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Abstract—Solutions of a model reaction-diffusion
system inspired by a model for hair follicle initiation
in mice are constructed and analysed for the case
of a one-dimensional domain. It is shown that
all regular spatially heterogeneous solutions of the
problem are unstable. Numerical tests show that the
only asymptotically stable weak solutions are those
with large jump discontinuities.
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I. INTRODUCTION

A parabolic reaction-diffusion system is pro-
posed in [14] to model the WNT signaling path-
way in primary hair follicle initiation in mice.
The authors in [14] use a modified version of the
well-known activator-inhibitor (Gierer-Meinardt)
model [3], [4] with saturation and without source
terms. An important characteristic of the model is
that both species share the same (up to scaling)
non-linear production term for both activator and
inhibitor.

A modified version of this model was stud-
ied in [12] as a proxy to reduce the parameter
complexity and to capture the dynamics of the
original model. Global existence of solutions of
both the original and the modified systems was
demonstrated by estimating time-independent up-
per bounds for the solutions. A parameter space
analysis indicated the range of the existence
of Turing patterns. It is demonstrated that het-
erogeneous solutions arise not only because of
diffusion-driven instability, but also due to conver-
gence to far-from-equilibrium solution branches.

This short note compares stationary solutions
in the singularly perturbed problem (letting the
inhibitor’s diffusion rate tend to 0) and the reduced
problem (setting the inhibitor’s diffusion rate equal
to 0) based on the modified equations from [12]
for the case of a one-dimensional domain.

Stability of the stationary solutions is analysed.
We show that all strictly positive, spatially hetero-
geneous, regular solutions of the reduced problem
are unstable. Furthermore, for some parameter
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values, the spatially homogeneous solution is also
unstable. The only asymptotically stable solutions
are weak solutions where the activator exhibits
jump discontinuities.

This work is organised as follows: first we
define the model system and its reduced variant
as a coupled ODE-reaction-diffusion system. Then
we restrict our attention to a one dimensional
domain and convert the problem to an auxiliary
two-point boundary value problem. Energy meth-
ods are employed to construct the regular and
weak stationary solutions. Finally we establish the
stability properties of the different solutions.

II. THE MODEL PROBLEM

Let Ω ∈ Rn be a bounded domain with suf-
ficiently regular boundary ∂Ω. Consider the fol-
lowing problem that describes the spatio-temporal
dynamics of two interacting species

ut = ε2∆u+ f(u, v),

vt = d∆v + g(u, v),

∂xu(·, x) = ∂xv(·, x) = 0, x ∈ ∂Ω,

(1)

with nonlinearities f, g given by

f(u, v) = ρu
u2

v(1 + κu2)
− µuu,

g(u, v) = ρv
u2

v(1 + κu2)
− µvv.

(2)

The functions u = u(t, x), v = v(t, x) describe
the concentrations of the species at x ∈ Ω for
time t > 0. The initial conditions u(0, ·), v(0, ·) are
sufficiently smooth so that the second derivatives
in space are well-defined.

The model parameters ρu, ρv, µu, µv, κ have the
following physical interpretation. κ is saturation
parameter for the production law for u and v,
which is scaled respectively by ρu, ρv. µu, µv
denote the decay rates of u and v. The diffusion
constants ε, d describe the diffusion speeds in the
domain Ω. The model equations are based on the
equations proposed in [14] to model hair follicle
spacing in mice.

Of particular interest are the properties of the
non-negative stationary solutions of (1), i.e. those

pairs (u, v) such that ut = vt = 0. These are those
pairs (u, v) solving the problem of two coupled
elliptic PDEs

0 = ε2∆u+ f(u, v),

0 = d∆v + g(u, v),

∂xu(·, x) = ∂xv(·, x) = 0, x ∈ ∂Ω.

(3)

A. Diffusion-driven instability

The mechanism of diffusion-driven (or Turing)
instability has been used used in mathematical
and biological models to motivate the emergence
of patterns and forms (spatial heterogeneities) in
development processes. The classical form of the
mechanism is described by a reaction-diffusion
model system with two morphogens that react and
diffuse in the domain producing heterogeneous
spatial patterns [10].

Let us recall the conditions for diffusion-driven
instability of a steady state (û, v̂) of (3). The
Jacobian of the reaction-kinetic system ut =
f(u, v), vt = g(u, v) evaluated at this steady state
is

J =

(
fu fv
gu gv

)
. (4)

From the definition of diffusion-driven instability,
in the absence of diffusion d = 0, the steady
state (û, v̂) must be locally unstable to spatially
inhomogeneous perturbations ũ(t, x) = u(t, x) −
û, ṽ(t, x) = v(t, x) − v̂, but locally stable to spa-
tially homogeneous perturbations ũ(t) = u(t) −
û, ṽ(t) = v(t)− v̂.

