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Abstract—Quantitative structure-activity relationships
are mathematical models constructed based on the hy-
pothesis that structure of chemical compounds is related
to their biological activity. A linear regression model is
often used to estimate and/or to predict the nature of
the relationship between a measured activity and some
measure or calculated descriptors. Linear regression helps
to answer main three questions: does the biological activity
depend on structure information; if so, the nature of the
relationship is linear; and if yes, how good is the model in
prediction of the biological activity of new compound(s).
This manuscript presents the steps on linear regression
analysis moving from theoretical knowledge to an example
conducted on sets of endocrine disrupting chemicals.

Keywords-robust regression; validation; diagnostic; pre-
dictive power; quantitative structure-activity relationships
(QSARs);

I. LINEAR REGRESSION ON QSAR ANALYSIS

Quantitative structure-activity relationships (QSARs)
are mathematical models linking chemical structure and
pharmacological activity/property in a quantitative man-
ner for a series of compounds [1]. The approaches are
based on the assumption that the structure of chem-
ical compounds (such as geometric, topologic, steric,
electronic properties, etc.) contains features responsible
for its physical, chemical and/or biological properties

[2]. This assumption could be summarized as ”similar
compounds have similar properties” [3].

The two main fields where linear regression analysis
found its applicability are drug discovery [4], [5] and
toxicology prediction [6], [7]. In both of these fields,
the linear regression is used mainly to predict not to
estimate (the model is used to quickly determine the
activity/property of new/un-investigated compounds) [8].

The linear regression is used in QSAR analysis to
linearly link the activity/property of chemical compounds
(measured or observed value - outcome variable abbrevi-
ated as Y) and some values translated from the structure
of the compounds and generally called descriptors (as-
sumed error non-affected independent variables abbre-
viated as X(s)). The multiple linear regression (MLR)
expression is presented in Eq(1):

Ŷ = b0 +

k∑
i=1

biXi (1)

where Ŷ = estimated activity/property; b0 = intercept; bi
= coefficient of the ith independent variable / descriptor
variable (1 ≤ i ≤ k, 5 × k ≤ n [9]), k = number
of descriptors (independent/descriptor variables) in the
model, n = number of observations in the sample. The
regression coefficients bi could be interpreted as the
change in Y when Xi increased or decreased by 1 unit
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when all other independent variables are held constant
(b0 and b1 estimate the population parameters β0 and βi,
[10]). The identified values of b0 and bi are calculated
to minimize the squared error for all n observations.

A. Linear Regression Assumptions

The main assumptions of linear regression (Table I)
could be summarized as:

1) Linearity. The relation between Y and each of
descriptors Xi are linear.

2) Independence of the errors. Both the experimental
values (Y ) and experimental/calculated descriptors
(Xi) are measured without errors.

3) Homoscedasticity. The variance of the errors is
constant.

4) Normality. The dependent variable (Y ) is normal
distributed.

5) Absence of multicolinearity. The independent vari-
ables (Xi) are linearly independent of each other.
Please note that this constrain did not exclude a
certain degree of collinearity.

Since it has been recognized that ”normal law ... is
not valid in a great many cases which are both common
and important” [11] a series of transformation could be
used to reach normal distribution [29] (see Table II).

1) Model Selection and Diagnostic: Selection of the
regression model is an important task that researchers
must to accomplish. The main criteria useful in this step
are:

• Determination coefficient (R2) and its adjustment
form (R2

adj - R2 adjusted with the number of coef-
ficients in the model→ the value will not necessary
increase with the addition of X’s). Generally, the
R2 increase with the number of parameters in the
model but R2

adj penalizes according to the number
of parameters (the model with higher number of
descriptors does not necessary has the higher value
of R2

adj).
• Standard error of the estimate: the average error

predicting the activity/property of interest by the
identified model.

• Statistics of overall model performances (F -value
and associated p-value): assess the overall ability
of a model to explain as much as possible from the
observed variability in Y .

• Models performances in cross-validation by the
leave-one-out analysis. It is say that a model with
Q2 (determination coefficient in cross-validation by
the leave-one-out analysis) >0.6 and |R2 − Q2| <
0.1 is a desired model in QSAR analysis [30].

