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Abstract—We propose and study a model for tree-
grass interactions in the context of savannas which
are subjected to fire pressure. Several theoretical
models in the literature which have highlighted
the impact of fire on tree-grass interactions did
not explicitly deal with the indirect feedback of
dry grass biomass onto tree dynamics through fire
intensity and frequency. The novelty in our work
is to consider a fairly generic modeling of fire
impact on woody biomass by means of a family of
increasing and bounded functions of grass biomass.
The characteristic feature of this family of functions
is that, it could include several forms: linear as well
as non-linear ones (sigmoidal or not). Since the non-
linear shape brings more diverse results than the
previous attempts using a linear function, it could be
used to show that several vegetation equilibria exist
with some of them showing tree-grass coexistence
features. We show that the number of equilibria with
both grass and trees depends on the choice of the
fire impact function. We also established thresholds
defining the stability domains of the equilibria and
highlighted some bifurcation parameters to provide
numerical simulations complying with the theoreti-
cal properties of the model.

Keywords-Savanna Modeling; Tree-Grass inter-
actions; Stability; Nonstandard Finite Difference
Method; Bifurcation.

I. INTRODUCTION

Savannas are complex ecosystems mixing trees
and grasses to create physiognomies that are nei-
ther grassland nor forest [44]. Savannas occur
in areas where the mean annual temperature is
higher than 170C and where mean annual rainfall
is between 250 and 2100 mm [60]. For instance,
the mean annual rainfall is between 1350 and 1400
mm [48], [61], for the regions between Mbam
and Sanaga in Cameroon, where the so-called
”soudano-guinean” savannas dominate [28].

Africa contains by far the largest area of
savannas, with as much as 15.1 million km2,
or 50% of the continent surface [15], [31]. In
Central Africa, savannas spread across Northern
Cameroon, Southern Chad and the Central African
Republic. Furthermore, a large share of these cen-
tral African savannas fringes extensive areas of
moist tropical forests, as do littoral savannas which
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spread from the plains of Gabon to DCR and
Angola [19], or inside the continent, the Nairi and
Bateke savannas which extend soudano-zambezian
vegetation from Angola up to Gabon [27]. All
these savannas observed under humid climates are
rather prone to fires which tend to counteract
natural reforestation. Most often at times, be-
cause savannas are frequently burned and occupy
wide areas, their management may influence the
regional and possibly global energy, water and
carbon balances [40], [41].

During the last decades, various explanations of
the long-lasting coexistence of trees and grasses
mixtures in savannas have been proposed. Some
of them invoke limiting resources (soil moisture or
nutrients) and possible niche separation of rooting
zones that could result in differential access to
limiting resources between tree and grass [26],
[55], [57], [58]. Other explanations emphasized the
role of disturbance regimes in preventing trees to
reach canopy closure [2], [23], [44]. [38] showed
that limiting water resource is probably pervasive
in the driest part of the rainfall gradient while
disturbances (fire, herbivory) are probably central
to tree-grass coexistence under wetter climates.
Among these disturbances, fire is recognized as
quintessential since it is able to suppress young
trees and shrubs that lay within the flame zone
thereby preventing them to reach maturity [11],
[37], [38] and depress grass biomass by shading
[29], [43]. In savanna environment, fire intensity
is tightly linked to the dried grass biomass that
remains during the dry season. Large trees having
crowns above the flame zone (say 2 m high) are
rarely affected by fires, but recurrent fires pre-
vent a great number of these trees from escaping
the flame zone, and tree biomass becomes suffi-
ciently low to have no depressure effect on grass
biomass production. This feedback loop between
grass production and fire intensity is a key pattern
of savanna ecosystems that are observed under
sufficiently wet climates [47].

Since tree-grass coexistence involves com-
plex retroactions which are moreover context-
dependent, modeling has to play an important

role to understand dynamical processes that shape
savanna vegetation. Several recent modeling ef-
forts have built on systems of ordinary differential
equations expressing the asymmetric competition
between tree and grass. In this line of research
initiated by [52], the superior competitor (mature
tree) is the one that always displaces the inferior
competitor (grass) when they both occur in a site,
and the inferior competitor can neither invade
nor displace the superior competitor from a site.
However, the coexistence of trees and grass and to
a lesser extent the dominance of grass over trees
can result from the suppression of tree seedlings
by grass competition in a way either direct or
fire-mediated. Indeed, a mathematical analysis of
Tilman’s and derived models shows that it is pos-
sible to have a globally asymptotic stable (GAS)
tree-grass equilibrium.

Consequently, we found it desirable to consider
modeling options of fire as follows:

(i) split fire frequency from fire intensity. Since
fire intensity increases principally with grass abun-
dance [47], while fire frequency also depends on
management choices.

(ii) use distinct functions of fire impact on
grass vs. woody biomass, since it is observed that,
grasses and trees are affected differently.

(iii) allow for various conditions of bistability
in order to render the diversity of physiognomies
that are observed in the field.

We will show that this last condition may be
ensured by incorporating a fairly generic modeling
of the impact of fire on woody biomass, by means
of a family of functions which could take linear or
non-linear shapes. We will also establish that the
number of equilibria with tree-grass coexistence
depends on the characteristics of the function.

Our aim in the present paper is therefore to pro-
pose a new tree-grass model following the above
objectives and achieve a complete theoretical anal-
ysis of this model. We shall highlight three thresh-
olds that summarize the dynamics of the system.
We shall equally illustrate the theoretical results
through numerical simulations, obtained with an
appropriate nonstandard finite difference scheme
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complying with the theoretical properties of the
model. We will also highlight some bifurcation
parameters.