Under the Ansatz

ũ(t, x) = ueikxeλt,

ṽ(t, x) = veikxeλt,

where u,v are scalars, ũ(t, x), ṽ(t, x) will be
growing in time t if the eigenvalue λ associated
to the wave number k > 0 satisfies Reλ > 0. For
the spatially homogeneous perturbation (k = 0)
the eigenvalue λ associated to the wave number
k = 0 satisfies Reλ < 0.

Both conditions can be written in terms of the
dispersion relation M(λ, k) relating the eigen-
value λ to the wavenumber k. The conditions for
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diffusion-driven instability can be formulated as
follows. First, we require the equation M(λ, 0) =
0 to have solutions with Reλ < 0. Second, there
must exist at least one k0 > 0 such that the equa-
tion M(λ, k0) = 0 has a solution with Reλ > 0. In
particular, this implies that the diffusion constants
must be different d 6= ε2.

In particular biological applications the diffu-
sion constant ε2 may be so small to be negligible
or u may not diffuse at all. The reduced problem
with ε = 0 may also exhibit diffusion-driven insta-
bility, but the above conditions may have different
significance. In particular, the properties of the
stationary solutions cannot be derived from a linear
stability analysis of the spatially homogeneous
steady state because these solutions are far-from-
equilibrium solutions.

We remark that spatial heterogeneities arise also
in reaction-diffusion systems where the nonlinear-
ities do not even allow the existence of a spatially
homogeneous steady state (û, v̂) [12].

In this note, our attention is restricted to the one-
dimensional case Ω = [0, 1]. For simplicity we set
ρu = ρv = 1 in (2).

We begin by providing some a priori estimates
for the solutions u, v > 0 of the stationary prob-
lem (3).

B. A priori estimates

Throughout the rest of the discussion we let Ω =
[0, 1].

Lemma 1. Let f, g be given by (2). Assume
that the pair (u, v) with positive u, v ∈ C2(Ω)
solves (3). Then

max
Ω

u ≤ e
√
µu/ε min

Ω
u,

max
Ω

v ≤ e
√
µv/d min

Ω
v.

Proof: For shortness we shall prove this for v.
The computations for u > 0 are analogous. Since
we are looking for a solution (u, v) > 0, we can
divide both sides of the equation for v in (3) by v
and integrate over Ω,

µv = d

∫ 1

0

∆v

v
dx+

∫ 1

0

u2

v2(1 + κu2)
dx.

Integration by parts using the boundary condition
∂xv(0) = ∂xv(1) = 0 gives

µv = d

∫ 1

0

(
∂xv

v

)2

dx+

∫ 1

0

u2

v2(1 + κu2)
dx,

whence ∫ 1

0

(
∂xv

v

)2

dx ≤ µv
d
.

Choose xmin, xmax ∈ Ω such that

v(xmin) = min
Ω
v, v(xmax) = max

Ω
v.

Then

log max v − log min v =

∫ xmax

xmin

∂xv

v
dx

≤ |xmin − xmax|1/2 ·
∣∣∣∣∣
∫ xmax

xmin

(
∂xv

v

)2

dx

∣∣∣∣∣
1/2

≤
√
µv
d
,

implying max v ≤ e
√
µv/d min v.

Theorem 1. Let (u, v) ∈ C2(Ω) solve (3). Then
there exist monotone functions ψ↑, ψ↓, α such that
α,ψ↑ are monotone increasing, ψ↓ is monotone
decreasing, and

ψ↑(ε) < u(x) < ψ↓(ε), (5)

α(min
Ω
u) ≤ v(x) ≤ α(max

Ω
u). (6)

The functions ψ↑, ψ↓, α are independent of d.

Proof: Solving the equation g(u, v) = 0 (2),
v can be expressed in terms of u as

v = α(u) :≡
(

u2

µv(1 + κu2)

)1/2

.

α(u) is a monotone increasing function of u.
Observe that for a fixed u g(u, v) < 0 iff v > α(u)
and g(u, v) > 0 iff v < α(u).

Choose xmin, xmax ∈ Ω such that

v(xmin) = min
Ω
v,

v(xmax) = max
Ω

v.
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Because ∆v(xmin) ≥ 0,∆v(xmax) ≤ 0 the equal-
ity d∆v + g(u, v) = 0 implies

g(u(xmin), v(xmin)) ≤ 0,

g(u(xmax), v(xmax)) ≥ 0.

