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Abstract—We consider an-patches model, to study the . INTRODUCTION
impact of human population movements between cities
(patches) in the spread of Chikungunya or even Dengue Chikungunya is a vector-borne disease caused by
diseases. In previous works, it was showed that the baSiCAedeS a_|b0pictu3t is an uncommon and not well-known
reproduction number can vary from place to place, but this tropical disease whose dynamics and behaviour are yet
result was obtained without taking into account human to be fully understood [32]. A good understanding of its
movements. We provide a theoretical study of the patchy L . . . .
model, and derive R3, the basic reproduction number, tran§m|SS|pn dy.namlt,:s and its ecology in emerge”t epi-
which may depend on Human movement rates between the 4€Mic regions like Réunion Island can help to improve
patches and on local population sizes. We show th&, is the control of future epidemics around the world. Math-
bounded from above (below) by the maximum (minimum) ematical models provide a quantitative and potentially
of the values of the local basic reproduction numbers. We valuable tool for this purpose. The ability to forecast,
also show that there exists a disease-free equilibrium &  understand and control the spread of infectious diseases
that is locally asymptotically stable wheneverRg < 1. increasingly depends on the capacity to formulate and
Under suitable assumptions, Bpr is even globally asymp- oot mathematical models capturing key mechanisms.
totically stable. We emphasize that Human movements The present study builds on and extend previous works

are of particular importance to evaluate the spreading . .
or not of Chikungunya or Dengue diseases, and thus on the Chikungunya disease [1€]. [19]. [22].

movement rates have to be estimated very accurately. Wwe Chikungunya is endemic in East Africa and in Asia.
confirm also the importance to know where local basic The main symptoms are fever, headache and arthritis,
reproduction numbers are large and show that local field that can lead to severe clinical cases, and sometimes,
interventions can help to control/reduce the spread of the deaths [[30]. It appeared in developed countries, like
disease. A full analytical study for the2-patches model and Raunion Island, in 2005 and 2006, in Italy and India, in
several simulations are provided to illustrate that human 5447 4nq recently in Congo-Brazaville, in 2011. Two
movements can either increase or reduce the spreading of ' . ’ ; .
the disease. cases have also been reported in September 2010 in
the South-East of France. The principal vector of the
Keywords-Patch; Chikungunya; Dengue; Movements; Chikungunya in Réunion Island and in Italy &sedes
Disease free equilibrium; Basic reproduction number; glhopictus(sometimes called the Asian tiger because it
Endemic equilibrium; Local and Global Stability. originated from Asia and it is an agressive mosquito),
AMS Classification: 92-08, 92D30, 37M05, 65L12, which is also a prospective vector for Dengue transmis-
92C60. sion. In a recent period, there has been a tremendous
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progress in our knowledge about the vector and thre other words, where the basic reproduction number
relationships between the virus and the vector (see, fergreater than one. In recent works |[20], [[21], ][16],
instance, [[12],113],[114],[115],[127],[134],.135]). One of [17], spatio-temporal models, using partial differential
the first models for the Chikungunya epidemic of 200%quations, have been developed to study mosquito dis-
2006 in Réunion Island was proposed[inl[18]. The focydacements according to landscape elements/ In [17],
in [19] was on the study on chemical and mechanictie authors took into account environmental factors, like
tools available to stop or to control an epidemic, wheretémperature, to study different SIT control strategies,
is shown that the combination of Deltamethrin, the onlyaking into account periodic releases of steriles males.
authorized adulticide in the European Union, and me-The aim of this work is now to link the cities, taking
chanical control, which consists in reducing the breedimgto account human movements, that could explain the
sites, could have been useful to stop the huge epiderspread of the disease. For instance, in Réunion Island,
of 2006. Recently, a study has been done on the Steiile2005, the first Chikungunya case was referenced in
Insect Technique as a potential vector control tool f@aint-Pierre, the 22th of February 2005, the next in Saint-
the Chikungunya Disease [22]. Denis and, then in La Possession, and Le Port.... Using
Another very important point is that two strains ofemporal (and even spatio-temporal) data from the ARS
the virus were isolated in Réunion Island. The first onéRegional French Health agency) in Réunion Island, we
strain 05.115, was isolated in May 2005, during the firkhow about the time and spatial spread of the epidemic.
outbreak, and the second one, strain 06.21, was isolabkedréunion Island, the car is the favorite transportation
later, mid November 2005 (in fact we don’t know exacthand people travel a lot from place to place in the island
when the mutation happened). Vazeille et al. proved thatgo from Home to work and back or to visit family or
strain 06.21 had a larger rate of transmission from huméiends. Moreover, it is well known that due to arthritis
to mosquito [[34]. In[[18], the authors were the first tanany infected and even recovered (not infectious) people
take into account this assumption. Their numerical simwere not able to move_[30]. Thus, in our model, we
lations showed that strain 06.21 was certainly responsiliméend to take into account limitation movements of
of the explosive epidemic from 2006. Moreover straiimfected populations and show that it can have an impact
06.21 had a direct impact on the lifespan of infected the spread and the force of the epidemic. Of course,
mosquitoes[[27]. It is an unusual assumption (usually, possible and nice extension of our model would be
in vector-borne disease models, the mean mortality rate consider the different Islands in Indian Ocean, like
of the mosquito, in the different epidemiological statesfauritius, la Réunion, Comoros, and Madagascar as a
is assumed to be constant) that makes the theoretipaksible4 patches model.
analysis of the model more difficult [19], [22]. In this The outline of the paper is as follows: in sectidn
paper, we will only consider one strain, to simplify theve present the migration model and the full epidemio-
analysis. logical model forn cities. In sectior8, we compute the
Since a couple of years, metapopulation models haD&E, and the general basic reproduction numiej,
been studied a lot, in particular to understand the dynaamd show that the DFE is locally asymptotically stable
ics of infectious disease5lI[7], [25]. 1n_[25], the authord_AS). Then we show that the DFE can sometimes be
have revisited how metapopulation processes opergtebally asymptotically stable. In sectioh we study
at various spatial scales (individual level, local, anthe spreading of the disease. Finally, we validate our
regional epidemics). They have illustrated the resultathieoretical results with a two patches model.
spatio-temporal dynamics by a series of case studies
which explore diseases metapopulation dynamics at e
interface of models and data. However, the mathematicalOur study focus on four cities in Réunion Island, but
analysis of the model (existence and stability of equiliwe present the migration model in a general setting, in
ria) has not been done in their studies. More recenttyrder to have a generic modeling. All cities are more or
metapopulation or patch models have been appliedl&ss connected, and, in principle, people can move from
Malaria disease [8],[23] indicating clearly that humaone town to another. We assume that the total population
population movement is an important component s constant. In FigurEl1, we present an example of a n-
understand the time course of an epidemic. patches model: each city is a patch. In this figure, the
In [18], [19], the studies only focused on local placesolid line stand from one city to another which means
in order to detect where the epidemiological risk is higlhat there is a strong connection between the cities, while

The human migration model
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the dotted line is from one city to another which means n
that the connection is weak. - X mu man

The coeff|C|ent8nX’ are chosen according to the move-
ment of the epldemlologlcal staf¥,;, between the cities
and with the constraints that a possible equilibrium of
the total populationVy,; corresponds to the inhabitants
in each city.