II. THE MATHEMATICAL MODEL

Consider the following simple model of tree-
grass dynamics taking into account fire as contin-
uous events:

dG

dt
= (γG − δG0)G− µGG2 − γTGTG− λfGfG,

dT

dt
= (γT − δT )T − µTT 2 − λfT fω(G)T,

(1)
with, T (0) = T0 and G(0) = G0 positive initial
conditions, T and G are Tree and Grass biomasses
(t.ha−1) respectively, γT and γG are the Tree and
Grass biomass productivity (yr−1). In our model,
nutrients and water are modelled implicitly via
competition and production terms of vegetation.
δT and δG0 are the biomass loss by respiration
and natural death, µT and µG are the additional
death due to the intra-specific competition, γTG is
the mortality due to tree-grass competition, f = 1

τ
is the fire frequency with τ the period between two
consecutive fires, λfT and λfG represent the spe-
cific loss of tree and grass biomasses due to fire,
and ω(G) is the function of grass biomass which
expresses the causality between grass biomass and
fire intensity and models the impact of fire on the
woody biomass.

For convenience, and with limited loss of gen-
erality, we make assumptions about ω(G). Other
than smoothness it satisfies these following three
conditions:
• ω(0) = 0,
• ω(G) > 0, and ω

′
(G) > 0,

• lim
G→∞

ω(G) <∞.

A. Some qualitative results of the system (1)

To introduce this section, we first state, with
proof, the existence and uniqueness lemma.

Lemma II.1. With the initial conditions T (0) =
T 0 and G(0) = G0, system (1) has a unique
maximal solution.

Proof: Let us set X = (G,T )T ∈ R2
+,

F (X) = (F1(X), F2(X))T ∈ R2, and
F1(X) = (γG − δG0)G− µGG2 − γTGTG− λfGfG,

F2(X) = (γT − δT )T − µTT 2 − λfT fω(G)T.
(2)

System (1) becomes

dX

dt
= F (X), (3)

with X(0) = (G0, T 0)T .
F is a continuously differentiable map (C1),

because F1 and F2 are C1. Then, by the Cauchy-
Lipschitz theorem, system (1) with the initial
condition X(0) = X0 admits a unique maximal
solution.

Models require that trajectories remain positive
and that trajectories do not tend to infinity with
increasing time. If the set S is such that all trajec-
tories that start in S remain in S for all positive
time, then S is said to be ”positively invariant”.
(If trajectories remain in S for both positive and
negative time, S is said to be invariant). Hence,
the basic condition for positivity (of dependent
variables) can be stated as ”the positive cone
is positively invariant for the dynamical system
generated by system (1)”.

Lemma II.2. The positive cone R2
+ is positively

invariant for the system (1).

Proof: G = 0, and T = 0 are vertical and
horizontal null clines respectively. Then, no tra-
jectory can cut these axes. Thus, R2

+ is positively
invariant for (1) because, all trajectories that start
in R2

+ remain in R2
+ for all positive time.

The dynamical system is said to be ”dissipa-
tive” if all positive trajectories eventually lie in a
bounded set. This is sufficient to ensure that all
solutions of system (1) exist for all positive times.

Lemma II.3. The compact Γ, given by{
(G,T )T ∈ R2

+/T ≤
γT − δT
µT

, G ≤
γG − δG0 − λfGf

µG

}
is attracting for system (1) (e.g., all trajectories
of system (1) that reach the neighbourhood of Γ
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A. Tchuinté Tamen et al., A Generic Modeling of Fire Impact in a Tree-Grass Savanna Model...

converge inside for all positive time). Γ is call the
ω-limit set.

Proof: From system (1), with initial condi-
tions T (0) = T 0 > 0 and G(0) = G0 > 0, we
have

dG

dt
≤ (γG − δG0 − λfGf)G− µGG2,

dT

dt
≤ (γT − δT )T − µTT 2,

G(0) = G0,

T (0) = T 0.

(4)

Using the maximum principle, we deduce that



G(t) ≤ G0

G0

Ge
+ (1− G0

Ge
)exp{−GeµGt}

,

T (t) ≤ T 0

T 0

Te
+ (1− T 0

Te
)exp{−TeµT t}

,

(5)

where, Ge =
γG − δG0 − λfGf

µG
and Te =

γT − δT
µT

.

We obtain,


lim

t→+∞
G(t) ≤ Ge =

γG − δG0 − λfGf
µG

,

lim
t→+∞

T (t) ≤ Te =
γT − δT
µT

.

(6)

Then, all trajectories of system (1) that reach
the neighbourhood of Γ converge inside as t tends
to infinity. Thus Γ is attracting for the system (1).

Let ψ : R2 × R → R2 be a function of two
variables, such as ψ(y, t) = X(t), where X(t) is
the solution of system (3) satisfying the initial
condition X(0)=y.

Definition II.1. In the terminology of dynamical
systems, a steady state or an equilibrium point

of system (3) is an element P ∈ R2
+ such that

ψ(P, t) = P for all t ∈ R. Similarly, a periodic
orbit is one that satisfies ψ(P, t+ T ) = P for all
t and for some fixed number T. The corresponding
solution of system (3) will be a periodic function.

It is observed that, system (1) admits these
following nonnegative equilibria,
• (0; 0) corresponding to bare soil (always

unstable),

• ETe
= (0;Te) =

(
0;
γT − δT
µT

)
, i.e., a

wooded savanna equilibrium,

• EGe
= (Ge; 0) =

(
γG − δG0 − λfGf

µG
; 0

)
,

i.e., a grassland savanna,
• E∗ = (G∗;T ∗), i.e., the tree-grass coexis-

tence equilibrium.
In biological systems, eventual behaviours and

asymptotic properties of trajectories need to be
determined. It is also important to know when limit
cycle (periodic solution) occurs or not.

Lemma II.4. There is no limit cycle for system
(1) in the positive cone R2

+.

Proof: Let (G,T )T ∈ R2
+, and

β(T,G) =
1

TG
.

