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Abstract—Chagas disease is caused by the para-
site Trypanosoma cruzi, which is spread primarily
by domestic vectors in the reduviid family. This
work presents a model of the dynamics of Chagas
disease in a rural village. The model consists of a
nonlinear delay logistic-type differential equation for
the total population of vectors and three nonlinear
differential equations for the populations of infected
vectors, infected humans, and infected domestic
mammals. Steady state solutions for the model
are derived and analyzed. Stability numbers are
provided along with conditions for local asymptotic
stability and partial results for global asymptotic
stability. Numerical simulation results are presented,
verifying the theoretical results.

Keywords-Chagas disease, epidemic dynamics, de-
lay logistic model, steady states, nonlinear dynamical
system, 92D30, 92D25, 93C15, 34D20.

I. Introduction

Chagas disease is caused by the parasite Try-
panosoma cruzi. It leads to organ deformity and
early death in one third of the 8-10 million indi-
viduals infected throughout Latin America [24],

[30]. T. cruzi is primarily spread by reduviid
vectors with some species particularly specialized
in domestic infection cycles. Information on the
relevant biological processes can be found in [10].
Additionally, the parasite can be transmitted con-
genitally, orally, and through blood transfusions
and organ transplants [4], [19], [21], [27].

Current control measures for the spread of the
disease include improving the quality of housing
and health care and treatment of homes with
insecticide spraying [31]. Additional control mea-
sures are treatment for acute Chagas disease and
congenital transmission cases [17]. However, be-
cause of the lack of an effective vaccine and the
toxicity and questionable efficacy of the current
drug treatments during the chronic stages of the
disease, controlling the transmission of Chagas
disease remains largely based on controlling the
vector population and on blood-bank screening
[12], [25], [29], [31]. The spraying uses pyrethroid
insecticides and has proven to be effective in
retarding the spread of the disease and, in some
cases, nearly eliminating the domestic insects [11],
[22].
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Two mathematical models [33], [34], each con-
sisting of four nonlinear differential equations,
have been recently used to study the dynamics
of Chagas disease transmission. Each system of
equations models the total number of vectors,
infected vectors, infected humans, and infected
domestic animals in a rural village setting. The
disease is transmitted by the carrier insects living
in the village houses. In each of the models, the
total number of vectors V = V(t) is modeled by
a delay differential equation. In [34], a delayed
Nicholson’s blowfly-type term is used for the
growth of vectors, whereas in [33], a delay logistic
term represents the growth rate of the vectors.
The former allows control of the maximum growth
rate, and the latter allows control over the vector
carrying capacity in the village houses and a
vector death rate due to overpopulation beyond
the carrying capacity. The delay logistic equations
used in [33] and in this work are similar to the
houseflies model presented in [35]. However the
model here differs in that the logistic term vanishes
when the population is above the carrying capacity.
For a survey of single species dynamics governed
by delay differential equations, see [28]

More recently, a mathematical model and sim-
ulations for the spread of Chagas disease in rural
villages were presented in [9]. The model is an en-
hanced version of that in [33], because it includes
additional terms involving effects of congenital
transmission in humans and domestic mammals
and oral transmission in domestic mammals. Here,
we present a steady state stability analysis for a
special version of the model in [9]: the case where
the model has constant coefficients, rather than the
more general case of seasonal coefficients.

In Section 2, we present the model. The steady
state stability analysis is presented in Section 3.
In Section 4, numerical simulation results are
reported and discussed in relation to the theoret-
ical results. In Section 5, the stability analysis is
summarized and unresolved issues are presented.

II. TheModel

In this section, we present a model for Chagas
disease dynamics in rural villages. We model the
total number of vectors in the village houses using
a delay differential equation, and we model the
infected vectors, infected humans, and infected do-
mestic mammals using ordinary differential equa-
tions. The model that we present has constant
coefficients. However, a more general version of
the model coefficients can be found in [9], where
simulations are shown with temporal coefficients
that are taken to be yearly periodic to represent
seasonal changes.

We begin with the equation for the total number
of vectors V = V(t) in the village houses at time t
days. The rate of change in the total vector popu-
lation depends on the egg hatching rate dh, which
is a product of terms involving the following: the
fraction of the vector population that can lay eggs,
the number of eggs laid by an adult female per
bite, the successful hatching of eggs after τ > 0
days (gestation time), the total blood supply bsupply

(measured in the unit of human factors), and the
biting rate per human factor bh. The total rate of
change also depends on the natural death rate dm

of triatomines and the mortality rate dk due to
overpopulation beyond the carrying capacity K.