However, the value of F -statistics and its associated
probability are as important as Q2 in assessment of
internal validation of a QSAR model.

• Mallows Cp-statistic (Cp = SSres/MSres−n+ 2 ·
(k + 1), k = number of descriptor variables in the
model) [31], [32], [33]: measures the overall bias or
mean square error in the estimated model parame-
ters. This is a useful parameter when models with
different X(s) are compared on the same sample of
compounds. A low Cp value indicates good model
prediction or a model with a small positive/negative
discrepancy between Cp and (k+1) - could be used
in evaluating candidate regression models.

• Akaikes information criterion and derivative for-
mulas: assess the degree of fit by involving the
goodness-of-fit of the model (R2): Akaike informa-
tion criterion (AIC = n · ln(RSS/n) + 2 · (k + 1)
for the model with intercept and AIC = n ·
ln(RSS/n) + 2 · k for the model without intercept,
where n = sample size, RSS = residual sum of
squares; k = number of Xi) [34]; AIC based on
the determination coefficient (AICR2 = ln[(1 −
R2)/n]+2 · (k+1)); McQuarrie and Tsai corrected
AIC (AICu = ln[RSS/(n − k + 1)] + (n +
k + 1)/(n − k − 1)) [35]; Bayesian Information
Criterion (BIC = n · ln[RSS/(n − k + 1)] +
(k+1) · ln(n)) [36]; Amemiya Prediction Criterion
(APC = RSS/n · (n − k + 1)/(n + k + 1)) [37];
Hannan-Quinn Criterion (HQC = n·ln(RSS/n)+
2 · (k + 1) · ln[ln(n)] [38]. The smallest the AIC,
BIC, APC and HQC values are the better the
model is considered. In addition to AIC values, the
Akaike weights are also used in models assessment:
wi = [exp(−0.5 · ∆i)/[Σ

J
j=1exp(−0.5 · ∆j)]] [39]

where ∆i = AICimin(AIC), ∆i = difference
between the AIC of the best fitting model and
that of the model ith, min(AIC) = minimum AIC
value out of all models, j = the number of the
models.

• Kubinyi function (FIT ) [40], [41]: FIT = [R2 ·
(n−k)]/[(n+(k+1)2) · (1−R2)]. The highest the
FIT value the better the model is considered.

The diagnosis of a regression model when the dependent
variable is continuous could be conducted by analyzing
of residuals or rescaled residuals:

• Look to the largest and/or smallest experimental
values ← detect if the values are in the plausible
range. Also look to descriptive statistics value:
mean, standard deviation, histogram.
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TABLE I
ASSUMPTIONS OF LINEAR REGRESSION: EFFECT - IDENTIFICATION - METHODS

• Plot the independent variable(s) vs dependent vari-
able.

• Plot the values associated to studentized residuals
(si), leverage (hi), Cook’s (Di) vs individual Xi

values. The hat values (0 ≤ hi ≤ 1) are used to
evaluate the leverage of observations in the dimen-
sional space of independent variables (covariates).
If the hi value of a compound exceeds the threshold
value (2·(k+1)/n for a regression model with inter-
cept and 2·k/n for a model without intercept, where
k = number of Xi [42]) it is considered influential
whenever if by its removal determine a significant
improvement of the model. Cook’s distance con-
sider in its formula both residuals and hat matrix
to identify influential compound(s) (threshold Di >
4/n, where Di = 1/(k+1) ·s2i · [hi/(1−hi)] for the
model with intercept and Di = 1/k ·s2i ·[hi/(1−hi)]

for the model without intercept, si = studentized
residuals [43]).

Several parameters that can found their usefulness in
diagnosis of a MLR are presented in Table III. Several
parameters presented in Table III are also used by some
authors as measures of model predictivity power (see for
example MAE [44]).

B. Model Predictive Power

The ability to predict the activity/property of new
compounds is of major importance in QSAR/QSPR
analysis. Several parameters were proposed and are used
to assess model predictivity power and are presented in
Table IV.

