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Abstract—Sixty six diverse compounds previously
reported as Lysophosphatidic Acid Receptor (LPA3)
inhibitors have been used to derive a mathematical
model based on partial least square (PLS) clustering
of 41 molecular descriptors and pICsg values. The
pre- and post- cross-validated correlation coeffi-
cient (R?) is 0.94462 (RMSE=0.21390) and 0.74745
(RMSE=0.49055) respectively. Bivariate contingency
analysis tools implemented in MOE was used to
prune the descriptors and refit the equations at a
descriptor-pICsq correlation coefficient of 0.8 cut-
off. A new equation was derived with R? and
RMSE values estimated at 0.88074 and 0.31388
respectively. Both equations correctly predicted the
95% of the pIC5q values of the test dataset. Prin-
cipal component analysis (PCA) was also used to
reduce the dimension and linearly transform the raw
data; 8 principal components sufficiently account for
more than 98% of the variance of the dataset. The
numerical model derived here may be adapted for
screening chemical database for LPA3 antagonism.
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I. INTRODUCTION

Quantitative  structure activity relationship
(QSAR) allows statistical analysis of experimental
data and building of predictive mathematical
models from the dataset. The numerical models
built using this approach has been successfully
implemented in screening of large database of
chemical compounds for hit-compound detection
[1]. In the presence of experimental dataset
[2], the success of QSAR depends on two
key factors: array of descriptors that optimally
represent the structural parameters required for
molecular interaction or reactions [3] and an
appropriate statistical learning and validation
algorithms [4]. In practice, physical properties

descriptors ~ (1D-descriptor),  pharmacophore
descriptors  (2D-descriptors) and geometrical
descriptors (3D-descriptors, often requires prior

knowledge of target protein binding-pocket) are
the most commonly used descriptor types for
QSAR modeling [5,6,7]. We seek to answer
a single question here, what combination of
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molecular predictors would numerically and
accurately predict the experimental antagonist
activities of LPAj3 inhibitors? When answered,
the mathematical relationship derived from the
descriptors will enable screening of chemical
databases for compounds exhibiting LPAg
antagonism required for the treatment of diseased
conditions such as ovarian cancer [8] and
neuropathic pain [9] with LPA3 etiology.

II. STATISTICAL BASIS OF QSAR MODELING
USING PARTIAL LEAST SQUARE METHOD

The QSAR/PLS modeling equations and algo-
rithms have been well described in MOE docu-
mentations [10]. Given m molecules of a training
dataset, suppose that each of the molecules is
described by an n-vector of descriptors x; =
(241, ..., Tin ), for one of the molecules denoted as
. Let y; be a representation of the experimental
result (pIC5y) for a molecule 7. A linear model
for y (the experimental result) is given by Eq. (1)
[11].

y=ap+a X, (1)

where ag is a scalar, and a” is a n-vector. If
each molecule has an importance weight (non-
negative) w representing the relative probability
that the associated molecule will be encountered,
and that the sum of all the weights are designated
as W. The mean square error is given as Eq. (2)
[12].
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Differentiating M SE with respect to the pa-
rameters satisfying the normal Egs (3,4,5,6 &7)
solvable by matrix diagonalization:
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Starting from the normal equations above,
an estimate of a can be computed if columns
of the weight matrix (G4) (Eq. (8)) is ob-
tained through Gram-Schmidt orthogonalization
[13] of the vectors generated by Krylov sequence
b, Sb, S?b, ...,S4 b [14]. The A PLS coeffi-
cient vector is then estimated using Eq. (9).

(®)
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a=GA(GESG ) 1GTb. ©)

Noting that g; is the column vectors of length
n and A is the degree of the PLS fit; an integer
less than or equals n. MOE [10] descriptor
calculator was used to generate the numerical
representations (a_aro, ASA, ASA_H, a_hyd,
SlogP, SlogP_VSAO, SlogP_VSAI, SlogP_VSA2,

SlogP_VSA3, SlogP_VSA4, SlogP_VSAS,
SlogP_VSAG®6, SlogP_VSA7, SlogP_VSAS,
SlogP_VSAY, SMR_VSAO, SMR_VSAL,
SMR_VSA2, SMR_VSA3, SMR_VSA4,
SMR_VSAS, SMR_VSAG, SMR_VSA7,
a_acc, Kierl, Kier2, Kier3, KierAl, KierA2,