Vector consumption by domestic mammals (re-
ferred to as dogs) is included in the model since
mammals can become infected by predation on
vectors [4], [19], [21], [27]. Following the ap-
proach in [19], we use a Holling type II functional
response for the consumption rate F(V):

F(V) =
E(V − Vmin)+

(V − Vmin)+ + A
,

with units, vectors per dog per day. Here, E is
the maximum number of vectors consumed by
one dog per day, Vmin is the number of vectors
found in the deep cracks of the village homes,
and A + Vmin is the vector population at which
dogs consume at the rate of E/2 vectors per day.
Since we assume that dogs do not eat vectors in the
deep cracks, the total vector population available
for consumption is (V − Vmin)+. Here and below,
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f+ and f− denote the positive and negative parts
of a function, respectively, so that f = f+ − f−.

Next, for simplicity, we assume that the number
of dogs D in a village is constant. Using a delay
logistic-type growth term, the rate of change of the
total vector population in the village houses is

dV
dt

= dhV(t − τ)
(
1 −

1
K

V(t − τ)
)
+

−

(
dk

(
1 −

V
K

)
−

+ dm

)
V − F(V)D.

In the first term, dhV(t − τ) is the rate of vectors
per day that hatch at time t from eggs laid at time
t − τ. The expression (1 − V(t − τ)/K)+ represents
the fraction of the food supply that was available
to the female vectors at time t − τ. This assumes
that if the vector population at time τ days prior to
the current time t was above the carrying capacity,
then no eggs were laid and, indeed, when K <
V(t − τ) the first term vanishes. The natural death
rate coefficient is dm and the death rate caused by
overpopulation is described by dk(1− 1

K V(t))−. The
last term is the vector consumption term, which
contributes to the removal of vectors.

Next, we consider the growth rates of the in-
fected vectors Vi, infected humans Ni, and in-
fected dogs Di. We denote the total number of
humans by N and domestic non-mammals by
C, and assume they are constant for simplicity.
Following [10], we use ‘human factors’ as the
unit for the total blood supply in the following
way: each human represents one human factor,
each domestic mammal represents d f human fac-
tors, and each domestic non-mammal represents
c f human factors; then, the total blood supply is
given by bsupply = N + d f D + c f C. We denote
by PNV and PDV the probabilities of a vector
becoming infected by biting an infected human
and an infected dog, respectively. Also, the number
of bites per vector per day is given by bh · bsupply,
where bh is the same biting term used to define
dh. Since the proportions of the bites that occur on
infected humans and infected dogs are Ni/bsupply

and d f Di/bsupply, respectively, the growth rate of
infected vectors is

bh(V − Vi)
(
PNV Ni + PDVd f Di

)
.

We assume that the natural death rate of the in-
fected vectors is also dm, i.e., carrying the parasites
does not affect their life span. Similarly, dk is the
death rate due to lack of resources and space when
the population size is above the carrying capacity.

The death rate of the infected vectors due to
predation by dogs is G(V)DVi, where

G(V) =


F(V)

V if V > 0,

0 otherwise.

Collecting the terms above, we get the following
rate equation for the infected vectors:

dVi

dt
= bh(V − Vi)(PNV Ni + PDVd f Di)

−

(
dk

(
1 −

V
K

)
−

+ dm

)
Vi −G(V)DVi.

We turn now to the rate equation for infected
humans. When bitten by an infected vector, a sus-
ceptible human becomes infected with probability
PVN . As before, each vector is biting at a rate
of bh · bsupply bites per day, and (N − Ni)/bsupply

is the fraction of bites that are on susceptible
humans. Thus, the growth rate of infected humans
is given by bhPVN (N − Ni) Vi. We assume that
human reproduction is independent of infection
status, since infected humans typically live beyond
reproductive ages. Therefore, the assumption that
N is constant implies that the rate of congenital
transmission in humans is

TNi

(
γNs + (γNi − γNs)

Ni

N

)
Ni.

Here, TNi is the ratio, amongst babies born to
infected mothers, of infected babies to the total
number of babies. The mortality rate coefficients
for infected humans, infected dogs, susceptible
humans, and susceptible dogs are denoted by γNi ,
γDi , γNs , and γDs , respectively.

Therefore, the rate of change of infected humans
is
dNi

dt
= bhPVN (N − Ni) Vi

+TNi

(
γNs + (γNi − γNs)

Ni

N

)
Ni − γNi Ni.
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Under the assumption that both infected and
uninfected dogs reproduce at the same rate, the
rate of change of infected dogs is similar to that of
infected humans, except that we must account for
infection caused by the consumption of infected
vectors. To this end, let PVDb be the probability that
an uninfected dog becomes infected when bitten
by an infected vector, let PVDc be the probability
that an uninfected dog becomes infected after
eating an infected vector, and let D − Di be the
susceptible dog population. Then, the equation for
the rate of change of infected dogs is

dDi

dt
=

(
bhd f PVDb + PVDcG(V)

)
(D − Di)Vi

+ TDi

(
γDs + (γDi − γDs)

Di

D

)
Di − γDi Di,

where TDi is the probability that an infected dog
passes the infection to its offspring congenitally,
and the congenital transmission term is similar to
the term in the infected humans equation because
D is constant.