We point out thatM*X» is a Metzler matrix, i.e. a
matrix with all off-diagonal terms nonnegative, and is
irreducible [9]. Thus, ifX}, (0) € R7}, thenX, (t) € R7.
Indeed, there exist a real> 0 and a matrixB > 0 such
that

Fig. 1. A general n-patches model for the transmission of the —MEn = sly, — B,
Chikungunya virus between cities in Réunion Island.

which implies that—M is a singular irreducible M-

matrix of ordern. Thus, following Theorem 4.16, page

Assuming that the total human population in eacfeg in [g], there exists a positive vectdy, >> 0 such
patch is denoted byw; ;, we haveN;, = S;, + Iin + that

R; , fori = 1,...,n. Moreover, the total populatioiV;, n
verifies Nyo; = N1,h +- o+ Nip+ -+ Npp. MXL =0 with ZLZ- h=1.
For each epidemiological states, we consider the fol- ’

lowing migration model. From Perron-Frobenius theoren] [9], we deduce

that there exists a simple eigenvalug,,, =

dXZ h me, X;n Zm Xin, (1) Aesr;%%l(xh) Re()) and an eigenvectas, >> 0 such that
]#Z ]#Z MX}Lwh = AmaxWh-
where X;, € {Sin, Lin, Ripn}t. Now, setting X, = _
(X1, s Xnn)T, the migration model{1) becomes Now, using the r:‘act ;\hanTMXh = 3 \r/]vhereulT :
0x,, R (1_,1,...,1), we have Amax = 0, and thus all ot er
= M* X, (2) eigenvalues have a negative real part. Thus, the following
dt result hold.
Mg .. My, Proposition 1: Equation [2) admits a unique positive
where MX» = , with equilibrium X? = X9 which is globally asymptotically
Mp1 oo May, stable on the hyperplane orthogonalito.
_ <i mf{) mfﬂ' B. The full epidemiological model for cities.
j=2 7 For each city we have temporal data, and some of
Mg = n ) them have been studied independently in Refs] [18],
mﬁf’f — Z mfg [19]. Our aim is to consider an epidemiological model
?;é in each patch and to take into account human movement
\, x, between the p_atch_es. In patéhwe assume that _the
My, = < m&‘"fl m%&" ) ’ humz_in_ pop_ulatlon is constant and equalNg;, and is .
’ My My, subdivided in three compartmental stages : the suscepti-
X, X, _ble, Sin, the in_fected]m and the recovere_ﬂm. Mih
Moy = ( mn;{} 1 mn—},Q ) : is the per capita death rate of humans in susceptible,
UL my 9 infectious and recover stages in patghhis parameter
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is also assumed to be the recruitment rate of humame will only consider one strain (ho mutation). For

in the susceptible compartment stage, proportionally edher vector-borne diseases it has never been observed
the human population. In a same manner, we assuthat a mutation in the virus influences the lifespan of
that all patches have got mosquitoes and, we consi@er infected mosquito. There is no evidence of vertical
three stages for the mosquitoes : an aquatic stdgg, transmission[[35]. We also assume that the mosquito
the susceptibleS; ,,, and the Infected, ,,. K; is the parameters may change from patch to patch.

carrying capacity of all breeding sites, apgl, is the Note also that we don’t consider the “exposed” stage,
number of eggs layed per day and per (female) mosquilike in [18], [19], for sake of simplicity. All together,

in patchi. An infected mosquito in patchcan only in- for i = 1,..., n, we have the following system for the
fect a susceptible human from patchin each patch, we mosquitoes population:

assume that mosquitoes and humans are homogeneously

distributed. The aquatic state includes_ the eggs, larvae dill;m = lip <1 — AZ;;) (Sim + Lim)
and pupae. Both humans and mosquitoes are assume A ‘ j{ g
to be born susceptibley, ;, is the recovering rate of —(mia+ pi.a) Aim,
: : " : dSi.m Lin
infected human in platch such that an infected human = —Bihm N—h Sim — im Sim 3)
is infectious during— days, called the viremic period, 44 A "
s . i, A Aim,
and then becomes resistant or immune. The paramegter dl;m _ 3 Li S T
is related to the carrying capacity and represents the level |  dt s\ Niw ) 0 Him Zim,

f mechanical control in 1 whenq; = 1, ther . . .
ol mechanical o tro .patch enay = ’.t ere and the following differential system for the human
is no mechanical control; whea; = 0.5, it indicates nopulation:

that 50 percents of the breedings have been removed'in

atchi. u; 4 is the per capita death rate of mosquitoes( dS;n I;
P i~ P P a 2 = pin Nip — Bimh~2— Sin — Win Sip

in aquatic stage in patch p; ., is the per capita death dt Nip
rate of mosquitoes in susceptible and infectious stages i
patchi; 7; 4 is the rate of mosquitoes of patéhwhich " i mS. S — i mS | S,
leave the aquatic stage and progress to the susceptible = 7 =
stage. g 7
. . . dIth‘ J— 1,m S
Cross-infection between humans and vectors is mod ar &,m—N . ih — (Win +1i0) Lin
(2

eled by the mass-action principle normalized by the

total population of humans. Every day, in pat¢h n I ooy (4)
each mosquito bites, on averagB; times. p;u; is +J§1 Vi Mg Ljn =i J; M | Lihs
the probability that a bite on a susceptible individual J#i J#i
will lead to host infection so that; ., = Bipimn dR; R
b . e =ninlin— pin Rip + m;: R;
represents the contact rate between infectious mosquitods ~ dt Mish Lk T Hish Stk ; ij Fiah
and susceptible hosts. Similarly; ,, = Bipinm IS J£i
the contact rate between infectious hosts and susceptible "
mosquitoes, wherg; 3, is the probability that a bite on -1 > mﬁ Rip,
an infected individual will lead to vector infection. j;l
. . o J#i
In Réunion Island80% of the population being living -
at the sea level, we assume that the parameters in YHe€re Sin + lip + Rip = Nip. In addition, we

from Saint-Denis to Saint-Pierre). In patghwe assume | i3 m; N p; 05 N j — Iﬁh;ISh;O), where I}, is the
that the average lifespan for susceptible and infectattial number of infected people in patch andm; a
mosquitoes id /... Let us recall also, that in Réunionpositive real number. In numerical simulations, we will
Island, it was proved that a mutation in the initial strainonsider thatk; = k;V; ,, wherek; is a positive real
leads to a new strain that influences the lifespan pféimber.

the infected mosquito: it is almost halved [27]. This Setting S, = (Sih,-.,Snn)s In = (Iihy oy Inp),s
uncommon result can influence the dynamics of the, = (Rip, ..., Ron), Am = (Aim, o Anm), Sm =
disease[[19]. Here, for sake of simplicity in the analysi§S ., ..., Sn.m) and Ly, = (It m, ooy Inm)-
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In the sequel, we will assume that the migratioand

models for the epidemiological statés and R;, are the ds,

same, i.e M = MF» = M. However, Chikungunya o pnldn (In + Rp)

fever is general symmetric with joint pains that occur in —~diag(Np) " diag(Bmn Im) Sp + M S,
wrists, elbows, fingers, knees,..., leading sometimes to

arthritis [31] such that it can be very difficult to drive and @lh _ diag(Ny)~diag( Bpnlm) Sh (6)

thus, going from one city to another and cannot always dt
be possible for infected people. Thus, we will assume
that M+ = MT, with T = diag (v;), where~; € [0, 1];