Therefore,

min v = v(xmin) ≥ α(u(xmin)),

min v = v(xmax) ≤ α(u(xmax)),

and due to monotonicity of α we obtain

min
Ω
v ≥ α(min

Ω
u),

max
Ω

v ≤ α(max
Ω

u),

whence

α(min
Ω
u) ≤ v(x) ≤ α(max

Ω
u), x ∈ Ω. (7)

From the equation f(u, v) = 0 we express

v = β(u) :≡ u

(1 + κu2)µu
,

for u > 0. Observe that for a fixed u > 0
f(u, v) < 0 iff v > β(u) and f(u, v) > 0 iff
v < β(u).

Choose xmin, xmax ∈ Ω such that

u(xmin) = min
Ω
u,

u(xmax) = max
Ω

u.

Because ∆u(xmin) ≥ 0,∆u(xmax) ≤ 0 the equal-
ity ε2∆u+ f(u, v) = 0 implies

f(u(xmin), v(xmin)) ≤ 0,

f(u(xmax), v(xmax)) ≥ 0.

Therefore,

v(xmin) > β(u(xmin)),

v(xmax) < β(u(xmax)).

We obtain the following estimates

max
Ω

v(x) > β(min
Ω
u), min

Ω
v(x) < β(max

Ω
u).

(8)
Combining estimates (7) and (8) we have

β(min
Ω
u) < α(max

Ω
u),

β(max
Ω

u) > α(min
Ω
u).

Note that α is monotone increasing in u, so the
estimates in Lemma 1 transforms these inequalities
to

β(min
Ω
u) < α(e

√
µu/ε min

Ω
u),

β(max
Ω

u) > α(e−
√
µu/ε max

Ω
u).

Therefore, minu ≥ ζ1, where ζ1 is the solution of

β(z) = α(e
√
µu/εz), (9)

and maxu ≤ ζ2 , where ζ2 is the solution of

β(z) = α(e−
√
µu/εz). (10)

Hence we obtain the functions ψ↑, ψ↓ by setting

ψ↑(ε) = ζ1(ε), ψ↓(ε) = ζ2(ε),

and applying Lemma 2 completes the proof.
Remark: The functions ψ↑, ψ↓ may have jump

discontinuities.
To estimate the behaviour of ζi, i = 1, 2, we

need

Lemma 2. The equation (9) has as unique solution
ζ1 = 0 if µv < µ2

u. Otherwise, the equation (9) has
a unique non-negative solution ζ1(ε) which is an
increasing function of ε. Furthermore, as ε → 0,
ζ1(ε)→ 0, and as ε→∞, ζ1(ε)→ 1

κ(µv

µ2
u
− 1).

The equation (10) has a unique non-negative
solution ζ2(ε) which is a decreasing function of ε.
Furthermore, as ε → 0, ζ2(ε) → ∞, and as ε →
∞, ζ2(ε)→ 0 if µv < µ2

u and ζ2(ε)→ 1
κ(µv

µ2
u
− 1)

else.

Proof: Note that α(0) = β(0) = 0, and α′ >
0, while β has a maximum at z = 1√

k
.

Let s = e±
√
µu/ε, C = µv

µ2
u

. The problem reduces
to solving the equation β(z) = α(sz) or

C

(1 + κz2)2
=

s2

1 + κs2z2
.

This is a quadratic in z2,

s2 − C + (2− C)κs2z2 + κ2s2z4 = 0. (11)

This quadratic has real solutions if its discriminant
D = κ2s2(C2s2 + 4C − 4Cs2) ≥ 0.
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First, note that s = e
√
µu/ε ≥ 1, so by

Descartes’ rule of signs (11) has no positive so-
lutions for C < 1. For 1 ≤ C < 2 (11) has a
positive solution iff C > s2. The positive solution
of (9) is the positive square root ζ1 =

√
Z where

Z(s) =
C − 2

2κ
+

√
C2s2 + 4C − 4Cs2

2κs
.

For C ≥ 2 (11) has at least one positive solution
iff D > 0.

Observe that as ε → ∞, s → 1 so the positive
solution ζ1 tends to the square root of

lim
s→1

Z(s) =
C − 1

κ
.

Second, note that s = e−
√
µu/ε ≤ 1, so D > 0

(solutions are always real). For C < 1, Descartes’
rule of signs shows (11) has a positive solution iff
s2 < C. For C ≥ 1 Descartes’ rule of signs shows
that (11) has always one non-negative solution.

Hence we conclude that for µv

µ2
u
< 1, ζ1 = 0, and

for µv

µ2
u
≥ 1, the solution ζ1 of (9) is an increasing

function of ε, and

lim
ε→0

ζ1(ε) = 0,

lim
ε→∞

ζ1(ε) =

√
1

κ
(
µv
µ2
u

− 1).