We have,

βF1 =
(γG − δG0 − λfGf)− µGG− γTGT

T

βF2 =
(γT − δT )− µTT − λfT fω(G)

G
.

Then,
∂βF1

∂G
+
∂βF2

∂T
= −µG

T
− µT

G
< 0.

Using Dulac criterion, we conclude that, system
(1) has no periodic solution in R2

+.
Concerning the stability thresholds of equilibria,

the following proposition holds.

Proposition II.1. The stability of the equilibria
depends on the following thresholds:
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A. Tchuinté Tamen et al., A Generic Modeling of Fire Impact in a Tree-Grass Savanna Model...

• R10 =
γT − δT
λfT f

1

ω(Ge)
, related to the sa-

vanna vs. grassland equilibrium. It is an
increasing function of tree biomass. It rep-
resents the net production of tree biomass
relative to the fire-induced biomass loss at
the grassland equilibrium.

• R01 =
γG − δG0 − λfGf

γTG

µT
γT − δT

, related

to the savanna vs. forest equilibrium. It rep-
resents the net primary production of grasses
after fire, relative to the grass production
loss due to the tree biomass at the wooded
savanna equilibrium.

• R∗11 = R10R01
ω(Ge)

ω′(G∗)Ge
, related to the

mixed tree-grass equilibrium.

Proof: See appendix A.

Remark II.1. There is an obvious relation be-
tween the last threshold and the two previous
ones. These thresholds are positive considering the
reasonable ecological parameters.

1) Model without fire : When fire frequency
f = 0 (Tilman’s model), all equilibria and their
related stability properties are summarized in Ta-
ble I.

TABLE I: Stability/Instability results for Tilman’s
Model

Threshold Conditions Ecological Stable Unstable
equilibria equilibria equilibria

< 1 (0; 0), ETe , ETe (0; 0),
and EGe (GAS) EGe

R01 > 1 (0; 0), EGe E∗ (0; 0),
ETe , and E∗ (GAS) EGe , ETe

Table I means that, without fire, when the
threshold R01 < 1, trees grow toward their carry-
ing capacity ETe

, while it is not the case for grass.
This can be explained by the fact that, tree canopy
reduces light availability which is necessary for
grass growth. Then, when the shading effect is
higher, only trees can persist. This is supported
by studies demonstrating that competition effects
of grass are not strong enough to prevent rapid
recruitment of trees into savannas when fire is
excluded [23], [44]. On the other hand, when,
R01 > 1, the tree-grass node exists and is GAS,
while ETe

becomes unstable. Then, the Tilman’s

two-species model exhibits the transcritical bifur-
cation. These results join those in [17]. Thus, if
trees and grass in savanna are not inflammable,
there is only one possible bifurcation namely a
transcritical bifurcation.

2) Model with continuous fire forcing : We
now investigate system (1) with f 6= 0 in order
to determine whether multiple stable states exist
and analyze how the system can veer off from a
stable equilibrium to another depending on some
thresholds parameters.

? Let us consider ω(G) = G as assumed in [55].
We summarize all the results in the Table II

bellow

TABLE II: Stability/Instability results when
ω(G) = G.

Ecological Stable Unstable
Conditions Equilibria Equilibria Equilibria

(0; 0) (0; 0),
R01 > 1 R∗11 > 1 ETe , EGe E∗ (GAS) EGe ,

and E∗ and ETe
R10 > 1 - (0; 0) (0; 0),

R01 < 1 EGe , ETe ETe (GAS) and EGe
- (0; 0) (0; 0),

R01 > 1 EGe , ETe EGe (GAS) and ETe
R10 < 1 (0; 0) Bi-stability (0; 0)

R01 < 1 R∗11 < 1 ETe , EGe EGe (LAS) and
and E∗ ETe (LAS) E∗

Table II exhibits two different bifurcations. The
first one is the same as in table I, say the transcrit-
ical bifurcation. More explicitly, when R01 < 1,
the forest equilibrium ETe

is GAS, and becomes
unstable when R01 > 1 while, the coexistence
tree-grass equilibrium which is GAS exists. The
second bifurcation is the pitchfork bifurcation.
This previous bifurcation occurs because a unique
coexisting equilibrium which is GAS exists when
R∗11 > 1, and becomes unstable when R∗11 < 1
while, woodland and grassland equilibria are sta-
ble. The bistability between woodland and grass-
land equilibria corroborates with the theoretical
results in [18]. However, the model without fire
do not present this bistability. Then, fires, turn
in favour of grass by damaging young trees and
shrubs. These negative feedbacks of grass on trees
through fires were considered by [44] which mod-
elled the impact of fires on trees by differentiating
tree compartment in two ways: sensitive trees (like
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Fig. 1: Different Equilibria and their stability/instability properties

when R01 > 1 and ω(Ge)R10 > 1. Solid circles indicate a stable

equilibrium, and open circles indicate an unstable equilibrium. There

are four equilibria. Only coexistence equilibrium is GAS (see Tables

I and II).

shrubs) and non sensitive trees (mature trees).
As a result, fire promotes tree-grass coexistence
and the occurrence of bistability of woodland and
grassland.

Let us recall that in our study ω(G) is a generic
function. Our interest here is to explore to what ex-
tent the shape of ω(G) may favour multiple stable
states and thereby explain the tendency of savanna-
like ecosystems to shift among different stable
states. According to the choice of the response
function ω(G), we obtain several configurations.
For instance, as assumed in [2],

ω(G) =
Gβ

Gβ + αβ
,

where α controls the location of the point where
ω is half of its maximum value and β controls the
rate of increase of ω. The particular cases of this
function are the Holling functions type II and III
which are also referred to the Michaelis-Menten
function and the sigmoidal response function re-
spectively. Here, to show various implications and
configurations due to the choice of ω, we have
considered these previous two particular cases.
The ecological models are developed and their
mathematical properties are analyzed.