—(n + pn)Idy I, + MU,

dRy,

i indicates the proportion of infected people that were | —~ = n,Id,, I}, — upld, Ry + MRy,

able to move from patchi to the other patches. We dt

could also assume that®» = MT too, since this joint Where i, = (1, -+, pinp)’, K = (Ki,--- , Kp)T,
problems can persist several weeks or months after the= (o1, an)T, na = (M4, ,77n,A)T1 pna =
people had become viremic, but this hypothesis do n@ti,A, -+ kn,a)’ s Bam = Biams+  Brpm)’ s b =
change the rest of the paper mainly because recovetgdm, - - »tnm)’ and diag(Y) denotes the diagonal

people do not become susceptible again. So for sakenatrix of ordern defined by the vector” of ™.
simplicity, we keepM¥fr = M as assumed previously. Summing sub-systemBl ©)(@)., and (6} gives

Remark 1:Our migration model doesn't take into% = M Sp+MT I+M Ry, = M Np—M(I1d,—T)I},.
account the home of the individuals, which would imply (7)
a far more complex model. In our modelling, we donThen, the coupled syste (5)}(6) may be rewritten in the
take into account people that moves daily, for instanésllowing compact form:
from home to work and back. Indeed, ae. albopictus is

only active early in the morning and late in the afternoon, % =A(H, V) Vi,

thus more or less outside the office hours in Réunion (8)
island. Thus, we only consider people that stay more than dH

one day, and thus have more or less the same probability at B(H,Vy) H,

than local people to be bitten. This is why we don’\;vhere
make distinction in a patch between people coming from T
different patches. H=(S1n 3 Snn Iin s Inps Bipy oo s Bop)” s
Vm - (ALTVH ce 7An,m7 Sl,ma ce 7Sn,m7 Il,ma ce 7In,m)T 5
Therefore, in terms ofy, I, Ry, Am, Sm and I,
the differential equation$]3) andl (4) can be rewritten in

. ) —bn ppldy pnldy,
the following vectorial form: B(H,V,,) = boy  —boy 0 ’
0 nhIdn —(,uhIdn—./\/l)
with b = (diag(Ny)~" diag(Bmn In) — M),
ba1 = diag(Ny) ™" diag(Bomn Im), b2z =
dA A ((n + pn)Idn — T M),
d—tm = diag(up) diag(K) ™" diag (K - —m> Sm
[0
. . 1 A, —An diag(p)  diag(p)
diag(u) diag () diag (K - %) 1 A~ | daginn) w0
—diag(na + pa) Am, 0 azg  —diag(pim)
S where Id,, denote the identity matrix of, A;; =
— = —diag(Ny) ™" diag(BnI) Sm (diag () dmg((a K )*1(57171 + In) + diag(na + pa)) )
. . and Ay = (diag(Np)™" diag(Bnm In) + diag(pim)),
—diag(tm) Sy + dia A, : . _q am
9(pim) 9014) azy = diag(Bum) diag(Ny) ™ diag(Iy).
I, Note thatA (H,V,,) and B (H,V,,) are Metzler ma-
o = diag(Ny) ™" diag(BhmIn)Sm — diag(pm) Im, trices for allV;,, € R3" and all H € R3", Thus, system

(5) (B) is positively invariant inR3" x R3", which means
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that any trajectory of the system starting from an initial 3) SinceN;,, > 1, the inequality

state in the positive orthafi®” x R3" remains forever
in R3" x R3". Note also that the right-hand side of
system[(B) being Lipschitz continuous so that there exists
a unique maximal solution.

Now, let us show that the solutions are bounded. Using
equation[(¥) and the fact that< Id,, gives

dNy,

— < M N;,.
Since > ; M;; = 0, for all j, the total population
Niot = > Ny in the full system is bounded by
the initial total populationNy, = N7, +--- + NJ,,
which implies thatV; 5, the total population in a given
patchi, is also bounded bWO Thus, Sy, I, and Ry,
are such thatsSy,, I,, Ry) < (Idn,Idn,Id )N?, where
Ni? - (Nlo,hv o er?,h)T-

In each patch, the basic offspring number related to
the mosquitoes population is defined by
Hi b Tl A

Niim (i, A + 15, A) i ®)
Without infectious mosquitoes and infectious humans,
the mosquito dynamical system in each patfeduces

to
dA; Ay
e <1 - a—;> Sim — (0,4 + pi,4) Ay
ds;
% = —Him Siym + 15,4 Aijm-

1+C
M7m>7c

o K;

holds for C > 0 sufficiently small. Lete > 0
and A. be so small that we verify the previous
inequality and the following ones4; ,,, . < ¢ and
Sime = 2 -£ < ¢ Then the right-hand side

wi,m 1+¢

of (I0), taken at. = = (Ajme, Sim,e) is equal to
((mA+MzA)[<1—W) —1] >>O.

77"”1-{-5
Thus applying Theoref 5, we deduce ttit is
GAS on [a.,b,,]. Sincea. (b,,) can be chosen
smaller (larger) as needed, we deduce th#t is
asymptotically stable ifR% with basin of attrac-
tion at least the interior dR2 It can be easily seen
that system[(0) is |rredUC|bIe Lete R2 \ {Ep},
thatis,z > 0. Then it follows from astrong version
of Kamke’s Theorem (see Theorem 4 [5]) that
E;i(t) = (Ai(2,t),Si(z,t)) > 0 for t > 0. Hence
we havelim,_, |, Fi(z,t) = E#. Thus, the basin
of attraction of E# is preciselyR? \ {Ep}. This
also implies thatEy is unstable, which completes
the proof. O

1+e

Finally, in patchi, from equations[{3) and [3}, we

(10) derive

System [(AD) has two equilibri&y = (0,0) and, when

Nim > 1, EFf = (A%, S9), with
1 i, A 1
A% = (1-— K, SO = 1— i K
" < M-,m>0‘ m um< M-,m>0‘

In fact, using [[5], we can show the following

Aj = Hib <1 -
Sim + Lin = mia Aim

AA
a:;;:) Sim — (MiA + 1i,A) Aim,
— Mim ( Ii,m + Sz,m) .

Theorem 1:Let 4;,, (0) < o; K;, then the following Then, straightforward computations show that in each

results hold
1) System[(I0) defines a cooperative dissipative dy-
namical system ofR? .

2) If Ni,m <1, then the equilibriumEy, is globally S:
asymptotically stable ofR? .
3) If Nim > 1, then systemlIIlO) has two equilibria

Ey andE# whereE) is unstable and&# is stable
with basin of attractioR% \{Ey}.

Proof:

1) This is straightforward to verify.