Furthermore, ζ2(ε)→∞ as ε→ 0, while

lim
ε→∞

ζ2(ε) = 0 for
µv
µ2
u

< 1,

but

lim
ε→∞

ζ2(ε) =

√
1

κ
(
µv
µ2
u

− 1) for
µv
µ2
u

≥ 1.

In the singular-perturbation limit ε → 0, the
problem (3) will exhibit spike solutions with the
spikes in u having small support in Ω. We refer
to [2], [15] for construction and analytic properties
of such solutions. Fig. 1 shows a typical spike
solution.

Fig. 1. A pattern with spikes. Parameter values are ε =
0.01, d = 0.1, µu = 1, µv = 1.2.

C. Reduced problem

We show that the reduced problem (ε = 0) ad-
mits another class of solutions. By setting ε = 0 in
(3) the resulting reduced problem is an algebraic-
PDE system

0 = f(U, V ),

0 = d∆V + g(U, V ),

0 = ∂xV, x ∈ ∂Ω.

(12)

In the following, we shall characterise solutions
of (12) and their stability properties.

Let us recall some basic definitions. A solution
(U, V ) to the problem (12) is called regular if
there exists a function h ∈ C1(R) such that
the a solution U(x) of f(U, V ) = 0 given by
U(x) = h(V (x)) for all x ∈ Ω.

If the function h is not unique, there is more
than one way to choose the solution for U in
the first equation in (12), so the problem may
have only piecewise continuous solutions U on Ω.
Hence it is convenient to study such solutions in
a weak sense. The weak solution (U, V ) of (12)
belongs to the class L∞(Ω)×H1(Ω) and satisfies

0 = f(U, V ), a.e. x ∈ Ω,

d〈∇V,∇ψ〉 = 〈g(U, V ), ψ〉, ψ ∈ H1(Ω),
(13)

where 〈·, ·〉 denotes the H1-scalar product.

Proposition 1. Suppose the problem (3) has a spa-
tially homogeneous steady state (û, v̂). Diffusion-
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driven (Turing) instability at (û, v̂) occurs if u is
self-activating there, in other words, fu(û, v̂) > 0.

Proof: The dispersion relation is a quadratic
in λ. Solving the dispersion relation M(λ, 0) = 0
for λ we obtain the conditions

trJ = fu + gv < 0, (14)

det J = fugv − fvgu > 0, (15)

so that Reλ1,2 < 0. The derivatives are evaluated
at (û, v̂).

Next we solve the dispersion relation
M(λ, k) = 0 for λ. By Vieta’s formulae

λ1 + λ2 = −dk2 + trJ,

λ1λ2 = −fudk2 + det J,

whence λ1 + λ2 < 0, for all k > 0. If fu ≤ 0,
λ1λ2 > 0, so Reλ1,2 < 0 for all k > 0, and no
diffusion-driven instability would be possible. This
proves the claim.

III. AUXILIARY PROBLEM

In this section, we consider an auxiliary elliptic
problem when at least one of U, V > 0 on
some subinterval of Ω. Suppose that the equation
f(U, V ) = 0 can be solved (not necessarily)
uniquely on a subset I ⊂ Ω. Let U(x) =
h(V (x)), x ∈ I , with h ∈ C1(R).

Then every regular solution of (12) on I satisfies
the elliptic problem

0 = d∆V + φ(V ), x ∈ I, (16)

with φ(V ) = g(h(V ), V ).
The solutions of (16) can be constructed using

an energy method for two-point boundary value
problems. There are two cases for the function φ,
depending on whether U = 0 on I or U > 0 on
I . Let us consider each case separately.

If U(x) = 0, x ∈ I , we have h ≡ 0, so φ =
−µvV almost everywhere on I . The problem (16)
is reduced to the elliptic problem (17),

0 = d∆V − µvV, x ∈ I, (17)

which has a non-trivial solution only under Dirich-
let or Robin boundary conditions.

Next we classify the solutions when h 6≡ 0 on
I .

We solve formally for U in (12),

U = hi(V ) =
1±

√
1− 4κµ2

uV
2

2κµuV
, i = 1, 2.

(18)
and use

U2

V (1 + κU2)
= µuU, x ∈ I.