We note that domestic non-mammals, such as
chickens, cannot become infected and thus are not
considered as an infected population. However,
they are available to the vectors as a blood meal
and are included in the blood supply.

To complete the model, we assume that Vmin <
K and prescribe the initial values of the respective
populations: Vi(0) = Vi0, Ni(0) = Ni0, Di(0) = Di0,
together with

V = V0(t), −τ ≤ t ≤ 0.

To summarize, we have the following system of
equations:

dV
dt

= dhV(t − τ)
(
1 −

1
K

V(t − τ)
)
+

−

(
dk

(
1 −

V
K

)
−

+ dm

)
V − F(V)D,(II.1)

dVi

dt
= bh(V − Vi)(PNV Ni + PDVd f Di)

−

(
dk

(
1 −

V
K

)
−

+ dm

)
Vi

−G(V)DVi, (II.2)
dNi

dt
= bhPVN (N − Ni) Vi +

TNi

(
γNs + (γNi − γNs)

Ni

N

)
Ni

−γNi Ni, (II.3)

dDi

dt
=

(
bhd f PVDb + PVDcG(V)

)
(D − Di)Vi

+TDi

(
γDs + (γDi − γDs)

Di

D

)
Di

−γDi Di, (II.4)

Vi(0) = Vi0, Ni(0) = Ni0, Di(0) = Di0,

V(t) = V0(t), −τ ≤ t ≤ 0. (II.5)

III. Steady States and Stability Analysis

A steady state analysis of the model system
(II.1)-(II.4) is presented in this section. Note that
the vector equation is independent of the infected
populations. Therefore, equation (II.1) is decou-
pled from the other equations in the system and
can be analyzed separately.

A. Steady States and Stability of the Vector Equa-
tion

The steady states V of equation (II.1) are found
by solving

0 = dhV
(
1 −

1
K

V
)
+

−

dk

1 − V
K


−

+ dm

 V

−
DE(V − Vmin)+

(V − Vmin)+ + A
. (III.1)

Clearly, V = 0 is a solution to equation (III.1),
since when V = 0, (V − Vmin)+ = 0 and all other
terms vanish, as well. We note that each steady
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state solution satisfies V < K, since if V ≥ K, then
dh V

(
1 − 1

K V
)
+

= 0, and the sum of the other two
terms on the right-hand side of (III.1) is negative.

Now let
R =

dh

dm
,

and note that when R > 1, the vector growth rate
exceeds the vector mortality rate.

We next consider the case when 0 < V ≤ Vmin,
so that (V−Vmin)+ = 0. Thus, equation (III.1) reads

0 = dh V
(
1 −

1
K

V
)
− dm V .

The positive solution is V = KR = K
(
1 − 1

R

)
.

Recalling that Vmin < K, we must have 1 < R ≤
K/(K−Vmin) in order for V to satisfy 0 < V ≤ Vmin.
For R in this range, this is the only possible
solution as we show below.

We now consider Vmin < V < K and then
equation (III.1) can be written as

KED
dh

(V − Vmin) = V
(
KR − V

)
(V + A − Vmin).

(III.2)
First, the factor (KR−V) in (III.2) must be positive
for a solution V to be in (Vmin,K), which implies
that

R >
K

K − Vmin
.

In particular, this shows that there are no solutions
such that Vmin < V < K when 1 < R ≤ K/(K −
Vmin).

Moreover, it is straightforward to see that the
cubic polynomial in V on the right-hand side of
equation (III.2) intersects the line (with positive
slope KED/dh) on the left-hand side of the equa-
tion at a unique positive value V in the interval
(Vmin,KR). Therefore, there is a unique steady state
value V for R > K/(K − Vmin).

We now turn to the stability of the steady
states. We will linearize about each equilibrium
and perform the stability analysis on the result-
ing equation, since it is well known that this is
sufficient for studying the local stability of steady
states for delay differential equations of this type
[2], [3].

First we consider the V = 0 equilibrium. To this
end, we linearize (II.1) about V = 0 to get

dV
dt
≈ dhV(t − τ) − dmV(t).

Then, the local stability of the vector-free equilib-
rium follows from standard theory with V = 0
unstable for R > 1 and locally asymptotically
stable for 0 < R < 1, see Theorem 4.7 from [32].