The diagnosis of a linear regression model could
be conducted using a series of statistical parameters
calculated on contingency table [58] after transforma-
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TABLE II
METHODS FOR DATA TRANSFORMATION

 
Transformation Applied to: Appropriate when: 
'log' 
Y' = logY 

 Stabilize the variance of Y 
 Normalized the dependent variable ← positive skewed 

distribution of the residuals for Y 
 Linearize the regression model 

Y have positive values 

'square root' 
Y' = √Y 

 Stabilize the variance (the variance is proportional with the mean 
of Y) 

Y has the Poisson distribution 

'reciprocal' 
Y' = 1/Y 

 Stabilize the variance the variance is proportional to the 
fourth power of the mean of Y 

'square' 
Y' = Y2 

 Stabilize the variance (the variance decrease with the mean of Y) 
 Normalized the dependent variable ← negative skewed 

distribution of the residuals for Y 
 Linearize the regression model ← the original relation with some 

independent variable is curvilinear downward (such as decrease 
of slope with the increase of independent variable) 

 

'arcsine' 
Y' = asin√Y 

 Stabilize the variance Y is a proportion or a percentage 

  

tion of the observed and estimated/predicted logRBA as
dichotomial variables using criteria for classification of
compounds as active or inactive. The total fraction of
compounds correctly classified (parameter called concor-
dance / accuracy / non-error rate) is one parameter that
could bring useful information in choosing which model
to be applied.

II. PRACTICAL CONSIDERATIONS

Three data sets of endocrine disrupting chemicals
with experimental values of relative binding affinity
expressed in logarithmic scale (logRBA) [59] were used
for exemplification. The investigated compounds could
be classified according to their logRBA values as weak
binders (logRBA < −2.0), moderate binders (−2.0 =
logRBA = 0) and strong binders (logRBA > 0) [60].

The following descriptors were previously calculated
on the investigated structures [59] and were used here to
illustrate how linear regression analysis works: TIE = E-
state topological parameter; TIC1 = Total information
content index (neighbourhood symmetry of 1-order);
ATS4m = Broto-Moreau autocorrelation of a topological
structure - lag 4 / weighted by atomic masses; EEig02d =
Eigenvalue 02 from edge adj. matrix weighted by dipole
moments; E1s = 1st component accessibility directional
WHIM index / weighted by atomic electrotopological
states; and Dv = total accessibility index / weighted by
atomic van der Waals volumes.

The first set was used to identify the model and
comprised 132 compounds (training set; 1 withdrawn,
60 weak binders, 41 moderate binders and 30 strong
binders). The second dataset was used to test the per-
formances of the model (test set) and comprised 23
compounds (3 weak binders, 16 moderate binders and
4 strong binders). The third dataset was used as external
validation set and consists of 9 compounds (4 weak
binders and 5 moderate binders).

A. MLR in Training Sets

The first step in the linear regression analysis was
to investigate the distribution of logRBA in training
set. One out of three tests rejected the null hypothesis
of normality (Chi-Square statistics = 14.862, p-value
= 0.03781). No outlier had been identified when the
Grubbs test was applied but there was one compound
with studentized residuals higher than 3 standard devia-
tions. The experimental data in training test proved not
normal distributed according just with the Chi-Square
test (see Table V), the normality test that is known
to be affected by the presence of outlier(s) [12], even
if in this example no outlier has been identified. The
normality was not achieved even by withdrawing that
compounds but the correlation coefficient increased from
0.810 to 0.837. The studentized residuals, hat matrix
and Cook’s distance values were plotted against logRBA
to identify how data were distributed (Figure 1). Three
models obtained on the same datasets were investigated:
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TABLE III
STATISTICAL PARAMETERS FOR DIAGNOSIS OF MLR

 
Parameter (Abbreviation) Formula [ref] Remarks 

Residual Mean Square (RMS) 
- Error variance kn

yy
RMS

n

i ii

−

−
= ∑=1

2)ˆ(  RMS: the smaller the better 
0 < RMS < ∞ 

Average Prediction Variance 
(APV) )( kn

n
RMSAPV +⋅=  [45] The smaller the better 

Total Squared Error (TSE)  
nk

yy
TSE

n

i ii −⋅+
−

= ∑= 2
ˆ

)ˆ(
2

1
2

σ
 [46] 

2)2( +⋅−−= kn
MSE
SSETSE  [33] 

