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Abstract—We consider an-patches model, to study the
impact of human population movements between cities
(patches) in the spread of Chikungunya or even Dengue
diseases. In previous works, it was showed that the basic
reproduction number can vary from place to place, but this
result was obtained without taking into account human
movements. We provide a theoretical study of the patchy
model, and derive R2

0
, the basic reproduction number,

which may depend on Human movement rates between the
patches and on local population sizes. We show thatR0 is
bounded from above (below) by the maximum (minimum)
of the values of the local basic reproduction numbers. We
also show that there exists a disease-free equilibrium EDF

that is locally asymptotically stable wheneverR2

0
< 1.

Under suitable assumptions, EDF is even globally asymp-
totically stable. We emphasize that Human movements
are of particular importance to evaluate the spreading
or not of Chikungunya or Dengue diseases, and thus
movement rates have to be estimated very accurately. We
confirm also the importance to know where local basic
reproduction numbers are large and show that local field
interventions can help to control/reduce the spread of the
disease. A full analytical study for the2-patches model and
several simulations are provided to illustrate that human
movements can either increase or reduce the spreading of
the disease.

Keywords-Patch; Chikungunya; Dengue; Movements;
Disease free equilibrium; Basic reproduction number;
Endemic equilibrium; Local and Global Stability.

AMS Classification: 92-08, 92D30, 37M05, 65L12,
92C60.

I. INTRODUCTION

Chikungunya is a vector-borne disease caused by
Aedes albopictus. It is an uncommon and not well-known
tropical disease whose dynamics and behaviour are yet
to be fully understood [32]. A good understanding of its
transmission dynamics and its ecology in emergent epi-
demic regions like Réunion Island can help to improve
the control of future epidemics around the world. Math-
ematical models provide a quantitative and potentially
valuable tool for this purpose. The ability to forecast,
understand and control the spread of infectious diseases
increasingly depends on the capacity to formulate and
test mathematical models capturing key mechanisms.
The present study builds on and extend previous works
on the Chikungunya disease [18], [19], [22].

Chikungunya is endemic in East Africa and in Asia.
The main symptoms are fever, headache and arthritis,
that can lead to severe clinical cases, and sometimes,
deaths [30]. It appeared in developed countries, like
Réunion Island, in 2005 and 2006, in Italy and India, in
2007, and recently in Congo-Brazaville, in 2011. Two
cases have also been reported in September 2010 in
the South-East of France. The principal vector of the
Chikungunya in Réunion Island and in Italy isAedes
albopictus(sometimes called the Asian tiger because it
originated from Asia and it is an agressive mosquito),
which is also a prospective vector for Dengue transmis-
sion. In a recent period, there has been a tremendous
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progress in our knowledge about the vector and the
relationships between the virus and the vector (see, for
instance, [12], [13], [14], [15], [27], [34], [35]). One of
the first models for the Chikungunya epidemic of 2005-
2006 in Réunion Island was proposed in [18]. The focus
in [19] was on the study on chemical and mechanical
tools available to stop or to control an epidemic, where it
is shown that the combination of Deltamethrin, the only
authorized adulticide in the European Union, and me-
chanical control, which consists in reducing the breeding
sites, could have been useful to stop the huge epidemic
of 2006. Recently, a study has been done on the Sterile
Insect Technique as a potential vector control tool for
the Chikungunya Disease [22].

Another very important point is that two strains of
the virus were isolated in Réunion Island. The first one,
strain 05.115, was isolated in May 2005, during the first
outbreak, and the second one, strain 06.21, was isolated
later, mid November 2005 (in fact we don’t know exactly
when the mutation happened). Vazeille et al. proved that
strain 06.21 had a larger rate of transmission from human
to mosquito [34]. In [18], the authors were the first to
take into account this assumption. Their numerical simu-
lations showed that strain 06.21 was certainly responsible
of the explosive epidemic from 2006. Moreover strain
06.21 had a direct impact on the lifespan of infected
mosquitoes [27]. It is an unusual assumption (usually,
in vector-borne disease models, the mean mortality rate
of the mosquito, in the different epidemiological states,
is assumed to be constant) that makes the theoretical
analysis of the model more difficult [19], [22]. In this
paper, we will only consider one strain, to simplify the
analysis.

Since a couple of years, metapopulation models have
been studied a lot, in particular to understand the dynam-
ics of infectious diseases [7], [25]. In [25], the authors
have revisited how metapopulation processes operate
at various spatial scales (individual level, local, and
regional epidemics). They have illustrated the resultant
spatio-temporal dynamics by a series of case studies
which explore diseases metapopulation dynamics at the
interface of models and data. However, the mathematical
analysis of the model (existence and stability of equilib-
ria) has not been done in their studies. More recently,
metapopulation or patch models have been applied to
Malaria disease [8], [23] indicating clearly that human
population movement is an important component to
understand the time course of an epidemic.

In [18], [19], the studies only focused on local places,
in order to detect where the epidemiological risk is high,

in other words, where the basic reproduction number
is greater than one. In recent works [20], [21], [16],
[17], spatio-temporal models, using partial differential
equations, have been developed to study mosquito dis-
placements according to landscape elements. In [17],
the authors took into account environmental factors, like
temperature, to study different SIT control strategies,
taking into account periodic releases of steriles males.

The aim of this work is now to link the cities, taking
into account human movements, that could explain the
spread of the disease. For instance, in Réunion Island,
in 2005, the first Chikungunya case was referenced in
Saint-Pierre, the 22th of February 2005, the next in Saint-
Denis and, then in La Possession, and Le Port.... Using
temporal (and even spatio-temporal) data from the ARS
(Regional French Health agency) in Réunion Island, we
know about the time and spatial spread of the epidemic.
In Réunion Island, the car is the favorite transportation
and people travel a lot from place to place in the island
to go from Home to work and back or to visit family or
friends. Moreover, it is well known that due to arthritis
many infected and even recovered (not infectious) people
were not able to move [30]. Thus, in our model, we
intend to take into account limitation movements of
infected populations and show that it can have an impact
in the spread and the force of the epidemic. Of course,
a possible and nice extension of our model would be
to consider the different Islands in Indian Ocean, like
Mauritius, la Réunion, Comoros, and Madagascar as a
possible4 patches model.

The outline of the paper is as follows: in section2,
we present the migration model and the full epidemio-
logical model forn cities. In section3, we compute the
DFE, and the general basic reproduction number,R2

0,
and show that the DFE is locally asymptotically stable
(LAS). Then we show that the DFE can sometimes be
globally asymptotically stable. In section4, we study
the spreading of the disease. Finally, we validate our
theoretical results with a two patches model.

A. The human migration model

Our study focus on four cities in Réunion Island, but
we present the migration model in a general setting, in
order to have a generic modeling. All cities are more or
less connected, and, in principle, people can move from
one town to another. We assume that the total population
is constant. In Figure 1, we present an example of a n-
patches model: each city is a patch. In this figure, the
solid line stand from one city to another which means
that there is a strong connection between the cities, while
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the dotted line is from one city to another which means
that the connection is weak.

Patch 1

Patch 2

Patch 3

Patch 4

Patch i

Patch n

Fig. 1. A general n-patches model for the transmission of the
Chikungunya virus betweenn cities in Réunion Island.

Assuming that the total human population in each
patch is denoted byNi,h, we haveNi,h = Si,h + Ii,h +
Ri,h, for i = 1,...,n. Moreover, the total populationNtot

verifiesNtot = N1,h + · · ·+Ni,h + · · ·+Nn,h.
For each epidemiological states, we consider the fol-

lowing migration model:

dXi,h

dt
=

n
∑

j=1
j 6=i

mXh

ij Xj,h −









n
∑

j=1
j 6=i

mXh

ji









Xi,h, (1)

where Xi,h ∈ {Si,h, Ii,h, Ri,h}. Now, settingXh =
(X1,h, ...,Xn,h)

T , the migration model (1) becomes

dXh

dt
= MXh Xh, (2)

whereMXh =





M1,1 ... M1,n

... ... ...
Mn,1 ... Mn,n



, with

M1,1 =

















−

(

n
∑

j=2
mXh

j1

)

mXh

1,2

mXh

2,1 −







n
∑

j=1
j 6=2

mXh

j,2























,

M1,n =

(

mXh

1,n−1 mXh

1,n

mXh

2,n−1 mXh

2,n

)

,

Mn,1 =

(

mXh

n−1,1 mXh

n−1,2

mXh

n,1 mXh

n,2

)

,

Mn,n =

















−







n
∑

j=1
j 6=n−1

mXh

j,n−1






mXh

n−1,n

mXh

n,n−1 −

(

n−1
∑

j=1
mXh

j,n

)

















.

