackets)
is the differential of the first one.

A. Simple case

We consider the trivial case δ = 0, γ = 0, and
assume θx = θxx = 0. We assumed earlier that we could
dispense with the nonlinear terms, and thus we have:

rt ≈ rxx + αr

θt ≈ −β

Then the θ equation is separable and we find θ ≈ −βt,
to within a constant. The r equation is certainly suitable
for a Fisher-type propagating wave solution analysis.
This yields a minimal travelling wave speed estimate of
±2
√
α.

In simpler systems it has been shown that this minimal
speed will be achieved. However, our more complicated
system does not lend itself so readily to analysis [11]. It
is also possible that nonlinearity may have an effect [17].
To continue our analysis, we assume that our minimal
wave speed estimate will be achieved in our system.

B. Full system

We complete the transformation to the polar dependent
variables:

rt ≈ (1 + δa cos θ) rxx

− (2δa sin θ.θx + γa cos θ) rx

+
[
α− (1 + δa cos θ) θ2x

−a sin θ (δθxx − γθx)] r

θt ≈ (1 + δb sin θ) θxx

+

[
2 (1− δb sin θ)

rx

r
+ δb cos θ.θx + γb sin θ

]

θx + b cos θ
δrxx − γrx

r
− β

with a = cos θ + [(1 − α)/β] sin θ and b = − sin θ +
[(1− α)/β] cos θ. Following our previous analysis [14],
we first consider the simple case where θx = θxx = 0,
giving:

rt ≈ (1 + δa cos θ)rxx − γa cos θrx + αr

θt ≈ b cos θ
δrxx − γrx

r
− β

The radius (r) equation determines the onset of insta-
bility. That is, an increase in distance from the steady
state is exactly an instability. We make the assumption
that the radius equation is the important one. It is
not certain that the radius equation drives the system
behaviour. However, later on, in Section VI, we will
see that this appears to be the case. Therefore, for this
analysis, we treat θ as if it is a constant. We carry out the
standard Fisher travelling wave analysis on this equation.
We say r(x, t) = R(s) at the wavefront, where s = x−ct
is the travelling wave variable. We substitute this variable
into the PDE, which reduces the system to an ODE:

(1 + δa cos θ)R′′ + (c− γa cos θ)R′ + αR ≈ 0
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This resultant ODE is solved by an exponential, R =
ems. We substitute the exponential for R, giving a
quadratic expression in m:

(1 + δa cos θ)m2 + (c− γa cos θ)m+ α ≈ 0

The value for m is found by solving this quadratic.
However, we are not interested in m, but the possible
values for c.

The travelling wave argument is that if m is complex,
then we have a spiral and so r must become negative at
some point, which is unrealistic. Therefore m must be
real. Since m is real, from the solution of the quadratic:

(c− γa cos θ)2 ≥ 4(1 + δa cos θ)α

In the case that the right hand side is negative, then the
inequality is always satisfied: m is real regardless of the
choice of c.

The next claim is that the minimal allowable wave
speed c is achieved. That is, we choose c to equalise the
condition. This then gives us:

c = γa cos θ ± 2
√

1 + δa cos θ
√
α

where c is the estimate for the wave speed. In the case
where the right hand side of the inequality is negative,
(1 + δa cos θ)α < 0, then the closest to the minimum is

c? = γa cos θ

This special form is only a function of γ, although ε and
µ are involved in the condition. To achieve a spreading
pattern, in this case we certainly need to find different
angles θ for left and right wave speeds.

The expression a cos θ can be re-written as
[1 + p cos (2θ − q)] /2 where p2 = 1 + [(1 − α)/β]2

and tan q = (1 − α)/β. The magnitude p simplifies
to
√

2µ/β. For values of µ near the Hopf bifurcation
point, µ = 1, β ≈ µ and so p ≈

√
2 ≈ 1.41. The value

of θ is not important at present, so we can work with
φ = 2θ − q instead. The wave speed expression then
becomes

c = (1 + p cosφ)γ/2

±
√

2 + (1 + p cosφ)δ
√

1− µ2

c? = (1 + p cosφ)γ/2 (10)

For equal diffusion on both species δ = 0, the wave
speed estimate is purely dependent on the convection
term. Similarly, for no convection difference γ = 0,
the wave speed estimate is only diffusion-dependent.
Therefore, when convection is small we see propagation
caused primarily by diffusion, and pattern primarily as

the solution of the temporal ODE [18]. This gives an
oscillation at the onset of pattern, which is equivalent to
θ increasing.