2) It suffices to use (1) and to verify the assumption
of Theorenlb given in Appendix A (see algd [5])

. Qevs 15
with a = £y andb = <ai K, (67} nz,AKi
Him

Biomath 2 (2013), 1307237, http://dx.doi.org/10.1114k0math.2013.07.237

patchi, we have

Az m (t) < Ai,max = max (Az m (O) ’aiKi) 5

)

i, A A max
e () + L (£) < max(S;p (0) + Iy (0), TALZEmaxy

Him

Therefore, the following theorem hold.
Theorem 2:Setting H = (Sp,In, Ry) and V,, =
(Apy Sy In). System [CB)EB) is invariant i3 =

(Vin, H) €

RinXRgn ‘ Sh+Ih+Rh—
m_Amax

S + I;n < max (Sm (0) + Iy (0), 24

max

I—‘A’_/
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[l. DISEASE-FREE EQUILIBRIUM AND BASIC population is constant. The expressions which coming
REPRODUCTION NUMBER from the other compartments due to the contamination
A. The disease-free equilibrium are those in% and CZ—;” that is
We consider systemg]1(5) anfl] (6) together. At the dl
disease-free equilibrium (DFEY, = 0 and I,, = 0. d—th = diag(Bmn )diag(Ny) ™t diag(I,,)Sh
Then, system{5) and](6) at the DFE gives ~diag(n, + pp) In + MTIy,
—pn Ny = (—pn Idn + M) Sp, il
. d—m = diag(Bpm ) diag(Ny) ™ diag(Iy) Sy
(—pn Idy, + M) R) =0, ¢

\ —diag(pim) I
A0 The above equation can be rewritten as follows :
diag(py) diag(K)~* diag (K - —m> SO (12) dl a
“ Ch — diag( By )diag Ny) " Ldiag(Sh) In

= diag(na + pa) Ay, it~
—diag(nn + pn) In + MLy,

[t Sy = 14 A, dr,

« Using Propositiori]1, and choosirf) = N?, Eq. 7l diag(SBpm) diag Ny) " diag(Syn) I
@2y, is verified. —diag(pm) I,
. S o _
- Equation EIhP;) implies thati, = 0. Also, from Eq. Here we consider a general equilibrium without disease
(2);, one has such thatS;,, > 0, such that some components could be
A9 equal to zero. We compute the Jacobian of the system
. . 1. _m 0
diag(pp) diag(K)™"diag (K « ) Sim at a nonnegative equilibrium, without diseadepr =
= diag(na + pua) AY,. (A?,,89,0,N7.0,0), which leads to
Since iim Sy, = mi,a AY,,, for eachi, the above Juy=F-V,
equation becomes where
A 0 diag(B,n)
dia diag(K) 'diag | K — —2 | dia - nXn mh
9(mp) diag(K) g< - ) 9g(ma) F < diag(Gm) diag N?) 1 diag(s0)  Oper )

x (diag(pm)) ' Ay, = diag(na + pa) Ay, and

ngen, in %:ach patch, tr;ere are two p0055|blllt|es : v (i + ) Idy — ML O
Al :_Sm = 0,0r4;, >0ands;, > _0, = s diag(ytm) )
depending on the value taken by the basic off-h, his i ible. Th h , .
spring numben\V; ,, (see the previous computationd?Mich is invertible. Then, the next generation matrix is:

above). Fy-1_ < Onxn  f12 )
Finally, we have the following result. a1 Onxn )7
GZI])Proposmon 2: Let consider the coupled systefd (3)Wheref12 = diag( B ) (diag(1em))
: . . . O 71 . O
« There always exists an Equilibrium without disease, {(21((_ diag(fﬁg) d'j?(ﬂ{\gh_)l diag(5y,)
Th Hh n .

Epr, depending on the thresholdy;,, in each
patch. The basic reproduction number relatedAg r is the

e« When N,, = (NMim)izi... > 1, then spectral radius of the next generation matrix, g =
we call DFE, the Disease Free Equilibrium p(F V1) [33]. After a brief computation, we obtain

0 0 <o 0 0
(Sh70707Am7Sm70)’ Whel‘eAm >0 al’ld Sm > 0. R% _ (dlaqlgmhﬁhm)(dlaqum)),ldlag(N}?)fl
B. The basic reproduction number xdiag(S89,) ((mn + pn)Id, — ML) ).

Let us now compute a general expression related 7%(5 is also th | basi ducti b (13)I ted
an equilibrium without disease. We will consider sys-0 IS aiS0 INe general basic reproduction number retate
to the whole system. Using [33], we have the following

, . d
tem [3)-[6), without equatlon%, because the humanyggt.
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Theorem 3:If R2 < 1, then Epr is locally asymp- wherea(M) = max {Re()): \ eigenvalue ofAM}, we

totically stable. IfR2 > 1, then Epy is unstable. deduce([9]
Remark 2:1f \V,, < 1,, then only the infection free ) 1
equilibrium (IFE) Ey = (59,0,0,0,0,0) exists and is p (((nh + pn)ldy, — MT)™ ) =
globally asymptotically stable. IV, > 1,, the IFE still S _ Il
exists but is unstable and the DFE* exists. This DFE Which implies, using[(14), that
as we have shown in Theorem 1 i_s_ stab!e. Thi_s means Rg < max (Rgz) '
that at\,,, = 1,,, we have a transcritical bifurcation. i ’
Remark 3:WhenI" = 0, then Using the same reasoning it is possible to show that

R = max (R{,) min (RF;) < RE.

Whe"_eR(Q),z‘ is the basic reproduction number in paich Altogether, we summarize in the following proposition
and, is defined as follows [22]: Proposition 3: The Basic reproduction Number of the

Bi mnBi.hm ng 14) patch system verifies

fim (M + fin) Ngh' min (Rgz) <R3 < max (Rgl) .
7 7
From the previous computations, we are able to derive
interesting results, in particular for the vector contil.

2 _
RO,i -

Thus, human movements can induce a spreading of

. . . . .the epidemiological risk in places where local basic
first general and obvious result is that when the mlgratlélﬂ rogjuction nugmbers are IO\I/JV when some places have
increases, the basic reproduction number also increa SQ. ’ P

Indeed, (1, + 1) Id, — MT' being anM— matrix, its arge local reproduction number, i.e. greater than

. ' 1. . - Let us now consider a particular casexgbatches with

inverse Id, — MI')~" is a positive matrix. . .
(Cn + pen) Tl ) P the same populatioV?, = Ni,, the same capacity

Moreover .
v 0 K; = K, and the same parameters values in each
Stm patch, fori = 2,..., n, such that\,, > 1. Then we
Nﬁh have the same equilibrium for the susceptible mosquito
. population, i.e.5?,, = S, fori = 2,..., n. Thus the
diag(N,?)_l diag(s9,) = basic reproduction number reduces to
; mhMPhm H -1 H
« RE = p(diag (=0 ) diag(NY) d.ag(sgn)
o — 6mh6hm Sl,m
N (O + pa) Ty — M)TIT) = = g
SO Hm 1,h
Thus, we have with
1
. B\ -1 . _ —1) _
dmg(%) dlag(N}OL)i1 diag(S9,) p <((77h + pp)Idy — MT) ———
x (1 + pn) L dp — M;O) which implies that
Bi mhﬁi hm ~i,m -1
< max | —————o= | ((nn + pn)Idy — MT)"". S0
1<i<n ll'l”i,m Nz(?h RQ — Ral — Ral — Bl,hm/ﬁl,mh 1,m

_ _ = _ fi1m (n + pin) Ny,
Then using a nice property of positive matrices, we have

In this particular case, human movements has no impact

p(diag%diag(N,g)_ldiag(S%) x on the basic reproduction number. Thus, for cities of
Id, — MT)~! equal size, and_ Wlth the same biological pa_rameters
X (O + pin) ) ) whatever the migration, the global and local risks are

i,mhMi,hm S70 m - . .
< max (% N?h) P <((77h + pn)Idy — MT) 1) .the same. This unexpected result is due to the fact that