The coefficientsmXh

i,j are chosen according to the move-
ment of the epidemiological stateXh between the cities
and with the constraints that a possible equilibrium of
the total populationNtot corresponds to the inhabitants
in each city.

We point out thatMXh is a Metzler matrix, i.e. a
matrix with all off-diagonal terms nonnegative, and is
irreducible [9]. Thus, ifXh (0) ∈ R

n
+, thenXh (t) ∈ R

n
+.

Indeed, there exist a reals > 0 and a matrixB ≥ 0 such
that

−MXh = s Idn
−B,

which implies that−M is a singular irreducible M-
matrix of ordern. Thus, following Theorem 4.16, page
156 in [9], there exists a positive vectorLh >> 0 such
that

MXhL = 0 with
n
∑

i=1

Li,h = 1.

From Perron-Frobenius theorem [9], we deduce
that there exists a simple eigenvalueλmax =

max
λ∈sp(MXh)

Re(λ) and an eigenvectorωh >> 0 such that

MXhwh = λmaxwh.

Now, using the fact that1TMXh = 0, where 1
T =

(1, 1, ..., 1), we haveλmax = 0, and thus all other
eigenvalues have a negative real part. Thus, the following
result hold.

Proposition 1: Equation (2) admits a unique positive
equilibriumX0

h = X0
tot which is globally asymptotically

stable on the hyperplane orthogonal to1T .

B. The full epidemiological model forn cities.

For each city we have temporal data, and some of
them have been studied independently in Refs. [18],
[19]. Our aim is to consider an epidemiological model
in each patch and to take into account human movement
between the patches. In patchi, we assume that the
human population is constant and equal toNi,h, and is
subdivided in three compartmental stages : the suscepti-
ble, Si,h, the infectedIi,h and the recovered,Ri,h. µi,h

is the per capita death rate of humans in susceptible,
infectious and recover stages in patchi; this parameter
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is also assumed to be the recruitment rate of humans
in the susceptible compartment stage, proportionally to
the human population. In a same manner, we assume
that all patches have got mosquitoes and, we consider
three stages for the mosquitoes : an aquatic stage,Ai,m,
the susceptible,Si,m, and the InfectedIi,m. Ki is the
carrying capacity of all breeding sites, andµi,b is the
number of eggs layed per day and per (female) mosquito,
in patchi. An infected mosquito in patchi can only in-
fect a susceptible human from patchi. In each patch, we
assume that mosquitoes and humans are homogeneously
distributed. The aquatic state includes the eggs, larvae
and pupae. Both humans and mosquitoes are assumed
to be born susceptible.ηi,h is the recovering rate of
infected human in patchi such that an infected human

is infectious during
1

ηi,h
days, called the viremic period,

and then becomes resistant or immune. The parameterαi

is related to the carrying capacity and represents the level
of mechanical control in patchi: when αi = 1, there
is no mechanical control; whenαi = 0.5, it indicates
that 50 percents of the breedings have been removed in
patchi. µi,A is the per capita death rate of mosquitoes
in aquatic stage in patchi; µi,m is the per capita death
rate of mosquitoes in susceptible and infectious stages in
patchi; ηi,A is the rate of mosquitoes of patchi which
leave the aquatic stage and progress to the susceptible
stage.

Cross-infection between humans and vectors is mod-
eled by the mass-action principle normalized by the
total population of humans. Every day, in patchi,
each mosquito bites, on average,Bi times. pi,mh is
the probability that a bite on a susceptible individual
will lead to host infection so thatβi,mh = Bipi,mh

represents the contact rate between infectious mosquitoes
and susceptible hosts. Similarly,βi,hm = Bipi,hm is
the contact rate between infectious hosts and susceptible
mosquitoes, wherepi,hm is the probability that a bite on
an infected individual will lead to vector infection.

In Réunion Island,80% of the population being living
at the sea level, we assume that the parameters in the
human compartments are the same in each patch (at least
from Saint-Denis to Saint-Pierre). In patchi, we assume
that the average lifespan for susceptible and infected
mosquitoes is1/µi,m. Let us recall also, that in Réunion
Island, it was proved that a mutation in the initial strain
leads to a new strain that influences the lifespan of
the infected mosquito: it is almost halved [27]. This
uncommon result can influence the dynamics of the
disease [19]. Here, for sake of simplicity in the analysis,

we will only consider one strain (no mutation). For
other vector-borne diseases it has never been observed
that a mutation in the virus influences the lifespan of
an infected mosquito. There is no evidence of vertical
transmission [35]. We also assume that the mosquito
parameters may change from patch to patch.

Note also that we don’t consider the “exposed” stage,
like in [18], [19], for sake of simplicity. All together,
for i = 1, ..., n, we have the following system for the
mosquitoes population:














































dAi,m

dt
= µi,b

(

1−
Ai,m

αiKi

)

(Si,m + Ii,m)

−(ηi,A + µi,A)Ai,m,
dSi,m

dt
= −βi,hm

(

Ii,h
Ni,h

)

Si,m − µi,m Si,m

+ηi,AAi,m,
dIi,m
dt

= βi,hm

(

Ii,h
Ni,h

)

Si,m − µi,m Ii,m,

(3)

and the following differential system for the human
population:


























































































































dSi,h

dt
= µi,hNi,h − βi,mh

Ii,m
Ni,h

Si,h − µi,h Si,h

+
n
∑

j=1
j 6= i

mS
ij Sj,h −







n
∑

j=1
j 6= i

mS
ji






Si,h,

dIi,h
dt

= βi,mh
Ii,m
Ni,h

Si,h − (µi,h + ηi,h) Ii,h

+
n
∑

j=1
j 6= i

γj m
I
ij Ij,h − γi







n
∑

j=1
j 6= i

mI
ji






Ii,h,

dRi,h

dt
= ηi,h Ii,h − µi,hRi,h +

n
∑

j=1
j 6= i

mR
ij Rj,h

−







n
∑

j=1
j 6= i

mR
ji






Ri,h,

(4)

where Si,h + Ii,h + Ri,h = Ni,h. In addition, we
have the following initial conditions in each patch:
(

αiKi;miNi,h; 0;Ni,h − I0i,h; I
0
i,h; 0

)

, whereI0i,h is the
initial number of infected people in patchi, andmi a
positive real number. In numerical simulations, we will
consider thatKi = kiNi,h, whereki is a positive real
number.

Setting Sh = (S1,h, ..., Sn,h), Ih = (I1,h, ..., In,h),
Rh = (R1,h, ..., Rn,h), Am = (A1,m, ..., An,m), Sm =
(S1,m, ..., Sn,m) andIm = (I1,m, ..., In,m).
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In the sequel, we will assume that the migration
models for the epidemiological statesSh andRh are the
same, i.e.MSh = MRh = M. However, Chikungunya
fever is general symmetric with joint pains that occur in
wrists, elbows, fingers, knees,..., leading sometimes to
arthritis [31] such that it can be very difficult to drive and
thus, going from one city to another and cannot always
be possible for infected people. Thus, we will assume
thatMIh = MΓ, with Γ = diag (γi), whereγi ∈ [0, 1];
γi indicates the proportion of infected people that were
able to move from patchi to the other patches. We
could also assume thatMRh = MΓ too, since this joint
problems can persist several weeks or months after the
people had become viremic, but this hypothesis do not
change the rest of the paper mainly because recovered
people do not become susceptible again. So for sake of
simplicity, we keepMRh = M as assumed previously.

