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Abstract—The collective movement of animals oc-
curs as a result of communication between the mem-
bers of the community. However, inter-individual
communication can be affected by the stochastic-
ity of the environment, leading to changes in the
perception of neighbours and subsequent changes
in individual behaviour, which then influence the
overall behaviour of the animal aggregations. To
investigate the effect of noise on the overall be-
haviour of animal aggregations, we consider a class
of nonlocal hyperbolic models for the collective
movement of animals. We show numerically that
for some sets of model parameters associated with
individual communication, strong noise does not
influence the spatio-temporal pattern (i.e., travelling
aggregations) observed when all neighbours are
perceived with the same intensity (i.e., the environ-
ment is homogeneous). However, when neighbours
ahead/behind are perceived differently by a refer-
ence individual, noise can lead to the destruction of
the spatio-temporal pattern. Moreover, we show that
the increase in noise that affects individual turning

behaviours can lead to different transitions between
different spatio-temporal patterns, and these transi-
tions are relatively similar to the transitions between
patterns observed when we perturb deterministically
the parameters controlling individual turning.

Keywords-stochastic and deterministic nonlocal
hyperbolic models, self-organised biological aggre-
gations, animal communication

I. INTRODUCTION

Anthropogenic (i.e., human-generated) noise is
known to have an impact on both individual ani-
mals as well as whole populations [1]. For exam-
ple, noise affects individuals by impacting various
processes related to developmental, immunological
and physiological functioning [2], by decreasing
the accuracy of inter-individual communication
[1], [3], or by increasing their energetic costs (as
animals try to move away from noise and change
feeding patterns) [4]. At population level, animals
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might change their habitat use or their migration
and behavioral patterns, or they can even loose the
coordination of their social activities [1]. All these
aspects are coordinated at population level via
inter-individual communication. Since noise re-
duces the probability that neighbours detect com-
munication signals, many animals have devised
ways of increasing signal detection. For example,
the free-living territorial Anolis lizards might add
an “alert” component at the beginning of their
visual communication to attract the attention of
receivers, which is then followed by the detailed
message component [3]. California ground squir-
rels can modify their communication by shifting
acoustic energy in their calls to harmonics that do
not overlap with highway noise [1]. Other animals,
such as killer whales, increase their call amplitude
in response to vessel noise [5].

While the effect of noise on individual-level
behaviours is easier to study experimentally (e.g.,
by investigating separately the different phases of
communication, namely signal production, trans-
mission and reception, as well as by investigat-
ing the changes in individual behaviour follow-
ing changes in the environment [6]), its effect
on collective behaviours is more difficult to in-
vestigate due to the continuous social interac-
tions between the members of the community
(which involves continuous changes in individual
behaviour in response to neighbours’ behaviours).
Mathematical and computational models for the
collective movement of animals can be used to
generate and test hypotheses regarding the effect
of environmental noise on animal behaviours. In
fact, the effect of noise has been considered by the
majority of individual-based models (i.e., models
that track the position and velocity/orientation of
individual members of a group) in the literature
of collective movement; see, for example, [7],
[8], [9], [10], [11], [12], [13], [14] and the ref-
erences therein. All these individual-based studies
assume that noise impacts the velocity or the
movement direction of individuals. However, given
that there are not too many analytical techniques
to investigate these individual-based models, a few

other studies started focusing on partial differ-
ential equation (PDE) models (i.e., models that
describe the changes in the density of individuals
over space and time) for self-organised collective
movement in animals or humans that incorporate
environmental noise. In many situations, the PDEs
were obtained from the individual-based models,
in the limit for large particle numbers, in which
case the stochastic terms were approximated by
diffusion processes (see [15] for a review of such
modelling approaches). One of the few PDEs (of
parabolic type) for collective movement in biology
that included explicitly a stochastic term was intro-
duced in [16]. Nevertheless, we need to emphasise
that in the mathematical literature there are a few
studies on stochastic PDE models (for various
problems in physics or biology – but not neces-
sarily collective movement), which focus mostly
on existence, uniqueness and stability questions;
see for example the studies on stochastic parabolic
models [17] or the studies on stochastic first-order
local conservation laws [18], [19], [20]. It is worth
mentioning that the majority of these studies focus
almost exclusively local models.