1<
- ((nn + pn)Id, — MT)~! has always the same spectral

But (n, + un)ld, — MT being a non singulaM - . .
matrix, since the stability modulus o¥1 is «(M) = 0, radius, (n + pn)’ whatever the matriceb and M.
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Let us now consider a two-patches example, witlote thatG is a Metzler matrix, which admits a regular
M > 1 and N, 2 < 1. Thus, after straightforward splitting [9] (close similar to the regular splitting ob-
computations, the basic reproduction number becomesined to compute the basic reproduction numBg),

0 N 4+ M, with

R2 — B1,hmB1,mh (Mn + pp, + y1ma2) Sl,m

0 P (i + 1) (Mh + o + 71 (Ma2 + may)) N?,h’ M= < 0 diag(Bpm )diag (N,?)f1 diag (Smax) )

diag(Bm, 0
which leads to 9(Bmn)
and
RS =3 (1= o )
’ (Mh + pn + 71 (Mma1 + ma2)) B < —diag(jim) 0 )

indicating that if the infected population is in one patch, 0 — (diag(nn + pn) — MT')

with infectious mosquitoes, has back and forth move- . _ _ .
ment with another patch which is free of mosquitoedNus, using[[B]G is Metzler stable ifp (—N~'M) < 1.
then the basic reproduction ratio will decrease....In pdi-Simple computation gives
ticular if all infected people go out from the infected
area, this will lower the epidemiological risk.... N Mm = 0 nmi
nmai 0 ’

C. Global asymptotic stability of the DFE where
In this section, we study the global asymptotic stability
(GAS) of the DFE of coupled systefl (5)}(6). We assume  nmqs = diag(Bum )diag (N,?)*1 diag (Smax)
that the population in each patch is constant, Ngy, = x (diag(pm)) ",
Ny, Set
) , , Ly e = (diag(n, + ) — MT) ™ diag(B). Then,
ReGas = p(dlag(ﬁmhﬂhm)(dzag(ﬂm))_1 diag (N)) p(=N~'M) < 1if and only if
xdiag (Smax) ((p + pp)Idy, — MI)77),

with R2 g = pldiag <Bmﬁﬂ> diag (NO) ™"
Smax — Imax (Sm (0) 7S’(r)n) . Xdiag (Smax) ((77h + Mh)Idn o MP)—I <1
We have the following result Thus, using a comparison principle [26] , we have
Theorem 4:: The DFE of the coupled systerf] (5)-
(@) is globally asymptotically stable in the nonnegative lim I, = lim I, =0.
orthant, ifRZ 4,4 < 1. t—-oo t—-oo

Proof: Let us consider Eqd](5)and [6). Using the fact L B -
that S, is bounded, i.eS, < N2, and S, < Smax, Then, having— (upld, = M) < 0, we deduce that

. . ; : e . im Ry = 0. Since the total population in each patch
we obtain the following linear differential inequationg—-+oo _
is constant, and using the fact th&f + I, + R;, = Ny,

system:
we deduce thattlir+n Sy = Np,.
—+00
Al —diag(pm) g1 I Obviously we haveR? < RZ 4. Thus sinceR?, , ¢ <
dt - " " 1, we have uniqueness of th€p, which implies that
= ’ : _ 40 : _ Q0
dr, diag(Brp)  —go2 I tlgl—noo A, = A, andt_lginoo Sm = Sp,. Then, one can
dt conclude that theéZpp is GAS whenRZ ,4 < 1. This
1 achieves the proof.
where go1 = diag(Bpm )diag (N}?) diag (Smax), 0
922 = (diag(nn + pp) — MT). Let Remark 4::When S, = S9, we haveRZ 4 =
. 2
—diag(pm)  g21 Rg- _
G = . Remark 5:: Our result generalized to a metapopula-
diag(Bmn)  —go2 tion the results obtained in [18], [19], [22].
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I1l. SPREADING OF THE DISEASE 2) WhenM # 0, the only equilibrium with one zero

First of all, whenM # 0, we show with a simple component IsEp.
example that having an endemic equilibrium in sonferoof: Let us first show the existence of a possi-
patches and a Disease Free equilibrium in other patch@§, equilibrium. Then, using some of the computa-
is impossible. tions derived in [[1B], we can derive explicit solution
Indeed, we consider a two-patches system assuml%? the endemic equilibrium.... Let us consider system
that in the first patchRo; < 1 and in the second( -@) or system[{5)(6) at the endemic equilibrium

ones,Ry> > 1. Looking for an equilibrium leads to (Shs i Bhs A, Sin, Iny) with T 7 0 and I7, # 0

i in each patchi. First, using system[16), and setting
the following systems to solve 4, dl, ARy .
I, — () = —() = W(t) = 0, we obtain the
pn N1p — ﬁl,mhm S1h féﬁowing relations:
(Patch1){ ~HrSLnt My Son — M5 Sin =0, (diag(pn) — M) R}, = mu 1,
1,m
b, h, S (pn +mn) Iin ((diag(N;)) ! diag B I2,) — M) S
+y2miy Iy — 1 miy I1p =0, =un(I; + R}), (16)
2,m
Hh NQ,h - IBQ,mhm S2,h — Hh SQ,h (diag(nh + ,Uh) _ MF) I;: — (diag(N;;))*l
(Patch2) +m§11517h — meSQ,h =0, xdiag(Bmn Iy,) Sy,
ﬂQ,mh]\zTZ San — (i + 1) Top 1) From Eq.[(I6), we deduce
+71 mél 7117}1 — Y2 m{QIQ,h = 0. ((dlan];k))il dlaqﬁmh I;?km) + ﬂhldn -M ) S;; :(/if%])\[;:v
From (Patch1),, we deduce Thus using[(16) and [1T), we deduce

; . h 1
vemiy Iog = (pun +1mn +yimiy) Iy p — ﬁLthI\fl—ﬁ Sip.  (diagny + pp) — MI) I; = uhd|ag(ﬁ ]\}}; =)
(15)  x ((diag(N;)) " diag B I7,) + s ldn — M)~ N,
We assumey; > 0. SinceRp; < 1 in the first patch, that is
then one possible equilibrium verifids ;, = I1,, = 0.
Using [I3), we have immediately, , = 0 in the second ¥ = 1, (diag(n, + un) — MT) ! diag(
patch. Then using the fact that

Bmh I:n
Ny

)

1

x ((diag(N;)) ! diad(Bynn 1) + paldy, — M)~ Ny
62hmﬁ52m:,u2ml2mv . (18%
"Ny 7 ’ ’ Now, we have two cases to considgvt = 0 and M #

we deduce thaf,,, = 0. Thus, assuming movementd o
in the infectious population implies automatically that SUPPOSe&M = 0. Then the patches are disjoints and

we cannot have co-existence of an endemic equilibriufh this case it suffices to follow the computations given
in one patch and a disease free equilibrium in the otH8r[19], [18]. Indeed, we have

one. Therefore, an endemic equilibrium for the patchy, 1,4 Bijm 17}, 1_ 1 e
system is an equilibrium without zero component. Lm o O s Nim /)
. . R . . Hiam \ HimAV; g + 6@,hm ih ’

Existence of an endemic equilibrium is not obvious to ’ ’ (19)

show in a metapop_ulatlo_n model. Howgver, it is pqssb!&d from Eq.[(TH) , we have

to have some insights in the dynamic of the disease, . .