When U > 0, the equation f(U, V ) = 0 may have
locally at most two solutions. Then (16) becomes

0 = d∆V + µuhi(V )− µvV, (19)

so we must solve a two-point boundary-value
problem in two cases i = 1, 2 (for each solution
branch for U ),

0 = ∆V +
1

d
(µuhi(V )− µvV ), x ∈ I. (20)

We set

φi(y) =
1

d
(µuhi(y)− µvy)

=
1

d

(
1±

√
1− 4κµ2

uy
2

2κy
− µvy

) (21)

with φ1 denoting the choice of positive square root
and φ2 denoting the choice of negative square root
in (21).

The auxiliary elliptic problem is thus formu-
lated: Solve for V = y(x) such that

0 = y′′ + φi(y), x ∈ I, i = 1, 2. (22)

Recall that only solutions y ∈ (0, 1
2µu

√
k
) are

considered in order for the square root in (21) to
be real-valued.

Problem (22) can be rewritten as the equivalent
system (23) of first-order equations

y′ = z, z′ = −φi(y). (23)

Note that y < 1
2µu

√
κ

in order for the square root
in (21) to be well-defined in R. Hence, without loss
of generality we may assume that V < 1

2µu

√
κ

on
I . Else, we restrict the domain to a subset {x :
V (x) < 1

2µu

√
κ
} ⊂ I .
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We employ an energy formulation to describe
the solutions y, z of (23). We set E as the total
energy, U as the potential energy. The first integral
of (23) is

z2

2
+ U(y) = E , U ′ = φi. (24)

To see this, differentiate the left-hand side of (24)
and apply (22) and (23),(

z2

2
+ U(y)

)′
= zz′ + U ′y′ = zz′ + φiz = 0.

Let U have a local minimum at y0. Choose total
energy E such that U(0) > E > U(y0). According
to [1, Satz, p.92], for E > U(y0), the equation
(24) defines a closed smooth curve in the (y, z)-
plane, which is symmetric with respect to the y-
axis. Then there exists some t > 0 such that
z(0) = z(t), corresponding to a solution of prob-
lem (22) under homogeneous Neumann boundary
conditions on (0, t).

As in [1] we express the solution y of the ODE
using (24) as

y′ = ±
√

2(E − U(y)).

Choosing the positive value of y′ (corresponding
to a monotone increasing y), rearranging the above
as

1 =
y′√

2(E − U(y))
(25)

and integrating both sides of (25) over x, we obtain
for every L > 0,

L =

∫ L

0

y′(x)√
2(E − U(y(x))

dx

=

∫ y(L)

y(0)

dy√
2(E − U(y))

.

(26)

Let 0 < y1 < y0 < y2 <
1

2µu

√
κ

be such that
U(y1) = U(y2) = E , but U ′(yi) 6= 0, i = 1, 2.
Then the integral

I(E) =

∫ y2

y1

dy√
2(E − U(y))

:=
L

2
. (27)

is convergent [1, p.93]. Then (26) defines im-
plicitly a continuous solution y of (22) such that

y(0) = y1, y(L2 ) = y2. This solution can be con-
tinued periodically on R and the periodic function
has a period L

2 .
Therefore, every such closed curve for suitable

L will correspond to a solution of the system (23)
under homogeneous Neumann boundary condi-
tions on (0, L2 ). The properties of the solutions
of (23) will depend, therefore, on the properties
of the integral (27), I(E). The following lemma
is a modification of a well-known result. For the
idea of proof we refer to [11, Lemma 3.1] or [5,
Lemma 5.3-5.5].

Lemma 3. Let U have a local minimum at x0

and a local maximum at 0. Suppose 0 < x1 <
x0 < x2 are such that U(x1) = U(x2) =
E,U ′(x1),U ′(x2) 6= 0. Then I(E) is a continuous
function in E, and

lim
E→U(x0)

I(E) =
π

U ′′(x0)
, lim

E→U(0)
I(E) =∞.

The extrema of the potential energy Ui depend
on the zeros of the functions φi. Let us examine
φi’s zeros for i = 1, 2. Note that in order for the
square root in (21) to be real-valued, y > 0 is such
that 1 − 4κµ2

uy
2 ≥ 0, so we search for zeros in

the interval (0, 1
2µu

√
k
).

Lemma 4. The equation φ1(y) = 0 has no
solutions in (0, 1

2µu

√
k
). For µv < µ2

u or µv > 2µ2
u,

φ2(y) = 0 has no solution in (0, 1
2µu

√
k
). For

µ2
u < µv < 2µ2

u, the solution of φ2(y) = 0 is
y0 =

√
µv−µ2

u

κµ2
v

.

Proof: After rearrangement of the terms and
squaring both sides, we obtain

1− 4κµ2
uy

2 = (1− 2κµvy
2)2,

and after cancellation of y2 from both sides,
κµ2

vy
2 + µ2

u − µv = 0. For µv < µ2
u, the left-

hand side is strictly positive, hence neither φi has
a positive root.