We next show that the vector-free equilibrium
is, in fact, globally attracting for 0 < R < 1. To
that end, first note that V(t) > 0 for all t > 0 when
V(0) > 0. To see this, suppose V(t) < Vmin, which
must occur if V is to reach 0. Then equation (II.1)
gives dV/dt ≥ −dmV and V is bounded below by
a decaying exponential function. Thus, V remains
positive. Now, considering equation (II.1) again,
we see that

dV
dt
≤ dhV(t − τ) − dmV. (III.3)

Considering (III.3) with equality instead of in-
equality, we see that 0 is globally asymptotically
stable for 0 < R < 1, see [18], page 108. Thus,
when V(0) > 0, inequality (III.3) implies that V
converges to 0 as well.

Next, we turn to case with 1 < R < K/(K−Vmin),
where we have the positive equilibrium V = KR =

K(1 − 1/R). For simplicity, let

x = dht,

x̂ = dhτ,

y(x) =
V(t)
KR

.

Then,
dy
dx

=
1

dhKR

dV
dt

so that, after simplifying, equation (II.1) becomes

dy
dx

= y(x − x̂)
(
1 −

KRy(x − x̂)
K

)
−

1
R

y(x).

Next, let u(x) = y(x) − 1, so that the equation in
terms of u is

du
dx

= (u(x − x̂) + 1)
(
1 −

KR(u(x − x̂) + 1)
K

)
−

1
R

(u(x) + 1),
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which can be linearized about u = 0 so that
du
dx
≈

(
1 −

2KR

K

)
u(x − x̂) −

1
R

u(x).

As before, the stability of the u = 0 equilibrium
follows from standard results [32]. Thus, when 1 <
R < K/(K − Vmin), the V = KR equilibrium is:
locally asymptotically stable for 1 < R ≤ 3; locally
asymptotically stable for R > 3 and dhτ < τ∗h;
unstable for R > 3 and dhτ > τ

∗
h, where

τ∗h =
R cos−1( 1

2−R )
√

R2 − 4R + 3
.

Finally, we consider the case where R >
K

K−Vmin
> 1 and V is the unique positive steady state

solution that solves the cubic equation (III.2). We
again let x = dht and x̂ = dhτ, and define

y1(x) =
V

V
.

Then, equation (II.1), in terms of y1, becomes

dy1

dx
= y1(x − x̂)

(
1 −

Vy1(x − x̂)
K

)
−

1
R

y1(x)

−
DE(Vy1(x) − Vmin)

dh V(Vy1(x) − Vmin + A)
. (III.4)

And, the solution V ∈ (Vmin,KR) to (III.1) is
normalized to the solution y1 = 1 in (III.4).

Next, to linearize at zero, we let u1(x) = y1(x)−
1, so that equation (III.4) in terms of u1 becomes

du1

dx
= (u1(x − x̂) + 1)

(
1 −

V(u1(x − x̂) + 1)
K

)
−

1
R

(u1(x) + 1)

−
ED(V(u1(x) + 1) − Vmin)

dh V(V(u1(x) + 1) − Vmin + A)
.

After some manipulation and the use of (III.2), this
can be linearized to be

du1

dx
≈ Au1(x − x̂) − Lu1(x),

where

A = 1 −
2V
K
,

L =
1
R

+
EDA

dh(V − Vmin + A)2
.

(III.5)

Then the stability of the u1 = 0 equilibrium
follows as before [32]. The stability of the
positive steady state V ∈ (Vmin,KR) is summarized
below along with the other results from this
section.

Theorem 1. The following hold for the vector
equation (II.1).

1. The vector-free steady state, V = 0, exists for
R ∈ (0,∞), is globally asymptotically stable
for 0 < R < 1, and unstable for R > 1.

2. When 1 < R < K/(K − Vmin), there exists a
unique positive steady state V = KR that is

a. locally asymptotically stable for 1 < R ≤
3,

b. locally asymptotically stable for R > 3
and dhτ < τ

∗
h,

c. unstable for R > 3 and dhτ > τ
∗
h,

where τ∗h =
R cos−1( 1

2−R )
√

R2 − 4R + 3
.

3. When R > K/(K −Vmin), there exists a unique
positive steady state V ∈ (Vmin,KR) that is

a. unstable for A > L,
b. locally asymptotically stable for −L <
A < L,

c. locally asymptotically stable for A < −L
and dhτ < τ

∗∗
h ,

d. unstable for A < −L and dhτ > τ
∗∗
h ,

where A and L are from (III.5) and τ∗∗h =

cos−1(L
A

)
√
A2 − L2

.

B. Steady State Analysis of Infected Populations

We now study the steady states of the system
(II.2)–(II.4). For convenience, we use the follow-
ing notation,

d̃m = d̃m(V) = dm + G(V)D,

Θ̃ = Θ̃(V) = bhd f PVDb + PVDcG(V),

ΓN = γNi − TNiγNs , ΓD = γDi − TDiγDs ,

QN =
TNi

N
(γNi − γNs), QD =

TDi

D
(γDi − γDs).