Remark 1:Our migration model doesn’t take into
account the home of the individuals, which would imply
a far more complex model. In our modelling, we don’t
take into account people that moves daily, for instance
from home to work and back. Indeed, ae. albopictus is
only active early in the morning and late in the afternoon,
thus more or less outside the office hours in Réunion
island. Thus, we only consider people that stay more than
one day, and thus have more or less the same probability
than local people to be bitten. This is why we don’t
make distinction in a patch between people coming from
different patches.

Therefore, in terms ofSh, Ih, Rh, Am, Sm and Im,
the differential equations (3) and (4) can be rewritten in
the following vectorial form:











































































dAm

dt
= diag(µb) diag(K)−1 diag

(

K −
Am

α

)

Sm

+diag(µb) diag(K)−1 diag

(

K −
Am

α

)

Im

−diag(ηA + µA)Am,

dSm

dt
= −diag(Nh)

−1 diag(βhmIh)Sm

−diag(µm)Sm + diag(ηA)Am,

dIm
dt

= diag(Nh)
−1 diag(βhmIh)Sm − diag(µm) Im,

(5)

and






















































dSh

dt
= µhIdn (Ih +Rh)

−diag(Nh)
−1 diag(βmh Im)Sh +MSh,

dIh
dt

= diag(Nh)
−1diag(βmhIm)Sh

−(ηh + µh)Idn Ih +MΓIh,

dRh

dt
= ηhIdn Ih − µhIdn Rh + MRh,

(6)

where µb = (µ1,b, · · · , µn,b)
T , K = (K1, · · · ,Kn)

T ,
α = (α1, · · · , αn)

T , ηA = (η1,A, · · · , ηn,A)
T , µA =

(µ1,A, · · · , µn,A)
T , βhm = (β1,hm, · · · , βn,hm)T , µm =

(µ1,m, · · · , µn,m)T and diag(Y ) denotes the diagonal
matrix of ordern defined by the vectorY of n.

Summing sub-systems (6)1, (6)2, and (6)3 gives

dNh

dt
= MSh+MΓ Ih+MRh = MNh−M(Idn−Γ)Ih.

(7)
Then, the coupled system (5)-(6) may be rewritten in the
following compact form:



















dVm

dt
= A (H,Vm)Vm,

dH

dt
= B (H,Vm)H,

(8)

where

H = (S1,h, · · · , Sn,h, I1,h, · · · , In,h, R1,h, · · · , Rn,h)
T ,

Vm = (A1,m, · · · , An,m, S1,m, · · · , Sn,m, I1,m, · · · , In,m)T ,

B (H,Vm) =





−b11 µhIdn µhIdn
b21 −b22 0
0 ηh Idn − (µh Idn −M)



 ,

with b11 =
(

diag(Nh)
−1 diag(βmh Im)−M

)

,
b21 = diag(Nh)

−1 diag(βmh Im), b22 =
((ηh + µh)Idn − ΓM),

A (H,Vm) =





−A11 diag(µb) diag(µb)
diag(ηA) −A22 0

0 a32 −diag(µm)



 ,

where Idn denote the identity matrix ofn, A11 =
(

diag(µb) diag(αK)−1(Sm + Im) + diag(ηA + µA)
)

and A22 =
(

diag(Nh)
−1 diag(βhm Ih) + diag(µm)

)

,
a32 = diag(βhm) diag(Nh)

−1 diag(Ih).
Note thatA (H,Vm) andB (H,Vm) are Metzler ma-

trices for allVm ∈ R
3n
+ and allH ∈ R

3n
+ . Thus, system

(8) is positively invariant inR3n
+ × R

3n
+ , which means
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that any trajectory of the system starting from an initial
state in the positive orthantR3n

+ × R
3n
+ remains forever

in R
3n
+ × R

3n
+ . Note also that the right-hand side of

system (8) being Lipschitz continuous so that there exists
a unique maximal solution.

Now, let us show that the solutions are bounded. Using
equation (7) and the fact thatΓ ≤ Idn gives

dNh

dt
≤ MNh.

Since
∑n

i=1 Mij = 0, for all j, the total population
Ntot =

∑n
i=1 Ni,h in the full system is bounded by

the initial total populationN0
tot = N0

1,h + · · · + N0
n,h,

which implies thatNi,h, the total population in a given
patchi, is also bounded byN0

i,h. Thus,Sh, Ih andRh

are such that(Sh, Ih, Rh) ≤ (Idn, Idn, Idn)N
0
h , where

N0
h = (N0

1,h, · · · , N
0
n,h)

T .
In each patch, the basic offspring number related to

the mosquitoes population is defined by

Ni,m =
µi,b ηi,A

(µi,A + ηi,A)µi,m
. (9)

Without infectious mosquitoes and infectious humans,
the mosquito dynamical system in each pathi reduces
to


















dAi,m

dt
= µi,b

(

1−
Ai,m

αi Ki

)

Si,m − (ηi,A + µi,A)Ai,m,

dSi,m

dt
= −µi,m Si,m + ηi,AAi,m.

(10)
System (10) has two equilibriaE0 = (0, 0) and, when
Ni,m > 1, E#

i = (A0
m, S0

m), with

A0
m =

(

1−
1

Ni,m

)

αiKi, S0
m =

ηi,A
µi,m

(

1−
1

Ni,m

)

αiKi.

In fact, using [5], we can show the following
Theorem 1:Let Ai,m (0) ≤ αiKi, then the following

results hold
1) System (10) defines a cooperative dissipative dy-

namical system onR2
+.

2) If Ni,m ≤ 1, then the equilibriumE0 is globally
asymptotically stable onR2

+.
3) If Ni,m > 1, then system (10) has two equilibria

E0 andE#, whereE0 is unstable andE# is stable
with basin of attractionR2

+\{E0}.
Proof:
1) This is straightforward to verify.
2) It suffices to use (1) and to verify the assumptions

of Theorem 5 given in Appendix A (see also [5])

with a = E0 andb =

(

αi Ki,
2αi ηi,A
µi,m

Ki

)

.

3) SinceNi,m > 1, the inequality

Ni,m >
1 + C

1− C
αiKi

holds for C > 0 sufficiently small. Letε > 0
and Aε be so small that we verify the previous
inequality and the following ones:Ai,m,ε ≤ ε and
Si,m,ε = ηi,A

µi,m
ε

1+ε
≤ ε. Then the right-hand side

of (10), taken ataε = (Ai,m,ε, Si,m,ε) is equal to

(

(ηi,A + µi,A)
[(

1− ε
αiKi

)

Ni,m

1+ε
− 1
]

ηm,i
ε2

1+ε

)

> 0.

Thus applying Theorem 5, we deduce thatE# is
GAS on [aε,bm]. Sinceaε (bm) can be chosen
smaller (larger) as needed, we deduce thatE# is
asymptotically stable inR2

+ with basin of attrac-
tion at least the interior ofR2

+. It can be easily seen
that system (10) is irreducible. Letz ∈ R

2
+ \{E0},

that is,z > 0. Then it follows from a strong version
of Kamke’s Theorem (see Theorem 4 [5]) that
Ei(t) = (Ai(z, t), Si(z, t)) ≫ 0 for t > 0. Hence
we havelimt→+∞Ei(z, t) = E#. Thus, the basin
of attraction ofE# is preciselyR2

+ \ {E0}. This
also implies thatE0 is unstable, which completes
the proof. ✷

Finally, in patchi, from equations (3)2 and (3)3, we
derive







Ȧi,m = µi,b

(

1−
Ai,m

αiKi

)

Si,m − (ηi,A + µi,A)Ai,m,

Ṡi,m + İi,m = ηi,AAi,m − µi,m ( Ii,m + Si,m) .

Then, straightforward computations show that in each
patchi, we have

Ai,m (t) ≤ Ai,max = max (Ai,m (0) , αiKi) ,

Si,m (t) + Ii,m (t) ≤ max(Si,m (0) + Ii,m (0) ,
ηi,AAi,max

µi,m
).

Therefore, the following theorem hold.
Theorem 2:Setting H = (Sh, Ih, Rh) and Vm =

(Am, Sm, Im). System (5)-(6) is invariant inB =











(Vm,H) ∈ R
3n
+ × R

3n
+ | Sh + Ih +Rh = N0

h ,
Am ≤ Amax

Sm + Im ≤ max
(

Sm (0) + Im (0) , ηi,A

µi,m
Amax

)











.