To simplify the calculations, we set G0 = αβ .
?? First, let us consider the Holling type II,

and then six different configurations can arise
depending on certain thresholds.

(a)

(b)

Fig. 2: Equilibria and their stability/instability properties when

R01 < 1 and ω(Ge)R10 > 1. In (a), there is no coexistence and

only wooded savanna equilibrium is GAS as in Table I and Table II.

In (b), there are two internal equilibria: E∗1 (unstable) and E∗2 stable.

A separatrix divides the plane into two basins of attraction: one to

the stable woodland equilibrium; one to E∗2 (bistability).

Fig. 3: Different equilibria and their stability/instability properties

when R01 > 1 and ω(Ge)R10 < 1. Same as in Fig 1, there are

four equilibria and only coexistence equilibrium is GAS.

Our analysis suggests that, using the Holling
type II in Tilman’s two-species model provides
richer qualitative behaviour than the linear form.
For instance two different coexistence equilibria
can exist and bistability can occur to one of them
with stable forest equilibrium. This result joins
those of [1], [10], [22], [23] which modelled
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(a)

(b)

Fig. 4: Different equilibria and their stability/instability properties

when R01 < 1 and ω(Ge)R10 < 1. (a) presents two basins

of attraction divide by a separatrix: one to the stable grassland

equilibrium; one to the stable woodland equilibrium (bistability as in

Table II). (b) is the same as (b) in Fig 2 except with ω(Ge)R10 < 1.

savanna and forest as alternative stable states.
Thus, trajectories of the model can evolve either
to the woodland equilibrium or the coexistence
equilibrium, depending on initial conditions.

? ? ? Now, we consider the Holling type III.
Here we have seven configurations depending on
certain thresholds.

Fig 7 is obtained when thresholds R01 and
ω(Ge)R10 are greater than 1. The first one R01 >
1 indicates that the net primary production of
grasses after fire, relative to the grass produc-
tion loss due to the tree biomass at the wooded
savanna equilibrium. This competition turns in
favour of trees (see Fig 6-(a) above). It leads to
the existence of the upper coexistence equilibrium
E∗1 with higher tree biomass and lower grass
biomass. This equilibrium represents the long-
lasting coexistence of trees and grass due to the
inter-specific competition between grass and trees.

(a)

(b)

Fig. 5: Equilibria and their properties when R01 < 1 and

ω(Ge)R10 > 1. Same as in Fig 2, In (a), there is no coexistence

and only woodland equilibrium is GAS. In (b), there are two feasible

internal equilibria. A separatrix divides the plane into two basins of

attraction; one to the stable woodland equilibrium; and one to the

lower internal equilibrium (bistability).

It is obvious that the threshold ω(Ge)R10 is linked
to R10 which represents the net production of tree
biomass relative to the fire-induced biomass loss at
the grassland equilibrium. When ω(Ge)R10 > 1,
the lower coexistence equilibrium E∗2 exists with
lower tree biomass and higher grass biomass (see
Fig 5-(b) above). E∗2 represents the tree-grass
coexistence due to the indirect feedback of grass
on tree biomass through fire. Our interest in this
section, was to show various configurations and
implications due to the choice of ω. In this case,
we have considered two particular functions for
w(G): Holling type II and type III. Following
[47], we showed that these sigmoidal forms of
ω(G) make multiple stable equilibria possible.
There are between 0 and 3 internal equilibria
and between 0 and 2 stable internal equilibria. In
addition, we highlighted two specific thresholds
R01 and ω(Ge)R10 which regulate different tree-
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(a)

(b)

Fig. 6: Different equilibria and their stability/instability properties

when R01 > 1 and ω(Ge)R10 < 1. Opposite to Fig 3, we

have two situations. (a) shows two feasible internal equilibria, the

lower equilibrium is unstable and the upper is stable. It presents

the bistability between the upper coexistence equilibrium and the

grassland equilibrium. We could not observe this situation previously,

when we used the Holling type II or a linear form of ω. Other point

is that in (b), grassland is GAS. Note that this is not the case with

Holling type II.

grass patterns. However, recall that in this work
our function ω(G) is a generic one and therefore
could take a linear or non-linear form. Concerning
the above sigmoidal functions, the results indicate
that Holling response type III qualitatively al-
lows richer behaviours for the Tilman’s model. To
perform our simulations, some parameter values
were based on the literature and others from the
ecological plausible domains such that they obey
the reality. The parameter values are summarized
in table III.

III. A NONSTANDARD ALGORITHM

In order to keep all qualitative properties of
our model, we design a nonstandard finite dif-
ference (NSFD) schemes ([3], [7], [33], [35]).

Fig. 7: Stability/instability properties of equilibria when R01 > 1

and ω(Ge)R10 > 1. Stable equilibria are shown with solid circles;

unstable equilibria are shown with open circles. Opposite to Fig

1, there are three internal equilibria where the null clines meet.

The intermediate equilibrium point is unstable and the lower and

upper equilibria are stable. A separatix which divides the plane into

two basins of attraction passes through the unstable equilibrium.

Depending on the initial condition, trajectories will evolve either to

the left or right (bistability).

TABLE III: Parameter values

Units Values References
f yr−1 0− 1 [55]
γG yr−1 0.4(1) − 4.6(2) (1) [35]

(2) [32]
γT yr−1 0.456− 7.2 [14]
µG ha.t−1.yr−1 0.1 Assumed
µT ha.t−1.yr−1 0.3 Assumed
δT yr−1 0.03− 0.3 [1]
δG0 yr−1 0.1 [55]
λfG yr−1 0.1(∗) − 1(∗∗) (∗) [54]

(∗∗) [1]
λfT yr−1 0.005(1∗) − 1(2∗) (1∗) [23]

(2∗) Assumed
γTG ha.t−1.yr−1 0.19 Assumed
α t.ha−1 0.54− 1.73 Assumed

Recent works have shown that NSFD schemes
are appropriate to simulate various compartmental
models in epidemiology ([5], [6], [21]) and in
ecology ([4], [20], [59]). These schemes are able to
preserve important properties, like global asymp-
totic stability of equilibria, backward bifurcation,
dissipativity properties, invariant sets, etc.