The smaller the better 
TSE > (k+1) → bias due to incompletely 
specified model 
TSE< (k+1) → the model is over specified 
(contains too many variables)  

Average Prediction Mean 
Squared Error (APMSE) 1−−

=
kn

RMSAPMSE  [47] The smaller the better 

Mean Absolute Error (MAE) 
- Measures the average 
magnitude of the errors; could be 
also used to compare two models 

n
yy

MAE
n

i ii∑=
−

= 1
|ˆ|  MAE = 0 → perfect accuracy 

0 < MAE < ∞ 

Root Mean Square Error 
(RMSE): 
- Measures the average 
magnitude of the error 

( )
n

yy
RMSE

n

i ii∑=
−

= 1
2ˆ  RMSE > MAE → variation in the errors 

exists 
0 < RMSE < ∞ 

Mean Absolute Percentage Error 
(MAPE) 
- Measure of accuracy expressed 
as percentage 

n
yyy

MAPE
n

i iii∑=
−

= 1
|/)ˆ(|  [48], [49]

MAPE ~ 0 → perfect fit 

Standard Error of Prediction 
(SEP) 

( )
1

ˆ
1

2

−

−
= ∑=

n
yy

SEP
n

i ii  The smaller the better 

Relative Error of Prediction 
(REP%) 

( )
n

yy
y

REP
n

i ii∑=
−

= 1
2ˆ100(%)  The smaller the better 

n = sample size; k = number of independent variables in the model; y = the mean of estimated/predicted activity/property; iŷ  = 
predicted value of the ith compound in the sample; yi = observed/measured activity/property of ith compound; SSE = sum of 
squared errors; MSE = mean of squared errors 

  

full-model (the model comprised all compounds assigned
to training test), Di-model (the model comprised just the
compounds that did not exceeded the imposed Cooks
distance threshold), and hi-model (the model comprised
just the compounds that did not exceeded the imposed
hat matrix threshold).

The Cook’s distance and hat matrix approaches were
applied to withdrawn compounds of the training sample
until two criteria were accomplished: logRBA proved
normal distributed and withdrawing the compound(s) did
not led to an improvement in determination coefficient.
Both models proved smaller RMSE and RMSEP values.

The characteristics of all investigated models are pre-
sented in Table V.

The analysis of the models (Table V) revealed that
none model proved collinearity (the highest correlation
coefficient did not exceeded 0.8 and VIF values are
less than 10). The Di-model is twice better in terms
of internal validity when the |R2 − Q2| difference is
evaluated compared to hi-model and three times better
compared to the full-model. The Mallows Cp-statistic
did not found its applicability in our example because
the same descriptors are used in all models. The smallest
values of information criteria parameter were systemat-
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TABLE IV
STATISTICS FOR ASSESSMENT THE PREDICTIVE POWER OF MLR

 
Parameter (abbr.) Formula [ref] Remarks 
Predictive Squared 
Correlation 
Coefficient in 
Training Set (QF1

2) 
∑
∑

=

=

−

−
−=

TS

TS

n

i TRi

n

i ii
F

yy

yy
Q

1
2

1
2

2

)(

)ˆ(
1

1
 [50] 

Predictive Squared 
Correlation 
Coefficient in Test 
Set (QF2

2) 
∑
∑

=

=

−

−
−=

TS

TS

n

i TSi

n

i ii
F

yy

yy
Q

1
2

1
2

2

)(

)ˆ(
1

2
 [52] 

External Predictive 
Ability (QF3

2) 
TR

n

i TRi

TS
n

i ii
F

nyy

nyy
Q

TS

TS

/)(

/)ˆ(
1

1
2

1
2

2
3 ∑

∑
=

=

−

−
−=  [53] 

Prediction is considered accurate if the 
predictive power of the model is > 0.6 [51] 

rm
2 metrics 

[ ]2
0

222 1 rrrrm −−⋅=  [44], [54] 
|| 2'22

mmm rrr −=Δ  

Values higher than 0.5 indicate an acceptable 
model [44] , [54] 

2
mrΔ  indicate an acceptable model 

Concordance 
Correlation 
Coefficient (CCC) 