We note that ΓN ,ΓD > 0, since γNi > γNs , γDi > γDs

and 0 ≤ TNi ,TDi ≤ 1. Also, Θ̃, d̃m,QN ,QD > 0.
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We first consider the case of R < 1, where V =

0 is the only vector equilibrium, and the system
has only one biologically feasible steady state: the
disease-free state (V i,N i,Di) = (0, 0, 0). We note
that there is an equilibrium (0,N i,Di) with Ni,Di >
0. However, this equilibrium violates N i < N,Di <
D, and is therefore not biologically relevant. The
disease-free state is globally asymptotically stable.
Indeed, the Jacobian matrix at (0, 0, 0) is −dm 0 0

bhPVN N −ΓN 0
bhd f PVDb D 0 −ΓD

 .
The eigenvalues at this steady state are λ1 =

−dm, λ2 = −ΓN , and λ3 = −ΓD, which are all
negative, guaranteeing local asymptotic stability
[1]. The global convergence from positive initial
conditions to (0, 0, 0) follows from Theorem 1.1
and inspection of the system (II.2)–(II.4). In par-
ticular, since V → 0, we see from (II.2) that
Vi → 0 as well. Then since Vi → 0, (II.3) and (II.4)
imply that Ni,Di → 0 because Ni ≤ N, Di ≤ D,
γNs < γNi , γDs < γDi , and TNi ,TDi < 1.

Now, we turn to the case when R > 1, where
there are two steady state solutions for V : V = 0
and V > 0, where V = KR ≤ Vmin if 1 < R ≤ K

K−Vmin

or Vmin < V < KR if R > K
K−Vmin

. In what follows,
we assume that V is positive, because the vector-
free equilibrium is unstable for R > 1.

For the sake of simplicity, we redefine

x = Vi, y = Ni, z = Di.

The steady states of (II.2)–(II.4) are the solutions
to the following system, where V is the solution
of (III.1):

0 = bh

(
V − x

)
(PNVy + PDVd f z) − d̃mx,(III.6)

0 = bhPVN(N − y)x − ΓNy + QNy2, (III.7)

0 = Θ̃(D − z)x − ΓDz + QDz2. (III.8)

The system (II.2)–(II.4) clearly has a disease-free
steady state, and we will later show that it has
another positive steady state:

(i) The disease-free state: Vi = 0, Ni = 0, Di = 0;
(ii) The endemic state in which Vi > 0, Ni >
0, Di > 0.

Let us first consider the stability of the disease-
free steady state. The Jacobian matrix for the
system (II.2)–(II.4) at the disease-free steady state
is

A =


−d̃m a0

12 a0
13

a0
21 −ΓN 0

a0
31 0 −ΓD

 ,
where

a0
12 = bhPNVV , a0

13 = bhd f PDVV ,

a0
21 = bhPVN N, a0

31 = Θ̃D.

The characteristic equation for the eigenvalues
λ of A can be simplified to the following:

(λ + d̃m)(λ + ΓD)(λ + ΓN) = Bλ + BΓ, (III.9)

where

B = a0
12a0

21 + a0
13a0

31

BΓ = a0
12a0

21ΓD + a0
13a0

31ΓN .

It is reasonable to assume that d̃m > ΓD > ΓN > 0,
since the half-life of vectors is smaller than that of
dogs, which is smaller than that of humans. Also,
a0

12, a
0
21, a

0
13, a

0
31 > 0, so that ΓN < BΓ/B < ΓD.

From this, we see that the cubic polynomial
C(λ) on the left-hand side of equation (III.9) has
three distinct roots, −d̃m < −ΓD < −ΓN , all
of which are negative, and the line L(λ) on the
right-hand side of (III.9) has one root, −BΓ/B, in
the interval (−ΓD,−ΓN). Therefore, equation (III.9)
has three real solutions with at least two being
negative. The other solution will be negative if
and only if L(0) < C(0), which is equivalent to
BΓ < d̃mΓDΓN .

With this, we define a stability number for the
system of infected individuals as

Π0 =
BΓ

d̃mΓDΓN

=
a0

12a0
21ΓD + a0

13a0
31ΓN

d̃mΓDΓN

. (III.10)

We conclude that the disease-free equilibrium is
locally asymptotically stable when Π0 < 1 and
unstable when Π0 > 1.

We now show that there is a positive endemic
steady state corresponding to V > 0. It follows
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from (III.7) and (III.8) that

y± =

(ΓN+bhPVN x)±
√

(ΓN+bhPVN x)2−4QN bhPVN Nx
2QN

,

z± =
(ΓD + Θ̃x) ±

√
(ΓD + Θ̃x)2 − 4QDΘ̃Dx

2QD
.