Here we consider a class of nonlocal first-order
hyperbolic models previously introduced in [21],
[22], [23] to investigate pattern formation in self-
organised animal aggregations in response to inter-
individual communication. We need to empha-
sise that first-order local and nonlocal hyperbolic
systems (also called discrete velocity/orientation
Boltzmann models, since they are similar to the
kinetic Boltzmann equation when orientation is
reduced to only two directions, right (+) and left
(−) [24]), have been developed for almost three
decades to describe collective movement in ecol-
ogy and cell biology; see for example [25], [26],
[27], [28], [29], [30] and references therein. The
majority of these hyperbolic models are determin-
istic, thus being easier to investigate analytically
in terms of existence and uniqueness of solutions
[27], [28], [23], or bifurcation of patterns [23].
For a review of mathematical aspects of discrete-
velocity Boltzmann-like equations, see [31]. In
our current study, since anthropogenic noise can
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disrupt animal communication and thus affect col-
lective movement, we generalise the deterministic
hyperbolic models in [21], [22] by assuming that
white noise is incorporated (multiplicatively) into
the terms that account for the perception of sur-
rounding neighbours, as well as in the terms that
describe turning behaviours during movement (as
for the individual-based models mentioned above).
To our knowledge, there are no studies that focus
on the effect of multiplicative noise in nonlocal
hyperbolic models for collective movement, and
therefore this modelling approach together with
preliminary simulation results presented in this
study open new doors regarding possible directions
of analytical investigation of the various dynamics
exhibited by these nonlocal stochastic models.

This paper is structured as follows. In Section
II we describe the class of nonlocal 1D models
introduced in [21], [22] and discuss separately
the newly added noise terms. Then, in Section III
we discuss the number and stability of spatially-
heterogeneous steady states exhibited by the de-
terministic version of the models (to identify the
effects of deterministic perturbations of individual
turning behaviour, and deterministic perturbations
of neighbours perception, on the instability of
steady states). In Section IV we show numerical
results for different types of spatio-temporal pat-
terns that can be affected by noise with different
strength levels, and identify transitions between
different types of patterns, or between spatial
pattern and spatially homogeneous states. We con-
clude in Section V with a summary and discussion
of results.

II. MODEL DERIVATION

Following the approach in [21], [22], [32], we
consider a 1D finite domain [0, L] on which we as-
sume that we have an animal population formed of
left-moving (u−(x, t)) and right-moving (u+(x, t))
densities of animals. (This setting could describe,
for example, a population of fish moving though
human-made corridors such as shipping canals
[33], [34].) The dynamics of this population is
described by the following nonlocal conservation

laws:
∂u+

∂t
+γ

∂u+

∂x
=−λ+[u+, u−]u++λ−[u+, u−]u−,

(1a)
∂u+

∂t
−γ ∂u

+

∂x
=λ+[u+, u−]u+−λ−[u+, u−]u−.

(1b)

Here we assume that individuals in both popu-
lations move with constant velocities γ (i.e., u+

move right with velocity +γ, while u− move
left with velocity −γ), and can change move-
ment direction either randomly or in a directed
manner following interactions (via communica-
tion) with their neighbours; see Figure 1(a). (Note
that the importance of adapting velocity and turn-
ing behaviour during fish movement has been
emphasised in various experimental studies [35],
[36].) The density-dependent turning functions λ±

(which connect the left-moving population u−

to the right-moving population u+) are given as
follows:

λ±[u+, u−] = λ1 + λ2f
±[u+, u−], (2)

with λ1 and λ2 constants that are approximating
the random and directed changes in individuals
movement direction (see also [21]). The function-
als f± describe the nonlocal interactions between
individuals placed at different positions in space
(i.e., within repulsive, attractive and alignment
ranges; see Figure 1(b)) – as these interactions
determine whether an individual turns around or
not, towards/away from its neighbours. We assume
that f± are non-negative and increasing functions
of the nonlocal interactions among individuals
[21], [22], which are also almost zero when there
are no any neighbours nearby (i.e., f±[0, 0] ≈ 0).
One function that satisfies all these conditions is

f±[u+, u−] = 0.5 + 0.5 tanh
(
y±r [u+, u−]