2
1

22

1

1

)ˆ()ˆˆ()(

)ˆˆ()(2

yynyyyy

yyyy
CCC

n

i i
n

i i

i
n

i i

−⋅+−+−

−⋅−⋅
=

∑∑
∑

==

=  

[55] 

Strength of agreement between observed and 
predicted values [56]: > 0.99 
almost perfect; [0.95; 0.99) substantial; 
[0.90; 0.95) moderate; < 0.90 poor 

Predictive Power 
(PP): Fisher's 
approach 

TSTS

TS

nresstdev
rest

/)(
0−

=  [57] 

p = TDIST(abs(t),nTS-1,1) 

Evaluate if the mean of residual is 
statistically different by the expected value 
(0)  

n = sample size; v = number of independent variables in the model; y  = the mean of observed/measured activity/property; ŷ = the 
mean of estimated/predicted activity/property; 

iŷ  = predicted value of the ith compound in the sample; yi = observed/measured 
activity/property of ith compound; res= mean of residuals; stdev = standard deviation; TR = training set; TS = test set; r2

m = a metric 
calculated using observed (y-axis) and estimated/predicted (x-axis)values;  r′2m = a metric calculated using observed (x-axis) and 
estimated/predicted (y-axis)values;   r2

0 = determination coefficient calculating by forcing the origin of axis;  Δr2
m

 = absolute 
difference between r2

m and r′2m; EXT = external set; abs = absolute value 
  

ically obtained by Di-model which was follow by hi-
model while the full-model systematically obtained the
highest values (see Table V).

The concordance correlation coefficient for training
sets had values closed to the correlation coefficients and
for all models were higher than 0.80 (see Table 5).

Looking to the weights of Akaike’s information crite-
ria, which can be interpreted as probability that a certain
model is the best model, it could not be identify any
model with robust inference (none of the model had
the values of weights higher than 0.9 [61]). The Di-
model had the weights around 0.37 that is far away
from 0.90 but are a little higher than those obtained
by the full model where the weights are around 0.30
or by those obtained by the hi-model which are around
0.32. Recall that the Di-model could be considered the

preferred model and from the inspection of the Akaike
weights in Table V, this model is 1.2 (wi − AICR2) to
1.4 (wi−AICc) times more likely in terms of Kullback-
Leible discrepancy, a measure of distance between the
probability generated by the model and reality [62],
compared with hi-model.

Significant differences between models could also
been observed if the BIC and HQC parameters are
analyzed; the smallest value of BIC was obtained by Di-
model while the smallest value of HQC was obtained
by hi-model. The plots of residuals versus predicted
values for the investigated models are presented in Figure
2. The analyses of residuals allow to identify if the
assumptions of the regression appear to have been met
or not (specifically linearity and homoscedascity) - the
residual plot look like a horizontal band. Thus, according
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Fig. 1. Studentized residuals (a), Cook’s distance (b) and hat matrix values (c) versus logRBA in model with all compounds in training
set (n=132)

TABLE V
MLR IN TRAINING SETS: MODELS CHARACTERISTICS

 
Statistical parameter Full-model (n=132) Di-model (n=115)a hi-model (n=123)b 
Normality tests: KS-AD-CS 0.116* - 2.409* - 14.862** 0.124* - 2.432* - 12.613* 0.120* - 2.428* - 12.083* 
Durbin-Watson 1.275 1.292 1.263 
Collinearity: highest R  
higher VIF & lower T 

0.7700 
TIE: 3.367& 0.297 

0.7889 
ATS4m: 4.082&0.245 

0.7752 
ATS4m: 4.516&0.221 

R2 0.6559 0.7797 0.6928 
R2

adj 0.6394 0.7675 0.6769 
RMSE 1.0701 0.8293 0.9977 
F-value (p-value) 39.711 (9.89·10-27) 63.721 (3.12·10-33) 43.59 (1.62·10-27) 
Q2 0.5832 0.7543 0.6497 
RMSEP 1.1827 0.8764 1.0668 
Floo-value (p-value) 28.74 (9.49·10-22) 55.17 (1.85·10-31) (1.62·10-27) 
|R2-Q2| 0.0727 0.0254 0.0431 
Concordance Correlation Coefficient 
(CCC) 0.8108 [0.7476 to 0.8595] 0.8762 [0.8278 to 0.9117] 0.8185 [0.7545 to 0.8671] 