If µv > µ2
u, a direct computation shows that the

solution of the above quadratic is y0 =
√

µv−µ2
u

κµ2
v

.
Yet, y0 is a root of φ2 only.
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When µv < 2µ2
u,

1− 2κµvy
2 > 1− 4κµ2

uy
2 ≥ 0,

so

φ1(y) =
1

d

(
1− 2κµvy

2 +
√

1− 4κµ2
uy

2

2κy

)
> 0.

Therefore, for µ2
u < µv < 2µ2

u, φ1(y) = 0 has no
solution y ∈ R+.

For µv > 2µ2
u, the number y0 lies outside the

domain of definition of the square root, (0, 1
2µu

√
k
).

Hence none of φi, i = 1, 2 has a zero in
(0, 1

2µu

√
k
).

Now we are able to characterise the extrema of
the potential energies U1,U2 on (0, 1

2µu

√
k
).

Lemma 5. Let µu, µv > 0. The potential energy
U1 has a maximum at 1

2µu

√
k

and no local minima.

• for µv < µ2
u, U2 has a minimum at 0;

• for µv ∈ (µ2
u, 2µ

2
u), U2 has a local maximum

at 0 and a local minimum at y0 =
√

µv−µ2
u

κµ2
v

;
• for µv > 2µ2

u, U2 has a maximum at 0.

Proof: Lemma 4 implies that φ1 never
changes sign on the interval (0, 1

2µu

√
k
). Thus, it is

clear that U1 has no local extrema in (0, 1
2µu

√
k
).

In fact,
lim
y→0
U1(y) = −∞,

and U1 has a maximum at 1
2µu

√
k

.
Furthermore, U2 has an extremum at y0 =√
µv−µ2

u

κµ2
v

, see Lemma 4. Note that for this y0,√
1− 4κµ2

uy
2
0 =

∣∣∣∣1− 2µ2
u

µv

∣∣∣∣ =
2µ2

u

µv
− 1.

Next, we compute U ′′2 (y0) = φ′2(y0). Note that

φ′2(y) =
1

d

(
1

2κy2
√

1− 4κµ2
uy

2
− 1

2κy2
− µv

)
.

If µv ∈ (µ2
u, 2µ

2
u),

U ′′2 (y0) = φ′2(y0) =
2µv(µv − µ2

u)

d(2µ2
u − µv)

> 0.

Hence, U2 has a local minimum at y0.

If µv = 2µ2
u, the point y0 = 1

2µu

√
κ

coincides
with the endpoint of the interval, so it is of no
interest.

We compute by L’Hôpital’s rule

lim
y→0

φ2(y) = 0,

showing 0 is an extremum for U2. Next we ex-
amine the extremum properties of 0 by applying
again L’Hôpital’s rule

lim
y→0

φ′2(y) =
1

d
(µ2
u − µv).

Therefore, 0 is a maximum for U2 if µ2
u < µv, and

a minimum if µ2
u > µv. This completes the proof.

Lemma 5 and [1, Satz, p.92] allow us to relate
the existence of regular solutions of problem (12)
on Ω to the extrema of the potential energies asso-
ciated to the auxiliary problem (22). We conclude
that no regular solutions (U, V ) can be constructed
using the potential energy U1 because it does
not have local minima. The only possibility to
construct regular solutions (U, V ) is by using the
potential energy U2 when µ2

u < µv < 2µ2
u.

The following Lemma provides an important
property of the integral I(E) which will be em-
ployed in the construction of regular solutions
of (12).

Lemma 6. I(E) is monotone in E on
(U2(y0),U2(0)).

Proof: Using reasoning as in [5, Lemma 5.5]
it is enough to show that U ′′′2 ≤ 0 on (0, 1

2µu

√
κ

).
Then we estimate

U ′′′2 (y) = φ′′2(y) =
2

y3
(1− (1− 4µ2

uκy
2)−

1

2 )

− 4κµ2
u

y
(1− 4κµ2

uy
2)−

3

2 ,

but (1− 4µ2
uκy

2)−
1

2 ≥ 1 so U ′′′2 (y) < 0.

IV. STATIONARY SOLUTIONS

Combining the results on the auxiliary problem,
we can classify the regular and the weak solutions
of the problem (22).
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A. Regular stationary solutions

We first remark on the ‘trivial’, constant solution
to (12). If µ2

u < µv, there is a constant solution
of (12),

û =

√
µv − µ2

u

κµ2
u

,

v̂ =

√
µv − µ2

u

κµ2
v

.