in particular regarding its spreading. Our preliminary I _ __Hn Bismh Liim ' (20)

results allows us to conjecture that a unique endemic Ny o+ pn Bigmn I, + 10N,

equilibrium exists. Let us now stated this result for prom the two previous equation, we deduce:
patches:

* Ko i m *
Proposition 4: Consider systeni15](6). Lim = i (R — 1) Ny
1) When M = 0, a unigue endemic equilibrium Bi;mh <1+ nh+uhﬁi’hm>
exists, if R§ ; > 1 in each patch. (21)
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Note that Eq.[(21) has a sense if and only?igvi > 1, then we could deduce the existence of a unique positive
WhereRgvi is defined as in Eq[(14). Thus each patcfixed point. In our case, we have
admits an endemic equilibrium iRZ, > 1. , , . 1

2) Using some of the previous computations, we now” (0) = diag(np + pn) (diagnp + pp) — M)
suppose thatM # 0. In that case, the computations «diag 1 1i,A Bi.mhBihm <1 1 )a~K-
are absolutely not obvious and we need to show the (nn + pn) Ni,m,ui,mN;:h Nim/)
existence of the_endemic equilibrium3 using fixed pqintxdiag(ﬂh) (pnld, — M )*1_
argument. We will use Theorem 2.1 given[inl[24]. Usin _ _ _ _
the previous computations we have to combine Ed§. the diagonal matr|>2<, we recognize the local basic
[@8) and [ID), which lead to a fixed point problem/€Production Number;,. Thus

G (X) = X, with G (0) = diag(m, + ) (diagn, + ) — MT)™!

- . -1 ) _
G(X) = pp, (diag(ny, + pp) — MT) xdiag (R?p) diag(up) (ppIdy, — M)L.
x dia Bt U 1— ! o; K
g Ni, bhm Nipm ) Although in the previous equality, all "ingredients” are
(w4 pupldn — M) N there. In particular, we have
B . : . ‘ 1
wherew; j,,,, = .4 Bt X andu* = P ((d'ag(??h + pn) — MT) 1) = diag <(nh t ) > ’
Him (,Ui,mN;:h + 6i,thi,h) 1
dia - M) = diag | — ).
(diag(N7)) " diag ( By i (1 - N#) aK) p((@iag(u) = M)™!) = diag (Mh)
Note carefully that the matrices Therefore, we can only conjecture that
(diag(N;")) " diag <5i,mh Ui jom (1 — %) aK) p(G'(0)) > mng?,o-
tunldn — M, Then,p (G’ (0)) > 1 if and only if there exists at least
and _ one patchk where R} , > 1.
diag(nn + pn) — ML, Remark 8:When M # 0, we conjecture also

are M-Matrices and thus their inverses are positive. hat there exists a unique endemic equilibrium when

We now verify the assumptions of Theorem 2.1 iff'aXi Rai > 1. This result is particularly useful: it shows
[24]: it is obvious thatG: is continuous monotone that local and fast intervention when Chikungunya cases

nondecreasing, and strictly subline@t.is bounded and &€ Suspected is the best way to stop the spreading of
stay in the nonnegative orthant. Moreo&f0) = 0, and the disease. Fast and localized intervention is now the

G’ (0) exists and is irreducible. Thus from Theorem 2.§tandard procedure in Réunion Island.
[24], we can deduce that the only equilibrium with one
zero component is thE&pr. It means that if at least one
patch is infected, then all patches will become infected We consider a two patch-model in order to illustrate
through population movements, unldss- 0 or M = 0. the complexity of the results depending on the population
O size in each patch and the movement rates between
Remark 6:From the epidemiological point of view, patches. In particular, since the choices for the migration
the previous result states that if at least one patchnigtrix are numerous, we would like to emphasize the
infected, then every patch will become infected, duact thatthe construction of the migration model is highly
to Human movements whefn > 0. This result seems sensitive. From these choices, the results may change
obvious, but it clearly shows that if early vector contrafirastically and then drive to wrong decisions either to
is not undertaken in places where infective people aflecide or not about field interventions in order to control
recorded the disease will spread due to Human mowaedisease or not.
ments... and, of course, it will far more difficult to control The main advantage of this approach with two patches
the epidemic. 0 is that we are able to provide an analytical formula for
Remark 7:1n fact, using the same theorem we coul®? and thus to discuss the impacts of different param-
go further, if we were able to show that{G’ (0)) > 1, eters. For simplification, we assume that, = faum.-

IV. APPLICATIONS
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Then, Equations[{18) and_([19) are equivalent to tiMoreover
following fixed point problem 1un (diag + ) — MF)A

(v)=(ek)) ) o

(n + pen) (M + pn 4+ y1m21 + y2ma2)

with

Nh + fh + Y21mi2 Yami2
i Bmn Y m + pp +y1im
F(Y) = pp, (diag(nn + pp) — MI')™ dlag< ”;\’;* Y1ma1 Mh + fa + Y1ma1
8 -1 h Finally F, (Y) =
X (d'aG( mh )+ pnldy — M | Ny, .
G, (X) i, A Bz hm X (1 B ) (51N1;}Y1 + oy + m21) (52 2;}Y2 + o+ m12) — Maymys
i.m (,Uz mNE + Bihm )

HKh
X
(n ) (n =+ o, + y1mo1 + 72m12)>
Nh + p + Y2mi2 Yomi2
Y1ma1 Nh + 1h + Y1Mm21

Y- N3
Y, B2,mn Y2 2.
Bromn Y1\ ZR7 + i+ maz +miz g

X
Let us computeZ’ (0 ) for a two patches system with

a human populatioQV, 5, N2 ;). The movement matrix <

is chosen such thatt Ny = 0. For instance M could (

be chosen as follows:

1,mh 1 Nik ]
. Mk Bomn Yo (2520 4 pun + mar + may
_ .
N3, - —
M = . (U’vmfhhl‘*‘ﬂh—f'mm) ( S0ca 2+Mh+m12)—m21m12
1 N ’ Ph y
Ny p, Mk + pn) (M + pn + Y1m21 + Y2ma2)

In particular, we deduce thatiag(a) — M is an M-

matrix when at least one; > 0, which implies that

(Mh + pon, + Y2m12) W1 mp + Y2M12W2 mp
VMW h + (M + pon + Y1M21) Wo

1 where
(%5 )= x;
- - B2,mh h
0 o W1 mh = B1,mh Y1 % + pp +mi2 +mi2 Ni ;

1 Qg + Mg mi2 -0 2,h

(a1+mai1)(ae+miz)—mizmar mo1 a1 +mo ’ IB v B1.mn Y N*

w = Plmh 21 + pup + mor +m
Using the previous result, we compute S W Hin T 21N*
~1

(57 i) .

b 1 E(Y) = X

= (n 4 pn) (Mn + pn + Yima1 + Y2mi2)

(BN}Y1 +Hh+m21> (5 LRE +Hh+m12> — Mo My
B2,mn Y2 ;Y2

<51 mh Y1 + i, + m12> <62 mh Ya + pp + m21> — mo1M12

= T Hr M mio
* ' B1.mn Y1 (7 + Lh, + Y2mi2) Wimn + 72m12w2,mh
may “NE + pn +ma1
Lh VM2 W1 mh + (M + 1+ Y1M21) W2 mp
and . .
o A direct computation shows that
B } Y | Bmn Y _ *
dlag< ) <d|ag( W ) + pnlds M) N} = ) Fl(11) F(12)
F.(0) = — where
Bi,mh Y1 Ba,mh Y2 ¥ )
~ +pnt+may +pntmiz | —maimaz Al , ’
(e O] o i
s
B1,mn Y1 7N§h + pp +mig +mio N* A1 = (np + pn) (n + i, + y1mo1 + y2maa),
* ’
. N*
B1,mh Y1 Nl*h fh + mig + mig =t
Bamn Yo | —5— + kn + ma1 + ma1 = F'(11) = Nin
N, N3, S(11) = (mn + pn + y2maz) B1mn pP———
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N