r2
m (Δr2

m) 0.6071 (0.1324) 0.7797 (0.1278) 0.6921 (0.1586) 
Cp-statistic 7.00 7.00 7.00 
AIC (wi-AIC) 18.9639 (0.2856) 18.3078 (0.3965) 18.7490 (0.3180) 
AICR2 (wi- AICR2) 8.0504 (0.3137) 7.7421 (0.3659) 8.0077 (0.3204) 
AICc (wi- AICc) 1.2657 (0.2990) 0.7766 (0.3819) 1.1358 (0.3191) 
BIC 52.0750 9.8317† 33.1255 
HQC 26.2887 34.7113† 7.8043 
FIT 1.3058 2.3097 1.5076 
* p ≥0.05; ** p = 0.0378; † = absolute values; KS = Kolmogorow-Smirnov; AD = Anderson Darling; CS = Chi-Square; R = correlation coefficient; VIF = Variance 
Inflation Factor; T = tolerance;  R2 = determination coefficient; R2

adj = adjusted determination coefficient; RMSE = root mean square error; F-value = Fisher's 
statistics; Q2 = determination coefficient in cross-validation by the leave-one-out analysis; RMSEP = root mean square error in prediction; CCC = concordance 
correlation coefficient [95% confidence interval]; Cp-statistic = Mallows’ statistic; AIC = Akaike’s information criterion; AICR2 = AIC based on the determination 
coefficient; AICc = AIC corrected by McQuarrie and Tsai; BIC = Bayesian Information Criterion; HQC = Hannan-Quinn Criterion; FIT = Kubinyi's function; 
a 56 weak binders, 35 moderate binders, and 24 strong binders; withdrawn (16 compounds): 4 weak binders, 6 moderate binders and 6 strong binders; 
b 57 weak binders, 38 moderate binders, and 28 strong binders; withdrawn (8 compounds): 3 weak binders, 3 moderate binders and 2 strong binders; 

  

to the pattern of the residuals [63], the most appropriate
model is the Di-model since the distribution indicates a
homoscedastic model. Furthermore, both full-model and
hi-model showed evidence of heteroscedascity, the error

in estimating logRBA increasing as the value of logRBA
increase. However, both these models could be accepted
because none of them showed the presence of systematic
errors or inadequacy [63]. If assumption of linearity
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and/or of homoscedascity is violated, the residual plots
show an increasing and narrow pattern if systematic error
exists or depict a Gaussian trend when the model is
inadequate [64]. Other proposed plot methods, such as
linear residual plots, show to be useful in identification of
non-linearity while squared residual plots proved utility
in detection of non-constant variances [65].

The normal probability plots (right graphical repre-
sentations in Figure 2) can be used to verify normality
assumption of the residuals. Figure 2 showed that the
hi-model fit better a straight line compared to both full-
model and Di-model.

The results obtained on our data associated to the
statistical parameters useful in model diagnosis intro-
duced in Table III are presented in Table VI. The total
square error is the single parameter that has the same
value for all models and in all cases is equal to 7
(obtained by adding 1 to the number of descriptors in
the model 6 in our example), indicating that none of the
models were not over-specified or did not contain bias
due to incompletely specified model. The classification
of our models based on parameters presented in Table
VI led to the classification obtained according to the
parameters presented in Table V: Di-model, hi-model,
and full model.

Several parameters were used to assess the predictive
power of the models and their results are presented in
Table VII. The analysis of results presented in Table VII
revealed the followings:

• External predictive ability parameter (Q2
F3) [53]

systematically took negative values for both external
and withdrawn sets. At least for the external set,
this result could be explained by the distribution
of logRBA values (min=-3.3, max=-0.6) compared
to training (min=-4.5, max=2.6) and test (min=-
2.51, max=1.41) sets. It could be also of interest to
analyze how different are the compounds containing
in external and withdrawn data sets compared to the
compounds from training set (in terms of similarity
of their structure for example).