(28)

For µ2
u < µv < 2µ2

u we can construct a
regular solution using the auxiliary problem and
the potential energy U2 as follows.

Proposition 2. Let

Lmin := min
E
I(E) =

π√
U ′′2
(√

µv−µ2
u

κµ2
v

)
and set N = max{n ∈ N : NLmin ≤ 1}.
The two-point boundary value problem (20) with
homogeneous Neumann boundary conditions has
the following solutions

• the spatially homogeneous solution V = v̂
given in (28).

• if Lmin ≤ 1, there exists a unique mono-
tone increasing solution V↑(x), and a unique
monotone decreasing solution V↓(x) =
V↑(1− x)

• for all 2 ≤ n ≤ N there exists a unique
n-periodic solution Vn,↑ which is monotone
increasing on (0, 1

n), as well as a unique
n-periodic solution Vn,↓ which is monotone
decreasing on (0, 1

n).

Proof: The validity of the first claim is ob-
vious. The remaining claims use the properties of
the integral I in Lemma 3 and 6. These imply that
for all n ≤ N , there exists a unique energy level
En : I(En) = 1

n , corresponding to a unique mono-
tone increasing solution Vn,↑(x) on (0, 1

n), and a
monotone decreasing solution Vn,↓ = Vn,↑(

1
n − x)

on (0, 1
n). If n ≥ 2, either solution can be extended

to the entire domain Ω by the folding principle [1],
[11].

B. Weak stationary solutions

The previous section showed that for values of
µu, µv such that µv < µ2

u (12) has only weak
solutions.

These solutions are constructed piecewise using
the auxiliary problem for each branch of U =
hi(V ). Then U ∈ L∞(Ω) and V is continuous
on Ω.

Start on the y-axis at x = 0 and begin tracing
along any admissible trajectories defined by
• (y, z) : z = ±

√
2E − U0(y),

• (y, z) : z = ±
√

2E − U1(y), or
• (y, z) : z = ±

√
2E − U2(y).

Here U0(y) = −µv

d y
2 is the potential energy

associated with the problem (17). The potential
energies U1,2 are represented in closed form (up
to a constant) by

U1(y) =
1

dκ
log y +

1

2dκ

√
1− 4κµ2

uy
2 − µv

2d
y2

− 1

2κ
log

(
1

2µu
√
k

+

√
1

4µ2
uκ
− y2

)
,

U2(y) = − 1

2dκ

√
1− 4κµ2

uy
2 − µv

2d
y2

+
1

2dκ
log

(
1

2µu
√
k

+

√
1

4µ2
uκ
− y2

)
.

Continue tracing until returning to the y-axis at
x = 1 (Fig. 4). In this way we obtain a partitioning
of the domain Ω into subintervals Ii. On each Ii
the solution V is given by the y-coordinate of the
admissible solution trajectories in the (y, z)-space.

Of course, under this construction U may be
discontinuous in Ω as on each subinterval Ii U is
given by a different branch hi. However, note that
V := y belongs to C1(Ω) because by construction
z = y′ is continuous at the intersection of such
trajectories.

On Fig. 2 and Fig. 3 are plotted several solution
curves corresponding to an energy level E for the
different cases of potential energies Ui. Note, for
example, that a weak solution can be traced by
following a trajectory given by U0,U2 (in that
order) when µv < µ2

u or U2,U1 (in that order)
when µv > 2µ2

u.
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U1

E

z

y

y

z

y

y

U0

E

Fig. 2. Solution curves in (y, z)-space associated to potential
energies U1 and U0.

Fig. 3. Solution curves in (y, z)-space associated to potential
energies U2 for the different cases (from left to right) µv >
2µ2

u, µ
2
u < µv < 2µ2

u, µv < µ2
u.

V. STABILITY OF STATIONARY SOLUTIONS

For a stationary solution (U, V ) we can establish
linear stability in the classical sense: for small
perturbations ũ(t, x) = u(t, x) − U(x), ṽ(t, x) =
v(t, x)−V (x), the behaviour of the solutions u, v
of (3) is governed locally by the linear approxi-

z

yV (0) V (1)

Fig. 4. A weak solution on Ω following different energy
trajectories.

mation. By setting an Ansatz

ũ(t, x) = u(x)eλt,

ṽ(t, x) = v(x)eλt,

for local stability we have to consider the sign of
Reλ. λ is an eigenvalue of the linearised differen-
tial operator L = diag(0, d∆) + J , where

J =

(
2U

V (1+κU2)2 − µu − U2

V 2(1+κU2)
2U

V (1+κU2)2 − U2

V 2(1+κU2) − µv

)
.