For the numerical approximation of the model
(1), we replace the continuous time variable t ∈
[0,∞) by discrete nodes tn = nh, n ∈ N where
h = ∆t > 0 is the step size. We wish to find
approximate solutions Gn and Tn at the time t =
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A. Tchuinté Tamen et al., A Generic Modeling of Fire Impact in a Tree-Grass Savanna Model...

(a)

(b)

Fig. 8: Stability/instability of equilibria when R01 < 1 and

ω(Ge)R10 < 1. Like in Fig 4: (a) shows two stable equilibria:

the stable grassland equilibrium and the stable woodland equilibrium

(bistability). Fig 6-(b) is different from Fig 4-(b). Here, tree and grass

coexistence does not occur; the woodland equilibrium is GAS. Then,

the stable internal equilibrium disappears when ω(Ge)R10 < 1.

Thus trees dominate the vegetation. This situation does not occur

when we use Holling type II.

tn. The standard denominator h in each discrete
derivative is replaced by a time-step function 0 <
φ(h) < 1, such that φ(h) = h+O(h2).

A possible simple NSFD scheme of Model (1)
reads as,



Gn+1 −Gn

φ(h)
= γGG

n − δG0G
n+1 − µGGnGn+1

−γTGTnGn+1 − λfGfGn+1,

Tn+1 − Tn

φ(h)
= γTT

n − δTTn+1 − µTTnTn+1

−λfT fω(Gn)Tn+1.
(7)

Let Xn = (Gn, Tn)T , be an approximation of
X(tn) = (G(tn), T (tn))T . A nonstandard matrix

form of (7) is given by

Xn+1 = A(Xn)Xn, (8)

where A(Xn) is a diagonal matrice with diag-
onal terms defined as follows:

A11 =
1 + φ(h)γG

1 + φ(h) (δG0 + λfGf + µGGn + γTGTn)
,

and,

A22 =
1 + φ(h)γT

1 + φ(h) (δT + λfT fω(Gn) + µTTn)
.

It is obvious that A(Xn) is nonnegative. Thus,

Xn ≥ 0⇐⇒ Xn+1 ≥ 0, ∀n ∈ N. (9)

Definition III.1. [7] A numerical scheme is called
elementary stable whenever it has no other fixed
points than those of the continuous system it
approximates, the local stability of these fixed
points is the same for both the discrete and the
continuous dynamical systems for each value of
h.

Let us set x∗ = (G∗;T∗)
T , an equilibrium of

the continuous model (1) and assume that x∗ is
hyperbolic.

Lemma III.1. The numerical scheme (7) and the
continuous system (1) have the same equilibria.

The proof of lemma III.1 is provided in Ap-
pendix B.

Let a function ϕ : R −→ R, satisfy
ϕ(z) = z +O(z2),

0 < ϕ(z) < 1,
(10)

for z > 0. The denominator function that is needed
in (7) can be taken to be

φ(h) =
ϕ(Qh)

Q
, (11)

where Q is any number which can capture the
dynamics of the model (1). Q satisfies

Q ≥ max

{
|λ|2

2|Reλ|

}
, (12)
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where λ denotes an eigenvalue of J∗ ≡ J(x∗)
which is the jacobian matrix of the right hand side
of system (1) at x∗. We have following results.

Lemma III.2. The jacobian matrix J∗ is diago-
nalisable.

See Appendix C for the proof of lemma III.2.

Theorem III.1. The NSFD scheme (7) is elemen-
tary stable whenever φ(h) is chosen according to
(11) and (12).

The proof of theorem III.1 is done in Appendix
D.

According to theorem III.1, the continuous
and discrete systems (1) and (7) have the same
dynamics, at least locally. We now provide some
numerical simulations in order to highlight some
bifurcation parameters.

IV. NUMERICAL SIMULATIONS AND

DISCUSSION

Using the previous scheme, we will show that
some parameters are bifurcation parameters.

3) Bifurcation due to fire period τ : In arid
and semi-arid savannas, frequent fire pressure in-
fluences significantly the balances between tree
and grass [45]. Moreover, fire is considered as a
major determinant of the ecology and distribution
of Africa’s savanna and grassland vegetation types
[12], [23], [61]. To understand the effects due to
fire period τ = 1

f , it is helpful to plot some
curves. By contrast to the explanations of [9],
which show that nonlinear ecosystem dynamics
lead to bistable ecological communities that can
exist in either a grassland or forest state under
the same disturbance frequency, our results suggest
that adding a nonlinear fire impact on trees leads
to the bistability of two tree-grass coexistence
equilibria under certain ecological thresholds. Fig.
9 above illustrates this situation. We can observe
how, the system can rapidly move between two
coexistence equilibria depending upon the start-
ing conditions. However, in response to gradual
changes in fire regimes, the ecosystem globally
changes. Further, at ecological thresholds, small
shifts in fire regime can lead to disproportionate
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Fig. 9: (a) phase portrait with λfT = 0.8, λfG = 0.6,

γTG = 0.19, f =
1

τ
, and τ = 3. Three internal equilibria:

E∗1 = (0.2; 3.64), E∗2 = (0.98; 3.22), and E∗3 = (1.88; 2.75).