(11)
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II. D ISEASE-FREE EQUILIBRIUM AND BASIC

REPRODUCTION NUMBER

A. The disease-free equilibrium

We consider systems (5) and (6) together. At the
disease-free equilibrium (DFE),Ih = 0 and Im = 0.
Then, system (5) and (6) at the DFE gives






















































−µhN
0
h = (−µh Idn +M)S0

h,

(−µh Idn +M)R0
h = 0,

diag(µb) diag(K)−1 diag

(

K −
A0

m

α

)

S0
m

= diag(ηA + µA)A
0
m,

µm S0
m = ηA A0

m.

(12)

• Using Proposition 1, and choosingS0
h = N0

h , Eq.
(12)1 is verified.

• Equation (12)2 implies thatR0
h = 0. Also, from Eq.

(12)3, one has

diag(µb) diag(K)−1diag

(

K −
A0

m

α

)

S0
m

= diag(ηA + µA)A
0
m.

Sinceµi,m S0
i,m = ηi,AA0

i,m, for eachi, the above
equation becomes

diag(µb) diag(K)−1diag

(

K −
A0

m

α

)

diag(ηA)

×(diag(µm))−1A0
m = diag(ηA + µA)A

0
m.

Then, in each patch, there are two possibilities :
A0

i,m = S0
i,m = 0, or A0

i,m > 0 and S0
i,m > 0,

depending on the value taken by the basic off-
spring numberNi,m (see the previous computations
above).

Finally, we have the following result.
Proposition 2: Let consider the coupled system (3)-

(4).

• There always exists an Equilibrium without disease,
EDF , depending on the thresholdNi,m in each
patch.

• When Nm = (Ni,m)i=1,..,n > 1n, then
we call DFE, the Disease Free Equilibrium ,
(S0

h, 0, 0, A
0
m, S0

m, 0), whereA0
m > 0 andS0

m > 0.

B. The basic reproduction number

Let us now compute a general expression related to
an equilibrium without disease. We will consider sys-

tem (5)-(6), without equation
dRh

dt
, because the human

population is constant. The expressions which coming
from the other compartments due to the contamination

are those in
dIh
dt

and
dIm
dt

, that is


































dIh
dt

= diag(βmh )diag(Nh)
−1 diag(Im)Sh

−diag(ηh + µh) Ih +MΓIh,

dIm
dt

= diag(βhm ) diag(Nh)
−1 diag(Ih)Sm

−diag(µm) Im.

The above equation can be rewritten as follows :


































dIh
dt

= diag(βmh)diag(Nh)
−1diag(Sh) Im

−diag(ηh + µh) Ih +MΓIh,

dIm
dt

= diag(βhm)diag(Nh)
−1 diag(Sm) Ih

−diag(µm) Im,

Here we consider a general equilibrium without disease
such thatSm ≥ 0, such that some components could be
equal to zero. We compute the Jacobian of the system
at a nonnegative equilibrium, without disease,EDF =
(A0

m, S0
m, 0, N0

h , 0, 0), which leads to

JM = F − V,

where

F =

(

0n×n diag(βmh)
diag(βhm)diag(N0

h)
−1 diag(S0

m) 0n×n

)

and

V =

(

(ηh + µh)Idn −MΓ 0n×n

0n×n diag(µm)

)

,

which is invertible. Then, the next generation matrix is:

F V −1 =

(

0n×n f12
f21 0n×n

)

,

wheref12 = diag(βmh)(diag(µm))−1,

f21 = diag(βhm) diag(N0
h)

−1 diag(S0
m)

× ((ηh + µh)Idn −MΓ)−1 .

The basic reproduction number related toEDF is the
spectral radius of the next generation matrix, i.e.R2

0 =
ρ(F V −1) [33]. After a brief computation, we obtain

R2
0 = ρ(diag(βmhβhm)(diag(µm))−1diag

(

N0
h

)−1

×diag
(

S0
m

)

((ηh + µh)Idn −MΓ)−1).
(13)

R2
0 is also the general basic reproduction number related

to the whole system. Using [33], we have the following
result.
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Theorem 3:If R2
0 < 1, thenEDF is locally asymp-

totically stable. IfR2
0 > 1, thenEDF is unstable.

Remark 2: If Nm < 1n, then only the infection free
equilibrium (IFE) E0 = (S0

h, 0, 0, 0, 0, 0) exists and is
globally asymptotically stable. IfNm > 1n, the IFE still
exists but is unstable and the DFEE# exists. This DFE
as we have shown in Theorem 1 is stable. This means
that atNm = 1n, we have a transcritical bifurcation.

Remark 3:WhenΓ = 0, then

R2
0 = max

i

(

R2
0,i

)

,

whereR2
0,i is the basic reproduction number in patchi,

and, is defined as follows [22]:

R2
0,i =

βi,mhβi,hm
µi,m(ηh + µh)

S0
i,m

N0
i,h

. (14)

From the previous computations, we are able to derive
interesting results, in particular for the vector control.A
first general and obvious result is that when the migration
increases, the basic reproduction number also increases.
Indeed,(ηh + µh)Idn − MΓ being anM− matrix, its
inverse ((ηh + µh)Idn −MΓ)−1 is a positive matrix.
Moreover

diag
(

N0
h

)−1
diag

(

S0
m

)

=

























S0
1,m

N0
1,h

.. .

S0
n,m

N0
n,h

























≤ max
1≤i≤n

(

S0
i,m

N0
i,h

)

Idn.

Thus, we have

diag
(

βmhβhm

µm

)

diag
(

N0
h

)−1
diag

(

S0
m

)

× ((ηh + µh)Idn −MΓ)−1

≤ max
1≤i≤n

(

βi,mhβi,hm
µi,m

S0
i,m

N0
i,h

)

((ηh + µh)Idn −MΓ)−1 .

Then using a nice property of positive matrices, we have

ρ
(

diagβmhβhm

µm
diag

(

N0
h

)−1
diag

(

S0
m

)

×

× ((ηh + µh)Idn −MΓ)−1
)

≤ max
1≤i≤n

(

βi,mhβi,hm

µi,m

S0

i,m

N0

i,h

)

ρ
(

((ηh + µh)Idn −MΓ)−1
)

.

But (ηh + µh)Idn − MΓ being a non singularM -
matrix, since the stability modulus ofM is α(M) = 0,

whereα(M) = max {Re(λ) : λ eigenvalue ofM}, we
deduce [9]

ρ
(

((ηh + µh)Idn −MΓ)−1
)

=
1

ηh + µh

,

which implies, using (14), that

R2
0 ≤ max

i

(

R2
0,i

)

.

Using the same reasoning it is possible to show that

min
i

(

R2
0,i

)

≤ R2
0.

Altogether, we summarize in the following proposition
Proposition 3: The Basic reproduction Number of the

patch system verifies

min
i

(

R2
0,i

)

≤ R2
0 ≤ max

i

(

R2
0,i

)

.

Thus, human movements can induce a spreading of
the epidemiological risk in places where local basic
reproduction numbers are low, when some places have
large local reproduction number, i.e. greater than1.

Let us now consider a particular case ofn patches with
the same populationN0

i,h = N1,h, the same capacity
Ki = K1, and the same parameters values in each
patch, for i = 2,..., n, such thatNm > 1. Then we
have the same equilibrium for the susceptible mosquito
population, i.e.S0

i,m = S0
1,m, for i = 2, ..., n. Thus the

basic reproduction number reduces to

R2
0 = ρ(diag

(

βmhβhm

µm

)

diag
(

N0
h

)−1
diag

(

S0
m

)

((ηh + µh)Idn −M)−1Γ) =
βmhβhm

µm

S0
1,m

N0
1,h

×ρ
(

((ηh + µh)Idn −MΓ)−1
)

,

with

ρ
(

((ηh + µh)Idn −MΓ)−1
)

=
1

ηh + µh

which implies that

R2
0 = R2

0,1 = R2
0,i =

β1,hmβ1,mh

µ1,m (ηh + µh)

S0
1,m

N0
1,h

.