For x ≥ 0, note that the expressions under both
radicals above are nonnegative if

ΓN − 2NQN ≥ 0, (III.11)

which is equivalent to

TNi ≤
γNi

(γNi − γNs) + γNi

=
1

2 − γNs
γNi

, (III.12)

and

ΓD − 2DQD ≥ 0, (III.13)

which is equivalent to

TDi ≤
γDi

(γDi − γDs) + γDi

=
1

2 − γDs
γDi

. (III.14)

Inequalities (III.12) and (III.14) are reasonable for
parameter sets found in the literature. In particu-
lar, the right-hand sides of both inequalities are
greater than or equal to 0.5, while the data in
[21] indicates that TNi is between 0.02 and 0.1.
Therefore, we assume that the two inequalities
(III.12) and (III.14) hold. Under these assumptions
it also follows that y±, z± > 0.

Next, since y = Ni,we must have that y± ≤ N,
which is equivalent to

±
√

(ΓN + bhPVN x)2 − 4QNbhPVN Nx

≤ 2NQN − (ΓN + bhPVN Nx).

Since y+ violates (III.11), the only possible solu-
tion is y− which does, in fact, lie in (0,N] under
the parameter assumptions and inequality (III.12).
Similarly, z+ ≤ D violates (III.13), and z− ∈ (0,D]
under the parameter assumptions and inequality
(III.14). For notational convenience, we drop the
superscripts on the positive solutions y− and z−.

Then, (III.6) can be written as

xF (x) = bh V , (III.15)

where

F (x) =
(
bh +

d̃m

PNVy(x) + PDVd f z(x)

)
.

Since y, z > 0, it follows that F is a positive func-
tion on [0,∞). Furthermore, inequalities (III.11)
and (III.13) imply that F is an increasing func-
tion on [0,∞). Therefore, xF (x) is an increasing
function on this interval. Moreover, xF (x) > xbh

on [0,∞). Thus, there exists a unique solution
x to (III.15) in the interval (0,V), and there is
exactly one positive endemic steady state: (x, y, z)
in (0,V) × (0,N] × (0,D].

We now analyze the stability of the unique
positive equilibrium point, (x, y, z), with V > 0.
The associated Jacobian matrix of (II.2)–(II.4) has
column vectors

−bh(PNVy + PDVd f z) − d̃m

bhPVN(N − y)
Θ̃(D − z)

 ,


bh

(
V − x

)
PNV

2QN y − bhPVN x − ΓN

0

 ,
and 

bh

(
V − x

)
PDVd f

0
2QDz − Θ̃x − ΓD

 .
For convenience in what follows, we denote

the entries of the Jacobian matrix above by (ai j),
where i, j = 1, 2, 3. Notice that the parameter
assumptions and inequalities (III.11) and (III.13)
imply that all three diagonal entries aii, i = 1, 2, 3,
are negative, while all other nonzero entries are
positive. The characteristic equation for the eigen-
values λ of the Jacobian matrix can be simplified
to

(λ − a11)(λ − a22)(λ − a33) = Bλ + BΓ, (III.16)
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where

B = a12a21 + a13a31

BΓ = −(a12a21a33 + a13a31a22).

Then, B,BΓ > 0 and we have the following bound:

Bmin{−a22,−a33} ≤ BΓ ≤ Bmax{−a22,−a33},

so that

min{a22, a33} ≤ −
BΓ

B
≤ max{a22, a33} < 0.

Therefore, the line `3(λ) on the right-hand side
of equation (III.16) has a negative λ-intercept that
lies between a22 and a33, which are two roots of
the cubic polynomial c(λ) on the left-hand side
of the equation. This implies that all three roots
of the characteristic polynomial are real numbers
and that at least two of them are negative. The
third root is negative if and only if `3(0) < c(0),
which is equivalent to BΓ < −a11a22a33.

We now define another stability number

Π =
BΓ

−a11a22a33
, (III.17)

and note that when conditions (III.11) and (III.13)
hold, the endemic steady state is locally asymptot-
ically stable for Π < 1 and unstable for Π > 1. We
point out that Π depends on the equilbria values
(x, y, z) and that Π0 is, in fact, Π evaluated at
(0, 0, 0). However, inequalities (III.11) and (III.13)
are not required conditions in the disease-free
stability analysis. Finally, we note that the stability
numbers depend on all the parameters of the
system. The results of this section are summarized
below.

Theorem 2. The following hold for the infected
population equations (II.2)–(II.4).

1. When R < 1 and V = 0, there exists a disease-
free equilibrium that is globally asymptoti-
cally stable.

2. When R > 1 and V > 0, there exists a disease-
free equilibrium that is locally asymptotically
stable for Π0 < 1 and unstable for Π0 > 1.