+y±al[u
+, u−]+y±a [u+, u−]−y0

)
, (3)

where constant y0 was chosen such that f±[0, 0] ≈
0 [21], [22]. The nonlocal social interaction terms
y±r,al,a (for the right-moving (+) and left-moving
(-) individuals) are described in detail in Table
I. In this study we focus only on the case of
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perception x

−

Left−moving individual

Right−moving individual

(b) Spatial ranges for the social interactions: repulsion, alignment, attraction
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attract. attract.
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(a) Inter−individual communcation controls turning behaviours

x+sx−s

x space

Direction of signal
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Direction of signal

alignalign

λ

repuls.
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Fig. 1. (a) Description of inter-individual communication (shown is omni-directional signal perception by a reference
individual at x, and uni-directional signal emission by neighbours at x± s) For other types of inter-individual communication
see [22], [32]; (b) Spatial ranges for three different social interactions: repulsion (r), alignment (al), attraction (a). These
interaction ranges are described by spatial kernels Kj(s), j = r, a, al (see equations (4)).

omni-directional signal perception (by a reference
individual at x) and uni-directional signal emission
(by its neighbours at x± s); see also Figure 1(a).
This leads to the following assumptions regarding
these interactions:

• Due to the omni-directionality in signal per-
ception, the attraction/repulsion interactions
depend on the total number of neighbours
(u = u+ + u−) positioned left (x − s) and
right (x + s) of a reference individual at
x. To describe the turning behaviour of a
right-moving reference individual (u+(x, t)),
we note that if u(x + s) > u(x − s) (i.e.,
more neighbours ahead relative to the moving
direction), if these neighbours are within the
repulsion range (Kr(s)) then the reference
individual will turn around to avoid collision
(i.e., y+r > 0, which increases the value of f+

and λ+). In contrast, if these neighbours are
within the attraction range (Ka(s)) then the
reference individual will keep moving in the
same direction to join its neighbours at x+ s
(i.e., y+r < 0, which decreases the value of
f+ and λ+, and thus reduces the probability

of turning). Moreover, since attraction and
repulsion have opposite effects, they enter
the integral terms in Table I with opposite
signs. Note also that in Table I, the densities
of neighbours at x ± s are multiplied with
the perception intensities of these neighbours
(pa,b), to account for the possible heterogene-
ity of the environment. We will describe pa,b
in more detail shortly.

• Again, due to the omni-directionality in signal
perception, the alignment interactions depend
on all left-moving (u−(x ± s)) and right-
moving (u+(x± x)) neighbours. A reference
right-moving individual u+(x, t) will decide
whether to turn around, depending on the den-
sity of left-moving/right-moving neighbours
ahead at x+s (i.e., u−(x+s)−u+(x+s)) and
behind at x− s (i.e., u−(x− s)−u+(x− s)).
If there are more right-moving neighbours
than left-moving neighbours, then the refer-
ence individual u+(x, t) will keep moving
in the same direction (since y+al < 0, which
decreases f+ and λ+). Otherwise, if there are
more left-moving neighbours, the reference
individual u+(x, t) will turn around to follow
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TABLE I
NONLOCAL TERMS FOR THE THREE SOCIAL INTERACTIONS THAT AFFECT THE RIGHT-MOVING (+) AND LEFT-MOVING

(−) INDIVIDUALS: REPULSION (y±r ), ALIGNMENT (y±al), ATTRACTION (y±a ). WE ASSUME THAT A REFERENCE
INDIVIDUAL CAN PERCEIVE (THROUGH THE INTEGRATION OF MULTIPLE STIMULI: E.G., VISUAL, AUDITORY) ALL ITS
NEIGHBOURS AHEAD AND BEHIND IT; SEE ALSO FIGURE 1(A). WE DENOTE THE TOTAL DENSITY OF INDIVIDUALS AT

POSITION x AND TIME t BY: u(x, t) = u+(x, t) + u−(x, t).