Our small parameter estimate is for average values
of the trigonometric functions: mean(cosφ) = 0. This
assumes that φ and so θ is a linear function of t, which
is the first solution we found. We now revert to using
ε for simplicity. This reduction gives a relatively simple
equation, but one which combines all the parameters in
the system:

c = γ/2±
√

1 + ε
√

1− µ2

c? = γ/2 (11)

This averaged wave speed gives no spread in the special
c? case.

For large convection difference γ � 1, we con-
sider the extremal values of the trigonometric function:
cosφ = ±1. This situation yields the following wave
speeds:

cleft = (1− p)γ/2−
√

1 + p+ (1− p)ε
√

1− µ2

c?left = (1− p)γ/2
cright = (1 + p)γ/2 +

√
1− p+ (1 + p)ε

√
1− µ2

c?right = (1 + p)γ/2 (12)

V. NUMERICAL EXPERIMENTS

We have generated an expression for a wave speed
estimate, and explored this estimate briefly. We now
conduct some numerical experiments to validate the
estimate. There are three parameters, each of which
need to be varied independently of the others. This
requires an extensive set of experiments. We start by
choosing a particular value of µ, in this case µ = 0.95,
giving α =

√
1− µ2/2 ≈ 0.05 (and then β ≈ 0.949,

p ≈ 1.416).
This value is in the unstable region for the ODE, and

so pattern should form readily. We vary ε and γ over
a wide range and measure the incident wave speeds in
each case. We see if the actual travelling wave speeds
found corresponds to our estimated speeds (11), (12).

The results are consistent with the general analytical
estimates (10), as we can see in Figure 3. However,
the behaviour is not as we predicted in the specific
estimates. For the previously-analysed λ-ω system we
saw a transition from low convection to high convec-
tion [14]. In this Schnakenberg system we see no such
transition for the left wave speed: the system remains
at the low-parameter estimate. In contrast, the right
wavefront almost immediately diverges from our low-
parameter estimate. The right wave speed approaches
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Figure 3. Numerical data compared to analytical estimates. The left wave speed is close to the low parameter estimate for all parameter
values. In contrast, the right wave speed is far from the low parameter estimate, and fairly close to the high parameter estimate. While the
behaviour corresponds to the analysis, the behaviour of θ is different to expectations. In the left wavefront speed, the darker surface is the low
parameter estimate: γ/2−

√
1 + ε

√
1− µ2; The lighter surface is the high parameter estimate: (1−p)γ/2−

√
(1 + p+ (1− p)ε

√
1− µ2.

In the right wavefront speed, the lighter surface is the high parameter estimate: (1+p)γ/2+
√

1− p+ (1 + p)ε
√

1− µ2. The similar dark
surface is a less extremal estimate, with p cosφ = 1, giving the surface as γ +

√
2ε
√

1− µ2; the mid-toned, shortened surface is the low
parameter estimate: γ/2+

√
1 + ε

√
1− µ2. The parameter is µ = 0.95, giving p ≈

√
2. The points are data read from numerical solutions

of the original Schnakenberg reaction-diffusion-convection equation (2) using NAG D03PCF. In the individual runs, the reactants are initially
at steady state: (u, v) = (0, 0), with a small disturbance at x = 0. The boundaries are held at zero derivative: ux = 0, vx = 0.

the maximum estimate for large convection and strong
diffusion on species v. However, for weak diffusion on
v (δ < 0, ε < 1, log (ε) < 0), this maximum is not
attained.

The general analysis remains viable: we can consider
a different angle θ at the wave onset which gives other
wave speeds. In particular, if θ = 0 we have a simple
expression for the wave speed: γ +

√
2ε
√

1− µ2. This
value seems approximately correct for the case of weak
diffusion on v (δ < 0, ε < 1, log (ε) < 0), with a smooth
transition visible between this and the maximal estimate,
as the diffusion on v varies.

Then we have a complete estimate for the wave
speeds:

cleft = γ/2−
√

1 + ε
√

1− µ2

γ +
√

2ε
√

1− µ2 ≤ cright

cright ≤ (1 + p)γ/2

+
√

(1− p+ (1 + p)ε
√

1− µ2

with the right wave speed varying from the low estimate
to high as the difference between the diffusion coeffi-
cients, ε, increases.