3. When R > 1, V > 0, and inequalities (III.11)
and (III.13) hold, there exists an endemic
equilibrium that is locally asymptotically sta-
ble for Π < 1 and unstable for Π > 1.
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Fig. 1. The four populations when R < 1.

IV. Numerical Results

In this section, we verify the results in Theorems
1 and 2 using a numerical algorithm that was
coded in Mathematica [36]. Baseline parameter
values, which are our best estimates, can be found
in Table I. In order to satisfy the hypotheses
of the theorems, we tweaked parameter values
as described below. In each case, where certain
parameters are changed, all other parameters are
kept at their baseline values.

A. Theorems 1.1 and 2.1

In order to obtain R < 1, we choose dh =

0.95dm. Fig. 1 depicts the global asymptotic sta-
bility of the vector-free and disease-free equilibria
in this case.

B. Theorem 1.2

Since K/(K − Vmin) ≈ 1.04 with the baseline
parameters, we choose dh = 1.03dm to satisfy the
hypotheses of Theorem 1.2a. Fig. 2 depicts the
local asymptotic stability of the equilibrium V =

KR.
To satisfy the hypotheses of Theorem 1.2b, we

set Vmin = 5000 and dh = 3.05dm. The equilibrium
V = KR is again locally asymptotically stable in
this case, as verified by Fig. 3.

For Theorem 1.2c, we decrease the carrying
capacity K to 100 vectors per house while keeping
Vmin = 5000 and dh = 3.05dm. The oscillatory
solution and instability of the equilibrium V = KR

are shown in Fig. 4.
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Fig. 2. The vector population under the hypotheses of
Theorem 1.2a with a large and small initial population.
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Fig. 3. The vector population under the hypotheses of
Theorem 1.2b with a large and small initial population, shown
over two and fifty years.

C. Theorem 1.3

Using the baseline parameters, we have R >
K/(K − Vmin) and A ≈ −L. Slightly lowering
the carrying capacity to 400 vectors per home
satisfies the hypotheses of Theorem 1.3b, and the
local asympotic stability of the positive equlibrium
V ∈ (Vmin,KR) can be seen in Fig. 5 for this
case. The baseline parameters without any changes
fulfill the hypotheses of Theorem 1.3c and, in this
case, the local asympotic stability of the positive
equlibrium can be seen in Fig. 6. Despite many
attempts, we were unable to change the parameters
in a way that satisfied the hypotheses of Theorems
1.3a and 1.3d. It seems these cases are unlikely to
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Fig. 4. The vector population under the hypotheses of
Theorem 1.2c shown over three and fifty years.

0 20 40 60 80 100
0

5000
10 000
15 000
20 000
25 000
30 000
35 000

Years

V
ec

to
rs

0 20 40 60 80 100
0

5000

10 000

15 000

20 000

Years

In
fe

ct
ed

V
ec

to
rs

0 20 40 60 80 100
0

50

100

150

200

250

300

Years

In
fe

ct
ed

H
um

an
s

0 20 40 60 80 100
0

50

100

150

200

250

300

Years

In
fe

ct
ed

D
og

s

Fig. 5. The four populations under the hypotheses of
Theorem 1.3b.
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Fig. 6. The four populations under baseline parameters with
large and small initial populations.

occur with realistic parameters values.

D. Theorems 2.2 and 2.3

Using the baseline parameters, we have R > 1,
Π0 > 1, and Π < 1. From Theorems 2.2 and 2.3
we expect an unstable disease-free equilibrium and
a locally asympototically stable endemic equilib-
rium. This is verified in Fig. 6.

V. Conclusion

This work presents a local and partial global
stability analysis for the steady states of a model
for the dynamics of Chagas disease. The model
consists of a delay logistic-type equation for the
total number of vectors in village houses and
nonlinear differential equations the populations of
infected vectors, infected humans, and infected
domestic mammals. In Section 2, a model for

Biomath 3 (2014), 1405261, http://dx.doi.org/10.11145/j.biomath.2014.05.261 Page 10 of 13

http://dx.doi.org/10.11145/j.biomath.2014.05.261


D Coffield et al., Steady State Stability Analysis of a Chagas Disease Model

Chagas disease dynamics within village houses is
presented.

In Section 3, the steady states are analyzed. The
vector equation is decoupled from the other three
equations and thus analyzed separately. The birth-
death ratio, R, controls the stability of the vector
equilibria with the vector-free state being globally
asymptotically stable for R < 1 and unstable for
R > 1, as expected.