Ni
+

N K

2,h

Hp, =+ M2l + M2y The characteristic polynomial gives

F(12) = y2mi282 mh

pn +miz +mor 4 1
N3 P =X~ Nh + tp + v1mM21 + Y2ma2
(21) 8 fun + M2 + mag
= Y1M21P1,mh =,
K "+ mag +ma X((Mn + g +y1ma1)RG o + (1 + pn + 72ma2) RE )N

Nio
fu + M1 + Moy 7 < 1 >2 ' |
—. * Nh =+ fn =+ Y2m12

Nh + fp + y1mo1 + Y2mi2

F.(22) = (ny + pp + 1m
5(22) = (Mn + pp + y1m21) B mn PP ———

Then using the fact that
9 X (M 4 pn + y1ma1) RE 9Rp 1 — Yamar11miaRE 9 Ry 1)-

ma1 Ny , = m1a N3 p, . . .
Thus settingr = A\?, we obtain the following a second

we deduce order polynomial

by L [y(A1)  yvami2B2mn
0= Ay ( 71m21ﬁ1,mh f+(22) > ’

where f(11) = (9, + pn + v2ma2) Brmn, [4(22) =
(nn + pn + y1ma1) Bo,mh-

1
Np + fp + y1ma1 + y2ma2

p(x) =% -

(O =+ .+ 1ma1) R o 4 ( + pn +72ma2) RE 1) @

2
Fma”y’ with T (77;L+H;L+’*{1717121+’Y2m12) ((nh +un + ’)’leg)
/
G/ (0) _ gl,hm 0 2 2 2 2
- 0 gé o ) X (77h + ph+ 71m21) R072R071 - 72m21'71m12R072R071)-
where Then
1 1
, n1,4 B1,hm 1 (=
= AP () K p(x) = (
I1,hm L1 mbt,m N ), < ./\/'1> A (@)= 20p + pp + 1mer + y2mag
SO
= Pipm Lo’l7 x((n + pn +y1ma21) R(Q),g + (Mn + pn + y2maz) Ral))Q
H1m Nl,h 1 1 2
n2,4 B2,n 1 —= < )
gé,hm = L2 mall2 Jn\lf* <1 - E) ap 4 \np + pp +y1m21 + yamae ,
smatt2,miVo p
By nm SO x (((ﬁh + pn +v1ma1) R o + (1 + pn + y2maz) R )
= o ND, +Ayamary1m1aRE 9 RE ;-
We derive the Jacobian of our systemOat Thus
0 0 B B p(@) = (2 — = 1 »
) 0 0 F F 21n + pn + y1m21 + Y2ma2
TO=Lg. 0 0o 0o | <k2hR%,2 +EuRE — V2 (’7)))
0 4 0 0
2,hm X( 1 1
x _ —
where 2np + pn + y1meo1 + yomas
= (n + pon 4+ y2mi2) Bimn
(0n + pn) Mk =+ i 4 Y21 + yamaz)’ (thR(Q),z + kiR, + V2 (7)) )
Yom1202 mh
Fy = , .
(nn + pn) (M + o + Y1m21 + y2m12) with
Fr — Y1M2151,mh ) 5 2 Y s
3 (77h + Nh) (nh + pp +y1meoy + ’}/leg) Z(’Y) = (thRO,Q - klhRovl) + 472m1271m21R072R071 > 0,
_ (Mh + pn +y1m21) Bomi kin = (nn + pn + y2maz2)
(n + pn) (Mn + e + y1m21 + Y2ma2) kon, = (nn + pn 4+ y1ma1)
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Thus, we deduce the following exact formula fBg:
, 1 1

07 20 + i+ Yimar + y2my2

x (ko R3z + kinRE, + V7 (7))

When~; = v = 0, we immediately have

(22)

1
R§ = B (R(2),2 + Rg,l + |R(2),2 - Rg,ﬂ) )

which is equivalent taR§ = max(R§ |, Rj o).

Moreover, if R5, = Rf,, thenR§ = RE | = Rj,
whatever the migration matrix is.

Then, we will consider various migration matrix be
tween city 1 and city 2, to show how different can b
the results according to the movement rates....

y1=0, y2=0 y1=0.1, y2=0.1 y1=0.2, y2=0.2
8000 800 150
6000 600
100
4000 400
50
2000 200
0 0 0
0 100 200 0 100 200 0 100 200
week week week
y1:0.5, y2:0.5 y1:0.7, v2:0.7 V1'1' y2:1
60 40 40
city 1
30 30 city 2
40
20 20
20
10 10
0 0 0
0 100 200 0 100 200 0 100 200

week

week

have been obtained using nonstandard finite different
scheme (see [1]/12]/[]3],]4],[]6] for an overview on
nonstandard methods and applications to biological sys-
tems). We consider parameters (see thble V in Appendix
B) such thatRy; > 1 andRp2 < 1, i.e.

%ek for different values ofy = 1 = 2.

indicates that small values for, help to decrease
the epidemiological risk. In fact, following Fidl 4,
the best combination bein§ = diag(1,0). This

is due to the fact that city 1 has the largest basic
reproduction number: thus movement of infected

Nip Ky Ro,1 Nop Ko Rop
Case 1 8.10° 3Ny, 13017 810° Ny, 0.434
Case 2 8.10° 3Ny, 13017 10° Ny, 0.434
Case 3 107 3Ny, 13017 810" Ny, 0.434

individuals from city 1 to city 2, reduce the number
of infected people in city 1, and thus the risk of
propagation. The model behaves like a quarantine

Thus, in order to keep the total populatidfy + N,
constant, we have many choices for the migration matrix.
Let us first consider simply

M

where M. is a positive constant. We would like to study
the time evolution of the disease with respectlto=
diag(v1,72), taking into account the movement rates ar
different values for)M..

o Case 1. We conside¥/, = 1 and cities with the
same populations, except for the larvae capac
such that the we obtain distinct basic reproductic
numbers. In Fig[]2, we consider; = ~-: in that
case, whem > 0, the epidemic occurs in both cities.

Fig.

model.