In this particular case, human movements has no impact
on the basic reproduction number. Thus, for cities of
equal size, and with the same biological parameters
whatever the migration, the global and local risks are
the same. This unexpected result is due to the fact that
((ηh + µh)Idn −MΓ)−1 has always the same spectral

radius,
1

(ηh + µh)
, whatever the matricesΓ andM.
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Let us now consider a two-patches example, with
N1,m > 1 and Nm,2 < 1. Thus, after straightforward
computations, the basic reproduction number becomes

R2
0 =

β1,hmβ1,mh

µm (ηh + µh)

(ηh + µh + γ1m12)

(ηh + µh + γ1 (m12 +m21))

S0
1,m

N0
1,h

,

which leads to

R2
0 = R2

0,1

(

1− γ1
m21

(ηh + µh + γ1 (m21 +m12))

)

indicating that if the infected population is in one patch,
with infectious mosquitoes, has back and forth move-
ment with another patch which is free of mosquitoes,
then the basic reproduction ratio will decrease....In par-
ticular if all infected people go out from the infected
area, this will lower the epidemiological risk....

C. Global asymptotic stability of the DFE

In this section, we study the global asymptotic stability
(GAS) of the DFE of coupled system (5)-(6). We assume
that the population in each patch is constant, i.e.Ni,h =
N0

i,h. Set

R2
GAS = ρ(diag(βmhβhm)(diag(µm))−1diag

(

N0
h

)−1

×diag (Smax) ((ηh + µh)Idn −MΓ)−1),

with

Smax = max
(

Sm (0) , S0
m

)

.

We have the following result
Theorem 4:: The DFE of the coupled system (5)-

(6) is globally asymptotically stable in the nonnegative
orthant, ifR2

GAS < 1.
Proof: Let us consider Eqs. (5)3 and (6)2. Using the fact
that Sh is bounded, i.e.Sh ≤ N0

h , and Sm < Smax,
we obtain the following linear differential inequations
system:










dIm
dt

dIh
dt











≤





−diag(µm) g21

diag(βmh) −g22









Im

Ih



 ,

where g21 = diag(βhm )diag
(

N0
h

)−1
diag (Smax),

g22 = (diag(ηh + µh)−MΓ). Let

G =





−diag(µm) g21

diag(βmh) −g22



 .

Note thatG is a Metzler matrix, which admits a regular
splitting [9] (close similar to the regular splitting ob-
tained to compute the basic reproduction numberR2

0),
N +M , with

M =

(

0 diag(βhm )diag
(

N0
h

)−1
diag (Smax)

diag(βmh) 0

)

and

N =

(

−diag(µm) 0
0 − (diag(ηh + µh)−MΓ)

)

Thus, using [9],G is Metzler stable ifρ
(

−N−1M
)

< 1.
A simple computation gives

−N−1M =

(

0 nm12

nm21 0

)

,

where

nm12 = diag(βhm )diag
(

N0
h

)−1
diag (Smax)

× (diag(µm))−1 ,

nm21 = (diag(ηh + µh)−MΓ)−1 diag(βmh). Then,
ρ
(

−N−1M
)

< 1 if and only if

R2
GAS = ρ(diag

(

βmhβhm
µm

)

diag
(

N0
h

)−1

×diag (Smax) ((ηh + µh)Idn −MΓ)−1 < 1.

Thus, using a comparison principle [26] , we have

lim
t→+∞

Ih = lim
t→+∞

Im = 0.

Then, having− (µhIdn −M) ≤ 0 , we deduce that
lim

t→+∞
Rh = 0. Since the total population in each patch

is constant, and using the fact thatSh + Ih +Rh = Nh,
we deduce that lim

t→+∞
Sh = Nh.

Obviously we haveR2
0 ≤ R2

GAS. Thus sinceR2
GAS <

1, we have uniqueness of theEDF , which implies that
lim

t→+∞
Am = A0

m, and lim
t→+∞

Sm = S0
m. Then, one can

conclude that theEDF is GAS whenR2
GAS < 1. This

achieves the proof.
✷

Remark 4: :When Smax = S0
m, we haveR2

GAS =
R2

0.
Remark 5: : Our result generalized to a metapopula-

tion the results obtained in [18], [19], [22].
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III. SPREADING OF THE DISEASE

First of all, whenM 6= 0, we show with a simple
example that having an endemic equilibrium in some
patches and a Disease Free equilibrium in other patches,
is impossible.

Indeed, we consider a two-patches system assuming
that in the first patchR0,1 < 1 and in the second
ones,R0,2 > 1. Looking for an equilibrium leads to
the following systems to solve

(Patch1)































µhN1,h − β1,mh
I1,m
N1,h

S1,h

−µh S1,h + mS
12 S2,h − mS

21S1,h = 0,

β1,mh
I1,m
N1,h

S1,h − (µh + ηh) I1,h

+γ2m
I
12 I2,h − γ1 m

I
21I1,h = 0,

(Patch2)































µhN2,h − β2,mh
I2,m
N2,h

S2,h − µh S2,h

+mS
21 S1,h − mS

12S2,h = 0,

β2,mh
I2,m
N2,h

S2,h − (µh + ηh) I2,h

+γ1m
I
21 I1,h − γ2 m

I
12I2,h = 0.

From (Patch 1)2, we deduce

γ2 m
I
12 I2,h = (µh+ ηh+ γ1m

I
21) I1,h−β1,mh

I1,m
N1,h

S1,h.

(15)
We assumeγ1 > 0. SinceR0,1 < 1 in the first patch,
then one possible equilibrium verifiesI1,h = I1,m = 0.
Using (15)2, we have immediatelyI2,h = 0 in the second
patch. Then using the fact that

β2,hm
I2,h
N2,h

S2,m = µ2,m I2,m,

we deduce thatI2,m = 0. Thus, assuming movements
in the infectious population implies automatically that
we cannot have co-existence of an endemic equilibrium
in one patch and a disease free equilibrium in the other
one. Therefore, an endemic equilibrium for the patchy
system is an equilibrium without zero component.

Existence of an endemic equilibrium is not obvious to
show in a metapopulation model. However, it is possible
to have some insights in the dynamic of the disease,
in particular regarding its spreading. Our preliminary
results allows us to conjecture that a unique endemic
equilibrium exists. Let us now stated this result forn
patches:

Proposition 4: Consider system (5)-(6).

1) When M = 0, a unique endemic equilibrium
exists, ifR2

0,i > 1 in each patchi.

2) WhenM 6= 0, the only equilibrium with one zero
component isEDF .

Proof: Let us first show the existence of a possi-
ble equilibrium. Then, using some of the computa-
tions derived in [19], we can derive explicit solution
for the endemic equilibrium.... Let us consider system
(3)-(4) or system (5)-(6) at the endemic equilibrium
(S∗

h, I
∗
h, R

∗
h, A

∗
m, S∗

m, I∗m) with I∗h 6= 0 and I∗m 6= 0
in each patchi. First, using system (6), and setting
dSh

dt
(t) =

dIh
dt

(t) =
dRh

dt
(t) = 0, we obtain the

following relations:






































(diag(µh)−M)R∗
h = ηhI

∗
h,

(

(diag(N∗
h))

−1 diag(βmh I
∗
m) −M

)

S∗
h

= µh (I
∗
h +R∗

h) ,

(diag(ηh + µh) −MΓ) I∗h = (diag(N∗
h))

−1

×diag(βmh I
∗
m)S∗

h.

(16)

1) From Eq. (16)2, we deduce
(

(diag(N∗
h))

−1 diag(βmh I
∗
m) + µhIdn −M

)

S∗
h = µhN

∗
h ,

(17)
Thus using (16)2 and (17), we deduce

(diag(ηh + µh) −MΓ) I∗h = µhdiag(
βmh I

∗
m

N∗
h

)

×
(

(diag(N∗
h))

−1 diag(βmh I
∗
m) + µhIdn −M

)−1
N∗

h ,

that is

I∗h = µh (diag(ηh + µh) −MΓ)−1 diag(
βmh I

∗
m

N∗
h

)

×
(

(diag(N∗
h))

−1 diag(βmh I
∗
m) + µhIdn −M

)−1
N∗

h .
(18)

Now, we have two cases to consider:M = 0 andM 6=
0.