The intermediate point is unstable and the lower and upper points are

stable. The trajectory of the system will eventually bifurcate to E∗1 or

E∗3 depending on its initial condition. (b) and (c) show respectively

the local stability of E∗1 and E∗3 .

changes in ecosystems and ecological surprises or
sudden changes in state [42]. For example, for one
fire every two years, eventually the configuration
will change. See figures 10 and 11 below.

Figures 11-(b) and 11-(c) show that standard
methods are not suitably designed for some com-
plex problems. In figure 11-(b), we have used
the ode45 routine in Matlab: the result is not
nice because the grass biomass becomes negative.
The positivity of the solutions and their bounded-
ness are not preserved. Conversely, figure 11-(c)
obtained with the nonstandard scheme preserves
all the previous qualitative properties; particularly
the global asymptotical stability of the woodland
vegetation ETe

.
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Fig. 10: The phase plane (a) shows two domains of attraction.

The system may move from one domain to another. Then, it can be

flipped from a stable state ETe = (0; 3.64) (figure (b)) to E∗3 =

(1.695; 2.32) (figure (c)) by crossing the unstable intermediate point

E∗2 . Here τ = 2.

The effect of an increase in f = 1
τ is to shift

the G-null cline down and to the left. Hence,
the point E∗1 will approach ETe

along the T-null
cline. Because the separatrix passes through the
point E∗2 , the domain of attraction of E∗1 must
shrink, whereas the domain of attraction of E∗3 will
expand. Then, for higher value of f , the points
E∗1 and ETe

coincide and change their stability.
ETe

becomes stable and E∗1 goes out of domain
(Fig 9 → 10). When we still increase f , there
is only one stable equilibrium for the system ETe

(Fig 10→ 11). All trajectories approach that point.

4) Bifurcation due to λfG: The specific loss of
grass λfG has an important impact in tree-grass
interaction (Figure 12 → 13). In the region of
bistability, the system converged either to a com-
pletely herbaceous state (grassland) or to a woody
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Fig. 11: (a): when τ = 1, there is no Tree-Grass equilibria. The

equilibrium ETe = (0; 3.64) is globally asymptotically stable. These

figures are done for λfT = 0.8, λfG = 0.6, τ = 1 and γTG =

0.19. Simulations are done with (b) the standard ODE45 algorithm;

(c) the nonstandard algorithm

equilibrium (forest), depending on the initial val-
ues of vegetation. In the region of bistability, a
coexistence equilibrium which is unstable exists.
Our results joint results of [8].

Increase λfG must shrink the domain of at-
traction of EGe

, whereas the domain of attraction
of ETe

will expand. For a higher value of λfG,
the points EGe

and E∗2 coincide and change their
stability. EGe

becomes unstable and there is no
coexistence equilibria (Figure 12 → 13). Then,
for larger values of the grass extinction rate, trees
become favoured [8].

5) Bifurcation due to γTG: Trees exert a com-
petitive pressure on grass via water [57]. Figure
14→ 15 illustrate the bifurcation due to γTG.

In Figure 14, there are two internal equilibria
: E∗1 is stable and E∗2 is unstable. The effect
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Fig. 12: (a) shows two basins of attraction: the separatrix which

passes through the unstable internal equilibrium E∗2 = (0.976; 1.12)

separates the two domains. Trajectories to the right of the separatrix

eventually reach EGe = (3.1; 0) and those to the left eventually

reach ETe = (0; 2.2).

(b) stable woody vegetation; (c) stable grassland.
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Fig. 13: Global stability of ETe = (0; 2.2).

of a decrease in γTG is to shift de G-null cline
up and to the right. The points E∗1 and E∗2 will
approach each other along the T-null cline and
coincide. Because the separatrix passes through
the point E∗2 , the domain of attraction of E∗1 must
shrink, whereas the domain of attraction of EGe

will expand. For a still lower value of γTG, there is

0 0.25 0.84 3.1 4
−1

−0.5

0

0.5

1.73

2.2

2.5

λ
fT

=0.7, λ
fG

=0.6, τ=1, γ
TG

=0.13

 

 

G−nullcline

T−nullcline

E
2

*
(Unstable)

E
Ge

(LAS)

E
*

1
(LAS)

(a)

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

time(year)

t.
h

a
−
1

λ
fT

=0.7, λ
fG

=0.6, τ=1, γ
TG

=0.13

 

 

Grass biomass

Tree biomass

(b)

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

time(year)

t.
h

a
−
1

λ
fT

=0.7, λ
fG

=0.6, τ=1, γ
TG

=0.13

 

 

Grass biomass

Tree biomass

(c)

Fig. 14: (a) Bistability between E∗1 = (0.84; 2.2) and EGe =

(3.1; 0). Up to the initial conditions, the system may reach: (b) E∗1 ,

or (c) EGe
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Fig. 15: (a) and (b) show that equilibrium EGe = (3.1; 0) is

GAS.

no internal equilibrium and EGe
is globally stable

(see Fig. 15).

V. CONCLUSION

It is well-known that fires shape the tree-grass
mixture in savanna-like vegetations as soon as
rainfall allows sufficient grass-biomass production
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(for mean annual rainfall above 600-700 mm). In
those ecosystems where rainfall is sufficient to let
woodlands and even closed canopy forests develop
and perpetuate, fire is indeed the main factor
enabling a long-lasting coexistence of tree and
grass components (and even the existence of grass-
land) in spite of climate conditions favourable to
forest. Simple tree-grass competition models have
proven their ability to render the main qualitative
behaviour of wet savanna systems with multiple
equilibria (i.e. grassland, forest and savanna; [1],
[36], [55]). But previous models can be questioned
with respect to the way in which the crucial fire
factor is modeled.