repulsion y±r [u+, u−] = ±qr
∫ ∞
0

Kr(s)
(
pau(x± s)− pbu(x∓ s)

)
ds

attraction y±a [u+, u−] = ∓qa
∫ ∞
0

Ka(s)
(
pau(x± s)− pbu(x∓ s)

)
ds

alignment y±al[u
+, u−] = ±qal

∫ ∞
0

Kal(s)
(
pa
(
u∓(x± s)− u±(x± s)

)
+pb

(
u∓(x∓ s)− u±(x∓ s)

))
ds

these neighbours. Here, we use the word “in-
dividual” in a very loose sense, since u+(x, t)
actually describe the density of individuals.

For other types of possible communication mech-
anisms that can be incorporated into equations (1)-
(3) we direct the reader to [22], [32].

The coefficients qj , j = r, al, a that appear in
y±r,al,a (in front of the integrals in Table I), describe
the strengths of the three social interactions, while
Kj are the kernels that describe the spatial ranges
for these three social interactions (see also Figure
1(b) and Table II). Throughout this study we will
consider the following interaction kernels [21]:

Kj(s) =
1

2πm2
j

e−(s−sj)
2/(2m2

j), (4)

j = r, al, a, and mj = sj/8.

The meaning and values of parameters mj and sj
that define the interaction ranges are given in Table
II.

Finally, the parameters pa and pb that appear
inside the integrals in Table I are describing
the perception strength of neighbours positioned
at x ± s. In a homogeneous environment, all
neighbours positioned left/right with respect to a
reference individual at x are perceived the same
way (in the case of omni-directional perception),
and thus pa = pb; see also Figure 2(a). However,

in a heterogeneous environment, the neighbours
positioned left/right of the reference individual are
perceived differently, depending on the spatial het-
erogeneity (e.g., wind blowing from one direction,
ensuring clear auditory signals from that particular
direction), and thus pa 6= pb; see also Figure 2(b).

To complete the derivation of model (1)-(4), we
need to specify the boundary conditions on the
finite domain [0, L]. Taking the same approach as
in [21], [22], we will assume periodic boundary
conditions (corresponding to an arena-type do-
main):

u+(L, t) = u+(0, t), u−(0, t) = u−(L, t). (5)

The Effect of Noise: To investigate the effect
of anthropogenic noise on the dynamics of model
(1)-(3), we assume that in the presence of noise
the individuals try to increase the detection of
signals emitted by their neighbours (and thus try to
increase neighbours’ perception pa,b). Moreover,
in the presence of noise, individuals try to increase
their changes in movement directions (to ensure
that they can detect better neighbours from all
directions). Thus, we will consider the following
cases:

1) Noisy environment affects the perception of
neighbours: pa,b = p∗a,b + W (t), where the
noise W (t) is a random value chosen (at
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Information

Neighbours that are
poorly perceived

neighbours
received from 

(a) Homogeneous environment: homogeneous perception

x x+sx−s

x x+sx−s

(b) Heterogeneous environment (e.g., water/wind current from right−>left)

clearly perceived
by the reference
individual

Neighbours that are

by the reference
individual

a

b
p
a

p

p

p
b

+
u (x−s) u (x+s)−+−

Fig. 2. Caricature description of (a) a homogeneous environment, where all neighbours are perceived with the same intensity:
pa = pb; and (b) a heterogeneous environment, where some neighbours are perceived better than others: pa > pb (e.g., wind
blowing from the right, carrying sound further away in a clear manner).

every time step t) with a uniform probability
within the interval [0, nm] (where nm ≤ 1);

2) Noisy environment affects the turning rates
(i.e., direction of movement): λ1,2 = λ∗1,2 +
W (t), where the noise W(t) is a random
value chosen with a uniform probability
within the interval [0, nm];

3) Finally, we will also discuss briefly the as-
sumption that the noise can increase as well
as decrease the perception of neighbours:
pa,b = p∗a,b +W1(t), where the noise W1(t)
is a random value chosen with a uniform
probability within the interval [−nm, nm],
with nm ≤ 1. Note that this noise term is
similar to the one introduced by Vicsek et
al. in [8], for individual-based models.