SupposeM = 0. Then the patches are disjoints and
in this case it suffices to follow the computations given
in [19], [18]. Indeed, we have

I∗i,m =
ηi,A βi,hm I∗i,h

µi,am

(

µi,mN∗
i,h + βi,hmI∗i,h

)

(

1−
1

Ni,m

)

αiKi,

(19)
and from Eq. (16)3 , we have

I∗i,h
N∗

i,h

=
µh

ηh + µh

βi,mh I
∗
i,m

βi,mh I
∗
i,m + µhN

∗
i,h

. (20)

From the two previous equation, we deduce:

I∗i,m =
µhµi,m

βi,mh

(

1 +
µh

ηh + µh
βi,hm

)

(

R2
0,i − 1

)

N∗
i,h.

(21)

Biomath 2 (2013), 1307237, http://dx.doi.org/10.11145/j.biomath.2013.07.237 Page 10 of 19

http://dx.doi.org/10.11145/j.biomath.2013.07.237


S Bowong at al., A patchy model for Chikungunya-like diseases

Note that Eq. (21) has a sense if and only ifR2
0,i > 1,

whereR2
0,i is defined as in Eq. (14). Thus each patch

admits an endemic equilibrium ifR2
0,i > 1.

2) Using some of the previous computations, we now
suppose thatM 6= 0. In that case, the computations
are absolutely not obvious and we need to show the
existence of the endemic equilibrium, using fixed point
argument. We will use Theorem 2.1 given in [24]. Using
the previous computations we have to combine Eqs.
(18) and (19), which lead to a fixed point problem,
G (X) = X, with

G(X) = µh (diag(ηh + µh) −MΓ)−1

×diag

(

βi,mh

N∗
i,h

ui,hm

(

1−
1

Ni,m

)

αiKi

)

× (u∗ + µhIdn −M )−1N∗
h ,

whereui,hm =
ηi,A βi,hmXi,h

µi,m

(

µi,mN∗
i,h + βi,hmXi,h

) andu∗ =

(diag(N∗
h))

−1 diag

(

βmh ui,hm

(

1−
1

Ni,m

)

αiKi

)

.

Note carefully that the matrices

(diag(N∗
h))

−1 diag

(

βi,mh ui,hm

(

1−
1

Ni,m

)

αiKi

)

+µhIdn −M,

and
diag(ηh + µh) −MΓ,

are M-Matrices and thus their inverses are positive.
We now verify the assumptions of Theorem 2.1 in

[24]: it is obvious thatG is continuous, monotone
nondecreasing, and strictly sublinear.G is bounded and
stay in the nonnegative orthant. MoreoverG (0) = 0, and
G′ (0) exists and is irreducible. Thus from Theorem 2.1
[24], we can deduce that the only equilibrium with one
zero component is theEDF . It means that if at least one
patch is infected, then all patches will become infected
through population movements, unlessΓ = 0 or M = 0.

✷

Remark 6:From the epidemiological point of view,
the previous result states that if at least one patch is
infected, then every patch will become infected, due
to Human movements whenγ > 0. This result seems
obvious, but it clearly shows that if early vector control
is not undertaken in places where infective people are
recorded the disease will spread due to Human move-
ments... and, of course, it will far more difficult to control
the epidemic. �

Remark 7: In fact, using the same theorem we could
go further, if we were able to show thatρ (G′ (0)) > 1,

then we could deduce the existence of a unique positive
fixed point. In our case, we have

G′ (0) = diag(ηh + µh) (diag(ηh + µh) −MΓ)−1

×diag

(

1

(ηh + µh)

ηi,A βi,mhβi,hm
µi,mµi,mN∗

i,h

(

1−
1

Ni,m

)

αiKi

)

×diag(µh) (µhIdn −M )−1 .

In the diagonal matrix, we recognize the local basic
reproduction NumberR2

i,0. Thus

G′ (0) = diag(ηh + µh) (diag(ηh + µh) −MΓ)−1

×diag
(

R2
i,0

)

diag(µh) (µhIdn −M )−1 .

Although in the previous equality, all ”ingredients” are
there. In particular, we have

ρ
(

(diag(ηh + µh) −MΓ)−1
)

= diag

(

1

(ηh + µh)

)

,

ρ
(

(diag(µh) − M)−1
)

= diag

(

1

µh

)

.

Therefore, we can only conjecture that

ρ
(

G′ (0)
)

≥ max
i

R2
i,0.

Then,ρ (G′ (0)) > 1 if and only if there exists at least
one patchk whereR2

k,0 > 1.
Remark 8:When M 6= 0, we conjecture also

that there exists a unique endemic equilibrium when
maxiR

2
0,i > 1. This result is particularly useful: it shows

that local and fast intervention when Chikungunya cases
are suspected is the best way to stop the spreading of
the disease. Fast and localized intervention is now the
standard procedure in Réunion Island.

IV. A PPLICATIONS

We consider a two patch-model in order to illustrate
the complexity of the results depending on the population
size in each patch and the movement rates between
patches. In particular, since the choices for the migration
matrix are numerous, we would like to emphasize the
fact that the construction of the migration model is highly
sensitive. From these choices, the results may change
drastically and then drive to wrong decisions either to
decide or not about field interventions in order to control
a disease or not.

The main advantage of this approach with two patches
is that we are able to provide an analytical formula for
R2

0 and thus to discuss the impacts of different param-
eters. For simplification, we assume thatµm = µam.
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Then, Equations (18) and (19) are equivalent to the
following fixed point problem

(

X
Y

)

=

(

F (Y )
G (X)

)

,

with

F (Y ) = µh (diag(ηh + µh) −MΓ)−1 diag

(

βmh Y

N∗
h

)

×

(

diag(
βmh Y

N∗
h

) + µhId2 −M

)−1

N∗
h ,

Gi (X) =
ηi,A βi,hmXi

µi,m

(

µi,mN∗
i,h + βi,hmXi

)

(

1−
1

Ni,m

)

αiKi,

Let us computeG′ (0) for a two patches system with
a human population(N1,h, N2,h). The movement matrix
is chosen such thatMN∗

h = 0. For instance,M could
be chosen as follows:

M =















−1
N∗

1,h

N∗
2,h

1 −
N∗

1,h

N∗
2,h















In particular, we deduce thatdiag(α) − M is an M -
matrix when at least oneαi > 0, which implies that
((

α1 0
0 α2

)

−M

)−1

=

1
(α1+m21)(α2+m12)−m12m21

(

α2 +m12 m12

m21 α1 +m21

)

> 0.

Using the previous result, we compute
(

diag

(

βmh Y

N∗
h

)

+ µhId2 −M

)−1

=
1

(

β1,mh Y1

N∗

1,h

+ µh +m21

)(

β2,mh Y2

N∗

2,h

+ µh +m12

)

−m21m12

∗







β2,mh Y2

N∗

2,h

+ µh +m12 m12

m21
β1,mh Y1

N∗
1,h

+ µh +m21







and

diag
(

βmh Y
N∗

h

)(

diag(βmh Y
N∗

h

) + µhId2 −M
)−1

N∗
h =

1
(

β
1,mh Y1

N∗

1,h

+µh+m21

)(

β
2,mh Y2

N∗

2,h

+µh+m12

)

−m21m12

∗













β1,mh Y1

(

β2,mh Y2

N∗
2,h

+ µh +m12 +m12

N∗
2,h

N∗
1,h

)

β2,mh Y2

(

β1,mh Y1

N∗
1,h

+ µh +m21 +m21

N∗
1,h

N∗
2,h

)













.

Moreover

µh (diag(ηh + µh) −MΓ)−1

=
µh

(ηh + µh) (ηh + µh + γ1m21 + γ2m12)

×

(

ηh + µh + γ2m12 γ2m12

γ1m21 ηh + µh + γ1m21

)

.