Here we have proposed a new tree-grass compe-
tition model which explicitly consider fire impact
on woody biomass as a generic monotonously
increasing function of the grass biomass, which is
seen as an indirect proxy of the ignitable dry grass
biomass available at the middle of the dry season.
This model deals with tree-grass patterns in arid
and semi-arid ecosystems and is able to predict,
several equilibria, among which pure cover types
i.e. bare soil, grassland, forest along with several
levels of tree-grass mixtures. Notably, the num-
ber of equilibria featuring tree-grass coexistence
depends on the characteristics of the function
ω(G) used to model the fire impact on trees.
Moreover, our results featured various bistability
situations: between forest and grassland; between
forest and one of the tree-grass equilibria with low
tree biomass; between grassland and another one
coexistence equilibrium with low-grass biomass;
and between two tree-grass coexistence equilibria
(a stable high-grass equilibrium and a stable low-
grass equilibrium). Thus the system can occupy
multiple stable states, and we have identified three
thresholds that summarize the long term dynamics
of our system: the threshold R10 which repre-
sents the net production of tree biomass relative
to the fire-induced biomass loss at the grassland
equilibrium, the threshold R01 which represents
the net primary production of grasses after fire
relative to the grass production loss due to the
tree biomass at the wooded savanna equilibrium,

and the threshold R∗11 related to the mixed tree-
grass equilibrium. Certainly, in the one hand, our
continuous tree-grass competition model shows a
wealth of possibilities some of which are still to be
explored in the light of more detailed assessment
of parameters values relating to specific locations
within the savanna biome. On the other hand, and
in spite of the potential of the present form of
the model, one may discuss the modeling options.
First, the tree compartment may also be split
into two sub-compartments to distinguish trees
sensitive to fires and trees that are not (for instance
small trees and tall trees). This has been done in
[59], where authors consider also a direct negative
impact of grass biomass on sensitive trees. This
assumption complexifies the continuous model and
allows to treating more diverse ecological situa-
tions. Second, the modeling of fire as a forcing
factor continuous in time may also be questioned.

Preliminary investigations suggest that discrete-
event models (with impulsive differential equa-
tions (IDE)) can be a way to handle more realisti-
cally the influence of fire on tree-grass dynamics.
For instance, preliminary results based on the
translation of our model into the IDE framework
show that periodic equilibria may be observed as
well as local and global equilibria. Although it is
beyond the scope of the present paper, the next
stage will be a thorough analysis of an impulsional
version of our model. It is potentially very im-
portant to know to what extent fire management
may influence vegetation dynamics in fire-prone
savanna-like ecosystems.
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P.

Appendix A: Proof of the proposition II.1

The jacobian matrix of the system (1) is given by

J(G,T ) =

 J11(G,T ) J12(G,T )

J21(G,T ) J22(G,T )

 ,

where,

J11(G,T ) = (γG − δG0 − λfGf)− 2µGG− γTGT,
J12(G,T ) = −γTGG,
J21(G,T ) = −λfT fω

′
(G)T, and

J22(G,T ) = (γT − δT )− 2µTT − λfT fω(G).

Now, we analyze the jacobian matrix near the
equilibria of system (1).

1) Stability of the bare soil (0; 0).
The jacobian matrix of system (1) at the
equilibrium point (0; 0) is

J(0,0) =

 (γG − δG0 − λfGf) 0

0 (γT − δT )

 .

The eigenvalues of J(0; 0) are
η1 = γG − δG0 − λfGf , and η2 = γT − δT .
In the domain Γ, we have η1 > 0, and
η2 > 0. Since, (0; 0) has two unstable
maniflolds, thus (0; 0) is always unstable.

2) Stability of the savanna grassland
equilibrium EGe

= (Ge; 0) =(
γG − δG0 − λfGf

µG
; 0

)
.

The jacobian matrix of system (1) at the
equilibrium point EGe

is given by

J(Ge,0) =

 J11((Ge, 0)) J12((Ge, 0))

0 J22((Ge, 0))

 ,

where,

J11((Ge, 0)) = −(γG − δG0 − λfGf),

J12((Ge, 0)) = −γTGGe, and

J22((Ge, 0)) = λfT fω(Ge)(R10 − 1).

R10 =
γT − δT
λfT f

1

ω(Ge)
.

The corresponding eigenvalues of J(Ge,0) are
ν1 = −(γG − δG0 − λfGf) < 0, and ν2 =
λfT fω(Ge)(R10 − 1). Therefore,
• If R10 < 1, then EGe

is asymptotically
stable.

• If R10 > 1, then EGe
is a saddle point

(unstable).
3) Stability of the wooded savanna equilibrium

ETe
= (0;Te) =

(
0;
γT − δT
µT

)
.

According to the system (1), the jacobian
matrix at the equilibrium point ETe

can be
written as

J(0,Te) =

 γTGTe(R01 − 1) 0

−λfT fω
′
(0)Te −(γT − δT )

 ,

where,

R01 =
γG − δG0 − λfGf

γTG

µT
γT − δT

.

The two eigenvalues of J(0,Te) are σ1 =
γTGTe(R01−1), and σ2 = −(γT −δT ) < 0.
We obtain these following conclusions,
• If R01 < 1, then ETe

is asymptotically
stable.

• If R01 > 1, then ETe
is a saddle point

(unstable).
4) Stabilility of the tree-grass coexistence equi-

librium E∗ = (G∗;T ∗).
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The fixed equilibrium point (G∗;T ∗) is de-
termined as the positive solution of system


(γG − δG0 − λfGf)− µGG∗ − γTGT ∗ = 0,

(γT − δT )− µTT ∗ − λfT fω(G∗) = 0.
(13)

Using (13), the jacobian matrix of the sys-
tem (1) at E∗ = (G∗;T ∗) is given by

J(G∗;T ∗) =

 −µGG∗ −γTGG∗

−λfT fω
′
(G∗)T ∗ −µTT ∗

 .