When R > 1, there is also a positive vector
equilibrium whose stability is classified in Theo-
rem 1. The conditions for local asymptotic stability
are complex and depend on the parameters of the
system. When 1 < R ≤ K/(K − Vmin), the unique
endemic equilibrium V = KR is unstable only
when R > 3 and dhτ > τ∗h ≡ R cos−1(1/(2 −
R))/
√

R2 − 4R + 3. However, we note that τ∗h is
a decreasing function of R for R > 3, and it is
bounded below by π/2. Additionally, τdh << 1
since τ ≈ 20 and dh << 1/365. Therefore,
realistically, if 1 < R ≤ K/(K −Vmin), then V = KR

is locally asymptotically stable.
Moreover, when R > K/(K − Vmin), there is

a unique positive equilibrium between Vmin and
KR. In practice, this equilibrium was found to
be asymptotically stable across a broad range of
reasonable parameter sets. In fact, we were not
able to find a parameter set that would produce an
unstable positive equilibrium when R > K/(K −
Vmin).

In Section 3.2, we analyzed the stability of the
steady states of the infected populations and report
the results in Theorem 2. When R < 1, the disease-
free state is the only equilibrium and it is globally
asymptotically stable. When R > 1, there are two
equilibria, the disease-free state and endemic state.
The stability of these equilibria is controlled by the
stability numbers Π0 and Π, respectively, where
each depends on the parameters of the model. In
particular, the disease-free state is locally asymp-
totically stable for Π0 < 1 (unstable for Π0 > 1)
and the endemic state is locally asymptotically
stable for Π < 1 (unstable for Π > 1). It is
challenging to determine the biological meaning
of these stability numbers, however it appears that

for realistic parameter sets, Π0 > 1 and Π < 1.
That is, for the simulations we performed across
a wide variety of reasonable parameter sets, the
endemic state was always locally asymptotically
stable. These results are consistent with the en-
demic nature of Chagas disease in Central and
South America. The relationship between Π0 and
Π is of interest and open to further study.

We performed many more numerical simula-
tions than are presented here and the results sug-
gest that our local stability conditions may be
global ones. In the future, we intend to explore
this possibility.
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[16] R.E. Gürtler, M.C. Cecere, M.A. Lauricella, M.V. Car-
dinal, U. Kitron, and J.E. Cohen, 2007. Domestic dogs
and cats as sources of Trypanosoma cruz infection in
rural northwestern Argentina,Parasitology 134, pp. 69–
82.
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TABLE I
The model parameters and the baseline simulation

values

Parameter Definition Baseline Value Source

H Total number of houses (houses/village) 74 Est. from [6]
V Total number of vectors (vectors/village) V(0) = 30000 This study
D Total number of domestic dogs (dogs/village) 2.9H Est. from [16]
C Total number of chickens (chickens/village) 15H Est. from [6]
N Total number of humans (humans/village) 4H This study
Vi Infected triatomids (vectors/village) Vi(0) = 12, 000 This study
Ni Number of infected humans (humans/village) Ni(0) = 100 This study
Di Number of infected dogs (dogs/village) Di(0) = 35 This study

Vmin Min. number of vectors (vectors/house) 20H Est. from [13], [14]
dh Egg hatching rate (1/day) 0.0109 Fig. 1, [6], [16]
dm Death rate of vectors (1/day) 0.00327 Est.from [5]
dk Death rate of vectors (above K) (1/day) dm/2 This study, value unknown
τ Delay (days) 20 [5]
b Domestic Biting rate 3.55 × 10−5 Est.from [5], [7], Fig. 1 in [33]

bsupply N + d f D + c f C (human factors) 1210.27 [10]
PNV Human to vector infection probability (per bite) 0.03 [10]
PDV Dog to vector infection probability (per bite) 0.49 [10]
PVN Vector to human infection probability (per bite) 0.0008 Est. from [10], value unknown
PVDb Vector to dog infection probability (per bite) 0.001 Est. from [10]
PVDc Vector to dog infection probability via oral consumption 0.1 [20]
TNi Human congenital transmission probability 0.073 Est. from [23]
TDi Dog congenital transmission probability 0.1 [17], [20]
d f Human factor of one dog 2.45 [16]
c f Human factor of one chicken 0.35 [15], [16]
γNs Mortality rate of susceptible humans (1/day) 1

76.12·365 Est. from [8], [26]
γNi Mortality rate of infected humans (1/day) 0.3

50·365 + 0.7
76.12·365 Est. from [8], [26]

γDs Mortality rate of susceptible dogs (1/day) 1
12·365 Est. 8 years

γDi Mortality rate of infected dogs (1/day) 1
8·365 Est. 8 years

K Carrying Capacity of domestic vectors per house 500 This study
E Max. number of vectors eaten by a dog per day 0.143 Est. from [20]
A Number of vectors when vector consumption is E/2 50, 000 This study
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