Finally Fγ (Y ) =

1
(

β1,mh Y1

N∗

1,h

+ µh +m21

)(

β2,mh Y2

N∗

2,h

+ µh +m12

)

−m21m12

×

(

µh

(ηh + µh) (ηh + µh + γ1m21 + γ2m12)

)

×
(

ηh + µh + γ2m12 γ2m12

γ1m21 ηh + µh + γ1m21

)

×




β1,mh Y1

(

β2,mh Y2

N∗

2,h

+ µh +m12 +m12
N∗

2,h

N∗

1,h

)

β2,mh Y2

(

β1,mh Y1

N∗

1,h

+ µh +m21 +m21
N∗

1,h

N∗

2,h

)





=
1

(

β1,mh Y1

N∗

1,h

+ µh +m21

)(

β2,mh Y2

N∗

2,h

+ µh +m12

)

−m21m12

µh

(ηh + µh) (ηh + µh + γ1m21 + γ2m12)
×

(

(ηh + µh + γ2m12)w1,mh + γ2m12w2,mh

γ1m21w1,mh + (ηh + µh + γ1m21)w2,mh

)

,

where

w1,mh = β1,mh Y1

(

β2,mh Y2

N∗
2,h

+ µh +m12 +m12

N∗
2,h

N∗
1,h

)

,

w2,mh = β2,mh Y2

(

β1,mh Y1

N∗
1,h

+ µh +m21 +m21

N∗
1,h

N∗
2,h

)

.

Then

Fγ (Y ) =
µh

(ηh + µh) (ηh + µh + γ1m21 + γ2m12)
×

×
1

(

β1,mh Y1

N∗

1,h

+ µh +m12

)(

β2,mh Y2

N∗

2,h

+ µh +m21

)

−m21m12




(ηh + µh + γ2m12)w1,mh + γ2m12w2,mh

γ1m21w1,mh + (ηh + µh + γ1m21)w2,mh





A direct computation shows that

F ′
γ (0) =

1

∆1





F ′
γ(11) F ′

γ(12)

F ′
γ(21) F ′

γ(22)



 , where

∆1 = (ηh + µh) (ηh + µh + γ1m21 + γ2m12) ,

F ′
γ(11) = (ηh + µh + γ2m12)β1,mh

µh +m12 +m12
N∗

2,h

N∗

1,h

µh +m12 +m21
,
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F ′
γ(12) = γ2m12β2,mh

µh +m21 +m21
N∗

1,h

N∗

2,h

µh +m12 +m21
,

F ′
γ(21) = γ1m21β1,mh

µh +m12 +m12
N∗

2,h

N∗

1,h

µh +m12 +m21
,

F ′
γ(22) = (ηh + µh + γ1m21)β2,mh

µh +m21 +m21
N∗

1,h

N∗

2,h

µh +m12 +m21
.

Then using the fact that

m21N
∗
1,h = m12N

∗
2,h,

we deduce

F ′
γ (0) =

1

∆1

(

fγ(11) γ2m12β2,mh

γ1m21β1,mh fγ(22)

)

,

where fγ(11) = (ηh + µh + γ2m12)β1,mh, fγ(22) =
(ηh + µh + γ1m21) β2,mh.

Finally, with

G′ (0) =

(

g′1,hm 0

0 g′2,hm

)

,

where

g′1,hm =
η1,A β1,hm

µ1,mµ1,mN∗
1,h

(

1−
1

N1

)

α1K1

=
β1,hm
µ1,m

S0
m,1

N0
1,h

,

g′2,hm =
η2,A β2,hm

µ2,maµ2,mN∗
2,h

(

1−
1

N2

)

α2K2

=
β2,hm
µ2,m

S0
m,2

N0
2,h

.

We derive the Jacobian of our system at0

J ′ (0) =









0 0 F1 F2

0 0 F3 F4

g′1,hm 0 0 0

0 g′2,hm 0 0









.

where

F1 =
(ηh + µh + γ2m12) β1,mh

(ηh + µh) (ηh + µh + γ1m21 + γ2m12)
,

F2 =
γ2m12β2,mh

(ηh + µh) (ηh + µh + γ1m21 + γ2m12)
,

F3 =
γ1m21β1,mh

(ηh + µh) (ηh + µh + γ1m21 + γ2m12)

F4 =
(ηh + µh + γ1m21) β2,mh

(ηh + µh) (ηh + µh + γ1m21 + γ2m12)

The characteristic polynomial gives

p (λ) = λ4 −
1

ηh + µh + γ1m21 + γ2m12

×((ηh + µh + γ1m21)R
2
0,2 + (ηh + µh + γ2m12)R

2
0,1)λ

2

+

(

1

ηh + µh + γ1m21 + γ2m12

)2

((ηh + µh + γ2m12)

× (ηh + µh + γ1m21)R
2
0,2R

2
0,1 − γ2m21γ1m12R

2
0,2R

2
0,1).

Thus settingx = λ2, we obtain the following a second
order polynomial

p (x) = x2 −
1

ηh + µh + γ1m21 + γ2m12

(

(ηh + µh + γ1m21)R
2
0,2 + (ηh + µh + γ2m12)R

2
0,1

)

x

+
(

1
ηh+µh+γ1m21+γ2m12

)2
((ηh + µh + γ2m12)

× (ηh + µh + γ1m21)R
2
0,2R

2
0,1 − γ2m21γ1m12R

2
0,2R

2
0,1).

Then

p (x) = (x−
1

2

1

ηh + µh + γ1m21 + γ2m12

×((ηh + µh + γ1m21)R
2
0,2 + (ηh + µh + γ2m12)R

2
0,1))

2

−
1

4

(

1

ηh + µh + γ1m21 + γ2m12

)2

×
(

(

(ηh + µh + γ1m21)R
2
0,2 + (ηh + µh + γ2m12)R

2
0,1

)2

+4γ2m21γ1m12R
2
0,2R

2
0,1.

Thus

p (x) = (x−
1

2

1

ηh + µh + γ1m21 + γ2m12
×

(

k2hR
2
0,2 + k1hR

2
0,1 −

√

Z (γ)
)

)

×(x−
1

2

1

ηh + µh + γ1m21 + γ2m12

(

k2hR
2
0,2 + k1hR

2
0,1 +

√

Z (γ)
)

),

with

Z(γ) =
(

k2hR
2
0,2 − k1hR

2
0,1

)2
+ 4γ2m12γ1m21R

2
0,2R

2
0,1 > 0,

k1h = (ηh + µh + γ2m12) ,
k2h = (ηh + µh + γ1m21) .
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Thus, we deduce the following exact formula forR2
0:

R2
0 =

1

2

1

ηh + µh + γ1m21 + γ2m12

×
(

k2hR
2
0,2 + k1hR

2
0,1 +

√

Z (γ)
)

.
(22)

Whenγ1 = γ2 = 0, we immediately have

R2
0 =

1

2

(

R2
0,2 +R2

0,1 + |R2
0,2 −R2

0,1|
)

,

which is equivalent toR2
0 = max(R2

0,1,R
2
0,2).

Moreover, if R2
0,1 = R2

0,2, thenR2
0 = R2

0,1 = R2
0,2

whatever the migration matrix is.
Then, we will consider various migration matrix be-

tween city 1 and city 2, to show how different can be
the results according to the movement rates....

Example 1:The numerical simulations presented here
have been obtained using nonstandard finite difference
scheme (see [1], [2], [3], [4], [6] for an overview on
nonstandard methods and applications to biological sys-
tems). We consider parameters (see table V in Appendix
B) such thatR0,1 > 1 andR0,2 < 1, i.e.

N1,h K1 R0,1 N2,h K2 R0,2

Case 1 8.104 3N1,h 1.3017 8.104 N2,h 0.434

Case 2 8.104 3N1,h 1.3017 104 N2,h 0.434

Case 3 104 3N1,h 1.3017 8.104 N2,h 0.434

Thus, in order to keep the total populationN1 + N2

constant, we have many choices for the migration matrix.
Let us first consider simply

M = Mc









−1
N1,h

N2,h

1 −
N1,h

N2,h









,

whereMc is a positive constant. We would like to study
the time evolution of the disease with respect toΓ =
diag(γ1, γ2), taking into account the movement rates and
different values forMc.

• Case 1. We considerMc = 1 and cities with the
same populations, except for the larvae capacity
such that the we obtain distinct basic reproduction
numbers. In Fig. 2, we considerγ1 = γ2: in that
case, whenγ > 0, the epidemic occurs in both cities.