KierA3, KierFlex, chiO, chiOv, chiOv_C, chi0_C,
chil, chilv, chilv_C, chil_C, chiral, chiral_u)
of the 66 (Supplementary fig. 1) randomly
selected LPAs antagonists retrieved from the
European Institute of Bioinformatics dataset
(https://www.ebi.ac.uk/chembl/) representing
our training dataset (CHEMBL3250). Using
the PLS method as described above, Egq.
(10) was generated relating the descriptors
to the pIC5y with a correlation coefficient
(R?) 0.94462 (RMSE = 0.21390) (Fig. 1, blue
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circles and line); when cross validated, R? was
estimated as 0.74745 (RMSE = 0.49055).
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Fig. 1: Scatter plot of the experimental pICsy Vvs.
plCsp-predictions of Eq. (10) (blue) and Eq. (12)
(green).

plCs0 =
3.57363 — 0.25353 - a_aro — 0.00361 - ASA
4 0.23510 - a_hyd + 0.05890 - SlogP

— 0.02287 - SlogP_V S A0
+0.00032 - SlogP_V SA1 + 0.03125 -
—0.02059 - SlogP_V SA3 + 0.02954 -
+0.07226 - SlogP_V SA5 + 0.02879 -
+0.04687 - SlogP_V SAT + 0.03836 -
+0.06880 - SlogP_V SA9 + 0.04912 -
+0.02536 - SMR_V SA1 + 0.08743 -
+0.00289 - SMR_VSA3 —0.01524 -
+0.04694 - SMR_V SA5 + 0.09067 -
—0.01442 -
—0.77650 -
—0.30735 -
—0.03578 -
—0.09573 -
+ 0.55223 -

SlogP_V S A2
SlogP_V S A4
SlogP_V S A6
SlogP_V S A8
SMR_VSAOQ
SMR_VSA2
SMR_VSA4
SMR_VSA6
SMR_VSAT+ 0.18393 - a_acc
Kierl —0.43968 - Kier2

Kier3 —0.43752 - KierAl

KierA2 + 0.76916 - Kier A3
KierFlex 4+ 0.00332 - chi0

chiOv + 0.13554 - chiOv_C

— 0.16530 - chi0_C + 0.59498 - chil

+ 0.05911 - chilv — 0.93262 - chilv_C

— 1.22808 - chil C — 0.16986 - chiral

— 0.56204 - chiral_u. (10)
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Fig. 2: Bar chart representations of the residual (Ex-
perimental plCjo-Predicted pICrq values of the test
dataset. Only 1 out of tested compounds (compound 23,
see supplementary Fig. 2 for structural details) showed
> 1.0 pICjxg unit (indication of wrong prediction).

Noting that root mean square error (RMSE) is
the square root of MSE function (Eq. (2)) at a
given parameter value and the correlation coef-
ficient (R?) is 1-MSE/YVAR with values raging
between 0 and 1 (0= no fit, 1 is perfect fit and
Y VAR is the sample variance of the y; values). The
predictive suitability of our equation was tested
on 23 compounds (Supplementary Fig. 2) with
experimentally determined /C'5y for LPA3 antag-
onism. If we assume that residual value above 1.0
pIC5o unit represents poor fitting. Our data (Fig.
3) suggest that Eq. (10) accurately predicted 22 of
the 23 test compounds.

III. DESCRIPTOR CONTINGENCY ANALYSIS

To determine the level of significance of each of
the descriptors to the overall equation and we per-
formed contingency analysis. The data presented
here provides a window of decision on whether
pruning of the descriptor set is required. In MOE
[10], QSAR-contingency tool performs a bivariate
contingency analysis for each descriptor and the
experimental activity value and produces a table of
correlation coefficients (Eq. (11)) for each descrip-
tor given that X represents a randomly selected
molecular descriptor and Y is a randomly selected
activity value for a randomly selected sample m,
Var(X) and Var(Y), then the covariance of
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the random variables X and Y is defined to be
Cov(X,Y)=EXY)—-EX)E(Y) [10, 15].

[E(XY) - E(X)E(Y)]?

RS = Var(X)Var(Y)

(1)

Given that the values of R? ranges from 0 to 1,
and 1 represents a perfectly linear correlation, we
therefore proposed that only descriptors R? values
> 0.8 are useful and that the descriptors outside
this range can be pruned. Our data suggest that 31
out of the original 41 descriptors have R? values
> 0.8 (Fig. 3, Supplementary Table 1). With the
exclusion of the descriptors with unsatisfactory
coefficient, QSAR is re-calculated using the resid-
ual set of descriptors. New numerical relationship
was generated (Eq. (12)) with R? (0.88074) and
RMSE values (0.31388). The scatter plot of the
predicted p/Csp and the experimental values for
the new Eq. (12) is given in Fig. 1 (green circles
and line).