A. Increased reaction instability

We repeat the experiment for different values of µ.
First we try µ = 0.85 (this gives α ≈ 0.14, β ≈ 0.84,

p ≈ 1.43). As µ decreases the ODE becomes more
unstable. For the PDE we expect little qualitative change
to the system behaviour. This proves to be the case. The
estimated wave speeds fit the numerical behaviour in the
same way as the previous experiment.

B. Stable reaction, µ > 1

We extend the analysis to the case of α < 0. Our third
experiment is for µ = 1.1, giving α = −1.05 (and then
β ≈ 1.09, p ≈ 1.42). Now we predict the special wave
speed estimate, c?. We expect

c?left = γ/2

γ ≤ c?right ≤ (1 + p)γ/2

We find the behaviour in our numerical experiment
remains close to our estimate.

In the combined case, significant difference between
the two diffusion rates (ε � 1) and α < 0, then the
right hand side of the inequality could become positive
again, and return to being a component of the wave
speed estimate. This is effectively the requirements for
the Turing instability.

VI. INVESTIGATING THE ANOMALY

We see that our Schnackenberg system behaves dif-
ferently from our previously-analysed λ-ω system. We
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Figure 4. The θ behaviour (colour map) shows a broad propagation
of pattern. However, the instability (r > 0, z-axis) does not propagate
so widely. We see that the instability is only present for half of the
underlying behaviour. The left wavefront is actually at the centre
of the pattern, the line traced out from the initial disturbance. The
parameters here are ε = 1.0, γ = 5.0, µ = 0.85. This is a numerical
solution of the original Schnakenberg reaction-diffusion-convection
equation (2) using NAG D03PCF. The reactants are initially at steady
state: (u, v) = (0, 0), with a small disturbance at x = 0. The
boundaries are held at zero derivative: ux = 0, vx = 0.

examine the behaviour of θ, and compare it to that of
the radial parameter r. The θ diagram shows the system
has an underlying propagation of pattern which is broad.
We see that θ is behaving as it did in the λ-ω system.
That is, it changes from being near-constant to increasing
at a constant rate. This change occurs in a smooth, v-
shaped pattern, skewed to the right by the convection.
However, the limit cycle (r 6≈ 0) does not propagate so
widely. That is, the behaviour of r is not directly related
to that of θ.

By combining θ and r in Figure 4 we show that
the instability is only present for half of the underlying
behaviour. To the right, we see r instability linked to
θ, initiating along the same line. This is as expected,
and as the λ-ω system behaves. To the left, the onset
of the wave is far from the θ initiation. The instability,
or left wave “front”, is occurring at the centre of the θ
pattern. This is completely unexpected, and different to
any behaviour we have seen before.

However, this different behaviour does correspond to
the earlier fitting of the surfaces. Along this central
line, θ is increasing continuously. This explains how the
average value estimate for the wave speed continues to
hold for the left wave speed.

VII. DISCUSSION

Reaction-diffusion systems produce many complicated
patterns. A great deal of effort has been made to un-
derstand these systems. Here we examine a variation,
a reaction-diffusion-convection system. We study the in-
stability caused by a point disturbance from equilibrium.
The disturbance expands in space linearly with time: it
is consistently V-shaped. The advection carries the ex-
panding pattern downstream. Within the disturbance, the
chemicals oscillate. The oscillations vary in frequency
and amplitude to the left and right of a line close to
x = γ

2 t.
In our previous work we analysed the behaviour

of a simpler, symmetric system: the elementary λ-ω
form [14]. Here we look at a realistic chemical system.
The reaction functions do not have the symmetry of the
λ-ω system: we transform them so the linear component
is symmetrical. This extension to a general system was
suggested by Murray [15, pp.336-340]; here we demon-
strate the application in a novel problem. From this, we
find an effective way to predict the propagation of the
instability.

We need to know the behaviour of θ to complete
the prediction. Our analytical approach does not give
this information; we turn to our numerics suggest some
estimates. Our realistic model does not always behave
like the simple λ-ω system.

The insight from our analysis sheds some light on
the out-of-gamut pattern formation. That is, for µ > 1,
the ODE is stable but the PDE in unstable. Our theory
explains this: the pattern can form irrespective of the
value of µ. This corresponds to the basic property of
diffusion-driven (Turing) pattern. In our case, it is only
the convection which appears to directly contribute to
the propagation of the pattern. If convectivion is found
in biological systems, then this system becomes directly
relevant.

Convection-induced pattern formation complements
Turing’s idea of diffusion-induced pattern. Earlier work
on this phenomenon showed some of the behaviour of
the instability. Here we give some theoretical insight.
Our results begin to explain the basis of the instability.
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