If we considerγ1 = 1 and γ2 = 0.5, then the
dynamic change: if less infected people from city
2 are able to move to city 1, i.e.γ2 small, then
the general basic reproduction number decreases
rapidly under1. This is confirmed In Fig. 4 where
we showR0 with respect toγ1 and γ2: it clearly
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Fig. 2. Simulation of the evolution of the infected population per
week for different values ofγ = γ1 = γ2.

indicates that small values forγ2 help to decrease
the epidemiological risk. In fact, following Fig. 4,
the best combination beingΓ = diag(1, 0). This
is due to the fact that city 1 has the largest basic
reproduction number: thus movement of infected
individuals from city 1 to city 2, reduce the number
of infected people in city 1, and thus the risk of
propagation. The model behaves like a quarantine
model.
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Fig. 3. Simulation of the evolution of the infected population per
week for different values ofΓ.

• Case 2. We considerMc = 1. Numerical simula-
tions are presented in Fig. 5 for different values of
γ. Of course without Human movements, the first
city faces a huge epidemic while in the second noth-
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Fig. 4. Evolution ofR2

0 with respect toγ1 andγ2

ing occurs. Forγ > 0, then the dynamic changes
drastically: in particular in city 1, we observe a
decay in the Number of Infected people as soon as
γ >, while in city 2, an outbreak appears. This is
confirmed in Fig.6, whereR2

0 has been computed
with the exact formula (22): as long asγ21 > 0,
R0 > 1, which indicates that an epidemic will occur
in all cities.
In this case, city1, whereR2

0 > 1, has a large
population compared to city2. Thus the flow of
infected people from city 1 to city 2, will increase
the number of infected people in city 2, as long as
the epidemic occurs in city 2. Thus disease control
is necessary in city 1 in order to avoid the risk of
disease spreading. In particular, reducing local and
large R2

0,i could be helpfull to lower the general
basic reproduction number, but this may not be
not necesserally sufficient or, even, possible. In this
case, city 1, with the largest population, has the
strongest impact onR2

0: compare also with Fig. 4,
where both cities have the same population.
Even if Mc decays this will not change the overall
behavior:R0 will stay greater than one. In fact
decayingMc is like decayingγ and it is obvious
that for small values ofγ human movements implies
a spreding of the disease in all patches

• Case 3. We first considerMc = 1. Numerical sim-
ulations are presented in Fig. 7. Contrary to case 1,
city 2 has now the largest population withR0,2 < 1.
Thus without migration, only city 1 is impacted by
a huge epidemic, but, as soon asγ1 > 0, the number
of infected cases reduce drastically in city 1, while
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Fig. 5. Simulation of the evolution of the infected population per
week for different values ofγ.
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in city 2 a small outbreak appear. Finally, asγ1
increases, the epidemic becomes a small outbreak
for both cities (see Fig.8). Thus, the city with the
largest population and a local basic reproduction
number less than one has a positive impact on the
general basic reproduction number: compare Fig.8
with Fig.6.
Indeed, if we considerMc = 0.1, for instance,
then the dynamic is completely different and shows
that the disease will spread in all patches (see
Figs. 9) but asγ increases the force of the disease
decays, which is confirmed by the computation of
the basic reproduction number in Fig. 10. In fact this
computation is equivalent to considerγi ∈ [0, 0.1]
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Fig. 7. Simulation of the evolution of the infected population per
week for different values ofγ.
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whenMc = 1.
Thus, in case 3, at least, vector control can be
necessary or not, depending on the movements
matrice: whenMc = 1, the disease will disappear
naturally... while, not whenMc = 0.1.
In any case, it is clear that Human movements may
have a benefit effect when the largest city has a
basic reproduction number lower than1.
Our example emphasizes the importance of the
migration (movement) matrice and how important
is the construction of such a matrice to understand
or to well capture the whole dynamic. And this is
only a in 2-patches model!
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Fig. 9. Simulation of the evolution of the infected population per
week for different values ofγ andMc = 0.1.
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In fact we can go further with this example and for
instance, consider another movement matrix:

M = Mc

(

−N1,h

N2,h
1

N1,h

N2,h
−1

)

with Mc = 1. Let us first consider case 2: compare Figs.
11 and 6.R2

0 is not the same, but, following Fig. 11, it
seems that human movements have limited impacts on
R2

0. This example clearly shows that if locally the basic
reproduction number is lower than1 then the impact of
the disease will be limited, even if there infected people
moves from city 1.

In case 3, in contrary, the new movement matrix
changes drastically the behavior of the basic reproduc-
tion number: compare Figs. 12 and 8. Here, the impact of
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the largest city (city 2) is really important. In that case,
even if γ is small,R2

0 decays rapidly and the disease
dies out.

Thus depending onM, R2
0 can be very different,

which may imply unappropriate control decisions. This
clearly indicates the importance of the construction of
the movement Matrices.
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V. CONCLUSION

Our study show how complex it is to take into
account human movements in a vector-borne disease
model. More complex is the network and more difficult
it will be to control the spreading of the disease. In
fact, we say that our approach permit to sustain or

to establish that local interventions can be benefit for
the whole population. Mathematically the model is not
very easy to handle, but we have been able to show
some interesting results. In particular, we showed the
link between the general basic reproduction number and
local ones, which is really important from a practical
point of view. Indeed, our illustrative examples indicate
that measuring or estimating local basic reproductive
numbers is of major importance not only to map the
epidemiological risk in order to take into account where
the risk of an epidemic is high, but to be able to indicates
priority to lower some local basic reproduction numbers.
Thus, among all cities where the risk is high, it seems
important to make vector control in priority in cities
where the Human population is large. In any case, each
city has to make appropriate vector control campaign to
lower the epidemiological risk. In the case where some
cities, with the largest populations, may have for any
reason large basic reproduction numbers, then the disease
can spread quickly to the whole domain, even whenΓ is
small, according to the network. In contrary when only
small cities have large local basic reproduction numbers,
human movements can have a benefit effect, i.e. the
disease dies out.

Of course, the model can still be improved in different
ways. It might be interesting to consider a variable total
population and/or time-dependant parameters [17]. But,
for a practical use in Réunion Island, a first step would
be to build the right movements matrix between cities,
using precise human movements data. Finally, this model
could be adapted to link several islands (Mauritius,
La Réunion, Comoros and Madagascar) located in the
Indian Ocean.
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APPENDIX A: A USEFUL THEOREM

For reader’s convenience, we recall the following
useful theorem, proved in [5].

Consider the following cooperative system of ODEs

dx

dt
= g(x), (23)

whereD ⊆ R
n and g : D → R

n is continuous. It is
assumed thatD ⊂ closure(interior(D)) and that for
some δ > 0 the vector fields defined byg(t, ·), t ∈
[0, δ), are all directed inwards at the points of∂D. This
is enough to ensure that for everya ∈ D there exists
Ta > 0 such that the system (23) has a solutionx(a, t)
on the interval[0, Ta) which satisfiesx(a, 0) = a. We
further assume thatg is such that the solution initiated at

a is unique. We also assume that[0, Ta) is the maximal
(nonnegative) interval of existence ofx(a, t) .

Let a, b ∈ R
n with a ≤ b, and

[a,b] = {x ∈ R
n : a ≤ x ≤ b}.

Theorem 5 ([5]): Let a,b ∈ D be such thata < b,
[a,b] ⊆ D and g(b) ≤ 0 ≤ g(a). Then (23) defines
a (positive) dynamical system on[a,b]. Moreover, if
[a,b] contains a unique equilibriump thenp is globally
asymptotically stable on[a,b].

APPENDIX B: BIOLOGICAL PARAMETERS

Parameters Description value
βmh ( Transmission probability fromIm(per bite)) 0.365
βhm (Transmission probability fromIh(per bite)) 0.365
1/µh (Average lifespan of humans (in days)) 78× 365

1/ηh ( Average viremic period (in days)) 3

1/ηm ( Extrinsic incubation period (in days)) 2

1/µm (Average lifespan of female mosquitoes (in days)) 11

µb (Nb of eggs at each deposit per capita (per day)) 7
µA (Natural mortality of larvae (per day)) 2

ηA (Maturation rate from larvae to adult (per day)) ≈ 0.05
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