IpICs =

2.23199 — 0.005162ASA — 0.005162ASA_H

— 0.48596xa_hyd — 0.33917xSlog P
—0.05298xSlogPyy S A0 — 0.03967xSlog Py S Al
—0.02243xSlogPy SA2 + 0.01681xSlog Py S AT

+ 0.02107zSlog Py S A9
—0.00757xSM Ry S A0 — 0.00087xSM Ry S Al

— 0.00089xSM Ry S A3
—0.01173zSM Ry S A4 4 0.009552.S M Ry S A5

—0.014122SM Ry S A6

— 0.02508xSM Ry SAT — 0.26771x Kierl

+ 0.15306x Kier20.56650x Kier3

—0.30504x Kier A2 + 0.98837x Kier A3

— 0.28849x Kier Flex + 0.48535xchi0

+ 0.90693xchiOv 4+ 0.10234xchiOvc

+ 0.24407xchi0c + 0.66154xchil

+ 0.36006xchilv — 1.03589xchilvg

—0.62474xchilc — 0.36725za,70. (12)

When this equation was used for predicting the
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Fig. 3: Bar chart representations of Descriptor-
experimental pICjq correlation coefficient. Only 31 out
of 41 descriptors lie above 0.8 coefficient cutoff.
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Fig. 4: The 3D plot of the first three principal compo-
nents. Each point represents a compound in the training
dataset and each colour represents a distinct cluster of
pICsxg values.

plCsp values of the test set, only one compound
lies above the 1.0 pIC5y unit cutoff (data not
shown). Thus, Eq. (12) is less bulky and as ac-
curate as Eq. (10) in predicting LPA3 antagonism.

IV. PRINCIPAL COMPONENT ANALYSIS OF
EQUATION

We sought to further study the dataset descrip-
tors along the principle components through the
reduction of the dimensionality and linear trans-
formation of the raw data [13]. Given the initial
66 training dataset compounds (represented as m)
and for one of the compounds say ¢ its descriptors
are represented by n-vector of real numbers x; =
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(%1, .oy Tin), Where n = 1 — 31, new Eq. (12).
Assuming that each molecule ¢ has an associated
importance weight w;, (non-negative, real number)
and that the weights is relative probability that
the associated molecule z; will be encountered
(adding up to 1); If W denotes the sum of all
the weights then, the eigenvalues and eigenvectors
for the final data are estimable from the raw data
using Eq. (1). If S is a symmetric, semi-definite
sample covariance matrix, S can be diagonalized
such that S = QTDDQ (Q is orthogonal, D is
diagonal-sorted in descending order from top left
to bottom right) [13, 14].

The effect of the each of the principal com-
ponents (eigenvectors) on the condition and the
variance shows that nine (8) principal components
sufficiently accounts for more than 98% of the
variance in the dataset [15]. The 3 D-scatter plot of
the first three principal components (PCA1, PCA2
and PCA3) with respect to pIC5 values is shown
in Fig. (4); each point in the plot corresponds to
a dataset molecule colored according to clustered
plC5g values.
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V. CONCLUSION

Given the good mathematical correlation be-
tween the set of descriptors and LPA3 antagonism,
it is not unusual to propose that the equation is
prejudiced for those set of compounds with highly
related descriptor properties and therefore may
not be a universal formula for LPA3 antagonist
screening. That said, it will however capture the
compounds with structural properties found within
the dataset accurately and therefore may be piped
as into ligand-based screening protocol for more
successful hit-compound identification.
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APPENDIX

Supplementary Table 1.0 Showing Correlation coefficient of each Descriptor

SIN Desciptors
SlogP_VSAS 057623
chiral u 065734
SlogP_VSA4 0.66609
SlogP_VSAS 06996
chiral 072218
SMR_VsA2 078566
SlogP_VSA8 0.78621
0.78922

Corr. Coeficient

o mNaw e w N =

aacc
SlogP_VSA3
KierA1

079094
079264

Scatter plot of the experimental pIC5y vs. pICsg-
predictions of Eq.(10) (blue) and Eq. (12).
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