• Di-model achieve the criterion of exceeding 0.6
[52] in just one of 6 possible case while the hi-
model reach this criterion in four out of 6 cases.
The hi-model accomplished more frequently the
criteria of having values higher than 0.6 while
the full-model did not accomplished at all this
criterion. Thus, it seems that the compounds in test
and external sets are uniformly distributed over the
range of training set at least in hi-model, in view of
the fact that otherwise the Q2

F1 and the Q2
F2 suffer

from drawbacks [66].
• The concordance correlation coefficients obtained

values higher than 0.70 in test sets. The abilities of
prediction the external sets proved smaller than 0.5
for all investigated models but had values higher
than 0.50 (Di-model and hi-model) when the with-
drawn set is investigated.

• The residual of the models proved significantly
different by zero in test set for full-model and Di-
model and in external set for all models. Both Di-
and hi-models proved to have residual not signifi-
cantly different by zero in samples that contain the
withdrawn compounds. According to this criterion,
just hi-model proved prediction power.

The r2m metric and associated ∆r2m obtained in test
sets were as follows: 0.3726 (0.1743) for full model,
0.3134 (0.1796) for Di-model, and 0.5248 (0.1494) for
hi-model. These metrics showed that the hi-model is
acceptable model. The r2m is a parameter computed by
forcing the regression through origin [54] with certain
applicability and limitations (fails to detect the differ-
ences between experimental and predicted values when
the slopes of the regression line are not near to 1)
[67]. The values of these metrics were smaller than
the determination coefficient in all investigated models
and the highest value was observed in Di-model when
training (see Table V) set was investigated but acceptable
values were obtained just by the hi-model when the test
set was investigated (r2m > 0.5 and ∆r2m < 0.2).

The classification of the models according to results
presented Table VII is as follows: hi-model, Di-model,
and full-model.

One remark about the parameters used to assess the
predictive power, namely Q2

F1, Q2
F2 and Q2

F3, can be
made. Even the symbols contain ”square”, these param-
eters could take both positive and negative values accord-
ing to their formula (see Table IV). A simulation study
of these parameters needs to be done to identify their
possible values as well as their proper interpretation.

The best way to see the abilities of a MLR model is to
plot the measured values against the estimated / predicted
values to visualize how well each model works (see
Figure 3). With one exception, represented by hi-model
in external set (p-value = 0.0632), all other correlation
coefficients proved statistically significant (p < 0.04).

The analysis of models presented in Figure 3 revealed
the followings:

• The distribution of compounds in training set is
narrower in Di-model compared to both full-model
and hi-model.
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• Di-model obtained higher determination coeffi-
cients in training and external sets while the hi-
model obtained the higher determination coeffi-
cients in training and withdrawn sets.

• The hi-model in more stable compared to Di-model
if the difference in determination between training
and test set is concerned.

• Both Di-model and hi-model performed better in
training and test sets compared to full-model.

Whenever applicable, the accuracy of a model will
show its ability in correct classification of compounds.
The overall accuracy as well as the accuracy on each
class (weak binder, moderate binder and strong binder)
were computed and the obtained results are presented in
Figure 4.

The analysis of Figure 4 revealed the followings:
• The accuracy of all three models was identical for

strong binders in test set (75%) and weak binders in
external set (25%). Overall, out of 16 possibilities,
all models (full-model, Di-model, and hi-model)
proved highest accuracy in almost 38% of cases.

• Full-model proved highest overall accuracy in both
test and external sets, and highest accuracy for
moderate binders in test and external sets.

• Di-model proved highest overall accuracy in train-
ing set, highest accuracy for strong binders in
training set, highest accuracy for weak binders
in training set, and highest accuracy of moderate
binders in training set.

• hi-model proved highest overall accuracy, as well as
higher accuracy for weak binders, moderate binders
and strong binders for withdrawn compounds.

• No model proved abilities in correct classification
of weak binders in test set or of strong binders in
external set.

Regarding the accuracy of investigated models it is
impossible to classify them since their performances are
generally the same (38%). It could be observed that mod-
els had abilities to accurately identify the compounds on
average of two sets out of three or four. The absence
of accurate classification of weak binders in test set
and strong binders in externals set could be explained
by differences in the chemical structure or measured
logRBA of compounds included in these sets.