If every eigenvalue λ of L has negative real part,
the stationary solution (U, V ) is locally stable.
Note that the spectrum of L need not be discrete.

In the one-dimensional case we formulate re-
sults on the stability of spatially nonuniform sta-
tionary solutions of the system. Easy linear stabil-
ity analysis leads to

Proposition 3. Let µ2
u < µv < 2µ2

u, the constant
solution (û, v̂) is locally asymptotically unstable.
When µv > 2µ2

u, the constant solution (û, v̂) is
locally asymptotically stable.

Proof: A linearisation of the right-hand side
of (12) at (û, v̂) gives the following:

L = diag(0, d∆) +

(
2µ3

u

µv
− µu −µv

2µ3
u

µv
−2µv

)
.

Note that the saturation parameter κ does not
influence the stability of the constant solution.
L has constant coefficients and its spectrum can
be computed by matrix eigenvalue analysis. For
values µv > 2µ2

u, the spectrum of L lies entirely
in the left half-plane. Hence, the constant solution
(û, v̂) is locally asymptotically stable.

For values µv < 2µ2
u, L has positive eigenval-

ues. This proves the claim.
The following result establishes the local insta-

bility of spatially heterogeneous regular solutions.

Theorem 2. Let µ2
u < µv < 2µ2

u. Any spatially
heterogeneous regular solution (U, V ) of (12) on
the interval Ω is unstable.

Proof: For the proof we use a result on the
spectrum of L established in [6, Corollary 2.7],
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namely the effect of autocatalysis in the nonlinear-
ity f which implies that the spectrum of L com-
prises eigenvalues with positive real part. This fact
implies linear instability of the stationary solution
(U, V ). Note that f(0, V ) = 0 for all V ∈ R. Let
(U, V ) be a regular solution of (12). Then due to
the energy method construction, U = h2(V ) > 0
is continuous on I , and so is

fu(U, V ) =
2U

V (1 + κU2)2
− µu.

Furthermore, using the formula (18) we see that

U = h2(V ) < κ−1/2.

We estimate, first, using the relation f(U, V ) =
0 on I ,

fu(U, V ) =
2µu

1 + κU2
− µu < µu

Second,

fu(U, V ) =
2µu

1 + κU2
− µu

>
2µu

1 + 1
− µu = 0.

The result of [6, Corollary 2.7] implies that the
linearised differential operator L has eigenvalues
with positive real part. Hence, (U, V ) is an unsta-
ble solution.

The result of Theorem 2 is also a consequence
of the results in [7] that establish instability of
heterogeneous solutions for semilinear diffusion
equations. However, in this particular case insta-
bility of the regular solution can be established by
direct computation.

Theorem 3. Let µv < 2µ2
u. Any weak solution

(U, V ) of (12) such that U < κ−1/2 on Ω is
unstable.

The proof is identical to that of Theorem 2.

Theorem 4. Let n ∈ N, 0 ≤ x1 < x2 <
. . . < xn ≤ 1. The pair (U, V ) defined by
U(x) > 0, x = xj , U(x) = 0, x 6= xj , and V a
solution to (17) with Robin boundary conditions,
is a solution to (13). Moreover, any such (U, V )
is locally asymptotically stable.

Proof: For any (U, V ) of the given type, the
linearised operator L looks almost everywhere like

L = diag(0, d∆) +

(
−µu 0

0 −µv

)
.

Therefore, the spectrum of L is bounded away
from 0 in the left halfplane almost everywhere.
Hence, any stationary solution (U, V ) is locally
asymptotically stable.

VI. DISCUSSION

Theorem 3 and Theorem 4 imply that the locally
stable weak solutions must necessarily exhibit
large jump discontinuities of amplitude at least
κ−1/2. In the literature such solutions are said to
exhibit striking patchiness [8], [9] or transition
layers [13].

The results show that all spatially heteroge-
neous, strictly positive, regular solutions of (12)
over a one-dimensional domain Ω are unstable.
This is in contrast to the singularly perturbed sys-
tem (3) where stable spike solutions exist [15]. The
asymptotically stable solutions, which are different
from the homogeneous steady state (û, v̂) (28) are
discontinuous solutions that exhibit large transition
layers. Fig. 5 shows such a pattern.

In contrast to the results in [5], [6], the prob-
lem (12) does not fulfil the autocatalysis condition
in [6, Corollary 2.7], whose estimates do not
hold for all bounded weak solutions of (12). That
explains the existence of stable weak solutions
with large transition layers.

Fig. 5. A discontinuous pattern with large amplitude.
Parameter values are µu = 1, µv = 1.2, κ = 0.1, d = 0.1.
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