The eigenvalues of the jacobian matrix at the
internal equilibrium E∗ satisfy the following
relations
• θ1 + θ2 = −µGG∗ − µTT ∗ < 0, and
• θ1θ2 = γTGλfT fω

′
(G∗)G∗T ∗(R∗11 −

1),
where,

R∗11 =
µGµT

γTGλfT f

1

ω′(G∗)
= R10R01

ω(Ge)

ω′(G∗)Ge
.

Clearly, according to θ1θ2 which is the prod-
uct of the two eigenvalues of J(G∗;T ∗), we
have,
• If R∗11 < 1, then E∗ is unstable.
• If R∗11 > 1, then E∗is asymptotically

stable.
This end the proof of the proposition II.1.

Appendix B: Proof of lemma III.1

If x∗ is an equilibrium of the continuous system
(1), then we have


(γG − δG0 − λfGf)G∗ − µGG2

∗ − γTGT∗G∗ = 0,

(γT − δT )T∗ − µTT 2
∗ − λfT fω(G∗)T∗ = 0.

(14)
Multiplying both sides of the two equations of (14)
by φ(h), leads to the following system:

φ(h)γGG∗ = φ(h)(δG0 + λfGf + µGG∗ + γTGT∗)G∗,

φ(h)γTT∗ = φ(h)(δT + λfT fω(G∗) + µTT∗)T∗.
(15)

In (15), adding G∗ and T∗ in both sides of the
first equation and the second equation respectively,
gives



(1 + φ(h)γG)G∗ = [1 + φ(h)(δG0 + λfGf

+µGG∗ + γTGT∗)]G∗,

(1 + φ(h)γT )T∗ = [1 + φ(h)(δT + λfT fω(G∗)

+µTT∗)]T∗.
(16)

System (16) is equivalent to the following one
A11G∗ = G∗,

A22T∗ = T∗.
(17)

Thus, we have

A(x∗)x∗ = x∗. (18)

Then x∗ is an equilibrium of the discrete system
(7).

Appendix C: Proof of lemma III.2

The jacobian matrix of right hand side of the
system (1) at x∗ is given by

J∗ =

 J11(x∗) J12(x∗)

J21(x∗) J22(x∗)

 ,

where,

J11(x∗) = (γG − δG0 − λfGf)− 2µGG∗ − γTGT∗,
J12(x∗) = −γTGG∗,
J21(x∗) = −λfT fω

′
(G∗)T∗, and

J22(x∗) = (γT − δT )− 2µTT∗ − λfT fω(G∗).

The eigenvalues of J∗ are solutions of the follow-
ing equation

λ2 − tr(J∗)λ+ det(J∗) = 0, (19)

where

tr(J∗) = J11(x∗) + J22(x∗), and

det(J∗) = J11(x∗)J22(x∗)− J12(x∗)J21(x∗).
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The sign of each eigenvalue depends of the
discriminant ∆ of equation (19):

∆ = (tr(J∗))
2 − 4 det(J∗)

= (J11(x∗)− J22(x∗))2 + 4J12(x∗)J21(x∗).

If ∆ > 0, then J∗ is diagonalisable. We have

J12(x∗)J21(x∗) = γTGλfT fω
′
(G∗)T∗G∗ ≥ 0.

Then ∆ > 0. Therefore J∗ is diagonalisable.

Appendix D: Proof of theorem III.1

Here, we can easily adapted the proof of theorem
8 in [6]. We have shown in lemma III.1 that, the
NSFD scheme (7) has no extra fixed points than
those of (1). We have also shown in lemma III.2
that, the jacobian matrix J∗ is diagonalisable.
Thus, λ1 and λ2 being the eigenvalues of J∗, there
exists a transition matrix P such that

P−1J∗P = diag(λ1, λ2). (20)

The linearization of system (1) at x∗ reads as

dx̃

dt
= J∗x̃, (21)

where x̃ = x− x∗. System (21) is equivalent to

dỹ

dt
= diag(λ1, λ2)ỹ. (22)

Thus, applying the NSFD scheme (7) to system
(21) or (22), we obtain the linearized scheme

x̃n+1 = (I − φ(h)J∗)x̃
n, (23)

or

ỹn+1 = diag(
1

1− φ(h)λ1
,

1

1− φ(h)λ2
)ỹn. (24)

Set ϕ∗ = ϕ((I−φ(h)J∗)
−1). It follows from (24)

that,

ϕ∗ = max

{
1

|1− φ(h)λ1|
,

1

|1− φ(h)λ2|

}
. (25)

Recall that, if x∗ is asymptotically stable for (1),
then for all i ∈ {1, 2}, we have |Re(λi)| =
−Re(λi). Thus

ϕ∗ = max
1≤i≤2

{
1√

1 + 2φ(h)|Re(λi)|+ φ2(h)|λi|2

}
< 1,

(26)
which shows that x∗ is asymptotically stable for
the scheme (7).
If x∗ is unstable for (1), then there exists at least
one eigenvalue of J∗, λ with positive real part. We
then have,

1

|1− φ(h)λ|
=

1√
1− 2φ(h)Re(λ) + φ2(h)|λ|2

> 1,

(27)
whenever condition (12) holds. Therefore, x∗ is
unstable for scheme (7). Thus, the discrete scheme
(7) preserves stability/instability properties of the
continuous model (1).

Biomath 3 (2014), 1407191, http://dx.doi.org/10.11145/j.biomath.2014.07.191 Page 18 of 18

http://dx.doi.org/10.11145/j.biomath.2014.07.191

	Introduction
	The Mathematical Model
	Some qualitative results of the system (1)
	Model without fire 
	Model with continuous fire forcing 


	A nonstandard algorithm
	Numerical Simulations and Discussion
	Bifurcation due to fire period 
	Bifurcation due to fG
	Bifurcation due to TG


	Conclusion
	References