III. SUMMARY AND FURHER WORK

Choosing a proper linear model is crucial in QSAR
analysis because a model able to predict accurately the
activity of interest of new chemical compounds is desired
under the hypothesis that changes in molecular structure

directly reflect in the compound activity/property. Input
data and data preparation for regression analysis are of
great importance but these subjects were beyond the aim
of the present manuscript.

Linear regression analyses identify in QSAR analysis
the linearity between compound’s activity and calcu-
lated descriptors based on chemical structure. Regression
analysis answer to the following questions: Does the
biological activity depend on structural information?
If so, the nature of the relationship is linear? If yes,
how good is the model in prediction of the biological
activity of new compounds?

In this manuscript, some rules had been presented: 1©
test the assumption of linear regression (normality, lin-
earity, independence, homoscedascity, and/or collinear-
ity); 2© construct the model(s) if assumptions are accom-
plished - analyze the data (choose the best performing
model); 3© assess and diagnose the alternative models
- analyze the MLR; 4© decide which model fit best to
your objectives.

Following these steps in linear regression analysis
certainly led to a performing estimation model but the
prediction power of the model will always depend on
the structure of compounds and their biological activity
on which the model is used to predict; in other words,
will be dependent by similarity in terms of structure and
activity.

Researches on linear regression analysis are of general
interest since MLR found its applicability in many
research fields. The classical approach implemented in
available dedicated software deal with maximization of
correlation coefficient. Maximization of the observed
probability under assumption of random error affecting
all variables in the model is an ongoing research and will
be reported somewhere else. It is known that the classical
method is exposed to type I errors (to accept a regression
model obtained by maximization of determination corre-
lation even if it does not exist) while this new approach
does not because it maximize just the observation chance
having as hypothesis that the errors between observed
value and value obtained by the model is random and
depend just by the observed/measured value (therefore
being symmetric relative to its arithmetic mean).
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[4] T. Arodź and A.Z. Dudek, ”Multivariate modeling and analysis
in drug discovery,” Curr. Comput. Aided Drug Des., vol. 3, no.
4, 2007, pp. 240-247.
http://dx.doi.org/10.2174/157340907782799381

[5] J. Galvez, M. Galvez-Llompart, R. Zanni, and R. Garcia-
Domenech, ”Advances in the molecular modeling and quan-
titative structure-activity relationship-based design for antihis-
tamines,” Expert Opin. Drug Discov., vol. 8, no. 3, 2013, pp.
305-317. http://dx.doi.org/10.1517/17460441.2013.748745

[6] M. P. Gleeson, S. Modi, A. Bender, R. L. Marchese Robinson,
J. Kirchmair, M. Promkatkaew, S. Hannongbua, and R. C. Glen,
”The challenges involved in modeling toxicity data in silico: A
review,” Curr. Pharm. Des., vol. 8, no. 9, 2012, pp. 1266-1291.
http://dx.doi.org/10.2174/138161212799436359

[7] S. Kar, O. Deeb, and K. Roy, ”Development of classification and
regression based QSAR models to predict rodent carcinogenic
potency using oral slope factor,” Ecotoxicol. Environ. Saf., vol.
82, 2012, pp. 85-95.
http://dx.doi.org/10.1016/j.ecoenv.2012.05.013

[8] M. Goodarzi, B. Dejaegher, and Y. V. Heyden, ”Feature selec-
tion methods in QSAR studies,” J. AOAC Int., vol. 95, no. 3,
pp. 636-651, 2012.
http://dx.doi.org/10.5740/jaoacint.SGE Goodarzi

[9] D. M. Hawkins, ”The problem of overfitting,” J. Chem. Inf.
Comput. Sci., vol. 44, no. 1, 2004, pp. 1-12.
http://dx.doi.org/10.1021/ci0342472

[10] S. Chatterjee and A. S. Hadi, ”Regression Analysis by Exam-
ple,” New Jersey: John Wiley & Sons, 2006.

[11] G. U. Yule, ”On the significance of Bravais formulae for
regression in the case of skew correlation,” Proc. R. Soc. Lond.,
vol. 60, 1897, pp. 477-489.

[12] L. Jäntschi and S. D. Bolboacă, ”Distribution Fitting 2. Pear-
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