¥;70, ¥,=0 ¥,=0.1,,=0.05 ¥,70.2,y,70.1
8000 400 60
6000 300
40
4000 200
20
2000 100
0 0 0
0 100 200 0 100 200 0 100 200
week week week
V1=0'5’ y2=0.25 V1=0'7’ y2=0.35 y1=1, y2=0.5
20 15 15
city 1
15 city 2
10 10
10
5 5
5
0 0 0
0 100 200 0 100 200 0 100 200

week

3.

week

If we considery; = 1 and~; = 0.5, then the week for different values of.

dynamic change: if less infected people from city
2 are able to move to city 1, i.ey, small, then

week

Simulation of the evolution of the infected poputatiper

o« Case 2. We considel/. = 1. Numerical simula-

the general basic reproduction number decreases tions are presented in Figl 5 for different values of
~. Of course without Human movements, the first
city faces a huge epidemic while in the second noth-

rapidly underl. This is confirmed In Fig.l4 where
we showR, with respect toy; and~.: it clearly
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R0 computed with the analytical formula
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Fig. 4. Evolution of RZ with respect toy; and~z

Fig. 5.

y1=0, y2=0 y1=0.l, y2=0.1 y1=0.2, y2=0.2
6000 3000 3000
4000 2000 2000
2000 1000 1000
0 0 0
0 100 200 0 100 200 0 100 200
week week week
y1:0.5, y2:0.5 y1:0.7, y2:0.7 y1:1, v2:1
3000 3000 3000
city 1
city 2
2000 2000 2000
1000 1000 1000
0 0 0
0 100 200 0 100 200 0 100 200

week week week

Simulation of the evolution of the infected popubatiper

week for different values of.

ing occurs. Fory > 0, then the dynamic changes
drastically: in particular in city 1, we observe ¢
decay in the Number of Infected people as soon
~ >, while in city 2, an outbreak appears. This i
confirmed in Fig.p, wherék3 has been computed
with the exact formula[{22): as long as; > 0,
Ry > 1, which indicates that an epidemic will occul
in all cities.

In this case, cityl, whereR?) > 1, has a large
population compared to cit. Thus the flow of
infected people from city 1 to city 2, will increase
the number of infected people in city 2, as long ¢
the epidemic occurs in city 2. Thus disease contr
is necessary in city 1 in order to avoid the risk o
disease spreading. In particular, reducing local and
large Rgz could be helpfull to lower the general
basic reproduction number, but this may not be
not necesserally sufficient or, even, possible. In this
case, city 1, with the largest population, has the
strongest impact oR2: compare also with Fid.14,
where both cities have the same population.

Even if M, decays this will not change the overall
behavior: Ry will stay greater than one. In fact
decayingM. is like decayingy and it is obvious
that for small values of human movements implies

a spreding of the disease in all patches

Case 3. We first conside¥l. = 1. Numerical sim-
ulations are presented in F[g. 7. Contrary to case 1,
city 2 has now the largest population wiity » < 1.
Thus without migration, only city 1 is impacted by
a huge epidemic, but, as soongs> 0, the number

of infected cases reduce drastically in city 1, while

R0 computed with the analytical formula

FATAVA N\ N\
FAVATAUA N\ N\ \
AR
L LT LY

‘\\\\\\\\\\\\\\\\\\

0.8

0.2

Fig. 6. Evolution of R with respect toy; and~:

in city 2 a small outbreak appear. Finally, as
increases, the epidemic becomes a small outbreak
for both cities (see Figl8). Thus, the city with the
largest population and a local basic reproduction
number less than one has a positive impact on the
general basic reproduction number: compare[Fig.8
with Fig[@.

Indeed, if we considerM, 0.1, for instance,
then the dynamic is completely different and shows
that the disease will spread in all patches (see
Figs.[9) but asy increases the force of the disease
decays, which is confirmed by the computation of
the basic reproduction number in Fig] 10. In fact this
computation is equivalent to considey € [0,0.1]

Page 15 ofIP


http://dx.doi.org/10.11145/j.biomath.2013.07.237

S Bowong at al., A patchy model for Chikungunya-like disgase

y1=0' y2=0 yl=0_1, y2=0,1 V1=O'2* y2=0_2 y1=0, y2=0 y1=0.l, y2=0.1 y1=0.2, y2=0.2
3000 100 30 2000 1500 1500 -
city 1
80 1500 city 2
2000 20 1000 1000
60 1000
500 500
1000 40 10 500
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0 0 0
0 0 0 0 100 200 0 100 200 0 100 200
0 100 200 0 100 200 0 100 200 week week week
week week week Y,=0.5, y,=0.5 Y,=0.7,y,=0.7 V=L y,=1
y1:0.5, y2:0.5 y1:0.7, y2:0.7 y1:1, y2:1 600 400 100
20 20 20
city 1 400 300
15 15 15 city 2 200 50
10 10 10 200 100
0 0 0
5 5 5 0 100 200 0 100 200 0 100 200
week week week
0 0 0
0 100 200 0 100 200 0 100 200
week week week ) ) ) ) . )
Fig. 9. Simulation of the evolution of the infected popwatiper
) ) ) ] ) ) week for different values ofy and M. = 0.1.
Fig. 7. Simulation of the evolution of the infected popuwatiper

week for different values of.

R, computed with the analytical formula

R, computed with the analytical formula

Fig. 10. Evolution ofR% with respect toy; and~z, whenM.. = 0.1.

Fig. 8. Evolution of RZ with respect toy; and~z

In fact we can go further with this example and for
instance, consider another movement matrix:

when M, = 1. _ N
Thus, in case 3, at least, vector control can be M = M. levfhf” .
necessary or not, depending on the movements Na,n

matrice: whenM, = 1, the disease will disappearwith M. = 1. Let us first consider case 2: compare Figs.
naturally... while, not when/, = 0.1. 11 and6.R3 is not the same, but, following Fig. 111, it

In any case, it is clear that Human movements magems that human movements have limited impacts on
have a benefit effect when the largest city has7a2. This example clearly shows that if locally the basic
basic reproduction number lower than reproduction number is lower thainthen the impact of
Our example emphasizes the importance of thiee disease will be limited, even if there infected people
migration (movement) matrice and how importanhoves from city 1.

is the construction of such a matrice to understandin case 3, in contrary, the new movement matrix
or to well capture the whole dynamic. And this ishanges drastically the behavior of the basic reproduc-
only a in 2-patches model! tion number: compare Figs.112 dnd 8. Here, the impact of
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the largest city (city 2) is really important. In that casdp establish that local interventions can be benefit for
even if y is small, RZ decays rapidly and the diseas¢he whole population. Mathematically the model is not
dies out. very easy to handle, but we have been able to show

Thus depending onM, R2 can be very different, some interesting results. In particular, we showed the
which may imply unappropriate control decisions. Think between the general basic reproduction number and
clearly indicates the importance of the construction édcal ones, which is really important from a practical
the movement Matrices. point of view. Indeed, our illustrative examples indicate
that measuring or estimating local basic reproductive
numbers is of major importance not only to map the
14 epidemiological risk in order to take into account where
‘ the risk of an epidemic is high, but to be able to indicates
priority to lower some local basic reproduction numbers.
Thus, among all cities where the risk is high, it seems
important to make vector control in priority in cities
where the Human population is large. In any case, each
city has to make appropriate vector control campaign to
lower the epidemiological risk. In the case where some
cities, with the largest populations, may have for any
reason large basic reproduction numbers, then the disease
can spread quickly to the whole domain, even whes
small, according to the network. In contrary when only
! small cities have large local basic reproduction numbers,
human movements can have a benefit effect, i.e. the
disease dies out.

Of course, the model can still be improved in different
ways. It might be interesting to consider a variable total
population and/or time-dependant parameters [17]. But,
for a practical use in Réunion Island, a first step would
be to build the right movements matrix between cities,
using precise human movements data. Finally, this model
could be adapted to link several islands (Mauritius,
La Réunion, Comoros and Madagascar) located in the
Indian Ocean.

R, computed with the analytical formula

Fig. 11. Evolution ofR3 with respect toy; and~.

Ro computed with the analytical formula
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