Remark 1. Since we focus on a time scale
that ignores any birth/death processes, model (1)
conserves the total population density [32]. Let
us denote this total population density by A =
(1/L)

∫ L
0 (u+(x, t) + u−(x, t))dx.

Remark 2. In [32] we showed how can we derive
the nonlocal model (1) using a correlated random
walk approach (i.e., a stochastic process different
from the classical Brownian motion during which
the directions of motion for successive time steps
are uncorrelated [37]). In a probabilistic setting,

this correlated random walk approach leads to
solutions that can be seen as probability densities
(u±(x, t) := u(x,±, t) ≥ 0,

∫∞
−∞ u

±(x, t)dx = 1
[37]). Moreover, in this context, parameters λ1,2
correspond to the probabilities of turning ran-
domly or in a directed manner. The incorporation
of noise terms W (t) and W1(t) into model (1)
– via parameters pa,b or λ1,2 – adds another
layer of complexity, generating a sort of double
stochasticity.

III. DETERMINISTIC MODEL:
SPATIALLY-HOMOGENEOUS STATES AND THEIR

LINEAR STABILITY

We start the investigation of model (1) by fo-
cusing on the deterministic model (i.e., W (t) = 0,
W1(t) = 0), and investigating the number and sta-
bility of spatially homogeneous steady states (i.e.,
states characterised by individuals spread over the
whole domain). We will use this information in
the next section, to better understand the formation
of spatio-temporal patterns in the deterministic
system (1).

Figure 3 shows the number of spatially homoge-
neous steady states (i.e., states that satisfy ∂u±

∂t =
∂u±

∂x = 0) exhibited by the deterministic model (1)
as we vary: (a) the difference between the per-
ception intensity of neighbours ahead and behind
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Fig. 3. Bifurcation diagram for the number of steady states exhibited by the deterministic model (1), as we vary the following
parameters: (a) the value nm in the perturbations of the perception intensities pa,b = p∗a,b + nm; (b) the value nm in the
perturbations of the turning rates λ1,2 = λ∗

1,2 + nm; (c) the difference between the perception intensity of neighbours ahead
and behind (pa− pb) with respect to a reference individual, when we perturb both pa,b = p∗a,b +nm, λ1,2 = λ∗

1,2 +nm with
nm = 0.0 (continuous curve), nm = 0.1 (dotted curve) and nm = 0.5 (dashed curve).

(pa−pb) with respect to a reference individual; (b)
the value nm in the deterministic perturbations of
the perception intensities pa,b = p∗a,b +nm; (c) the
value nm in the deterministic perturbations of the
turning rates λ1,2 = λ∗1,2 + nm. (We will return to
the discussion of these deterministic perturbations
in the next chapter, in the context of numerical
simulations.) The vertical axes in Figure 3 show
u∗ = u∗,+, the steady states for u+. Due to the
symmetry of model (1), similar graphs could be
obtained also for u∗,− = A − u∗ (i.e., the steady
state for u−). We denote by u∗ = A/2 the steady
state where half individuals are facing left and half
are facing right, while being spread over the whole
domain: (u∗,+, u∗,−) = (A/2, A/2). Also, we
denote by A± the states where more individuals
are facing one direction compared to the other
direction.

We observe in Figure 3 that it is possible to
obtain one, three or five steady states u∗. For ex-
ample, deterministic perturbations of λ1,2 change
the number of steady states (panel (b)): from 3
distinct states u∗ when nm < 0.011, to 5 states
u∗ when nm ∈ (0.11, 0.16), and finally only one
state when nm > 0.16. Note that varying either
pa,b alone or λ1,2 alone preserves the symmetry
of the steady state u∗ with respect to A/2 (see
panels (a),(b)), while varying the difference be-

tween pa − pb together with pa,b and λ1,2 breaks
this symmetry (see panel (c)).

Finally, we note that the only steady state that
does not depend on the model parameters is u∗ =
A/2, and this state persists as long as pa = pb.
As shown in Figure 3 (c), this state vanishes for
pa 6= pb.

Next, we investigate the linear stability
of the spatially homogeneous steady states
(u∗,+, u∗,−) = (A/2, A/2), as well as the
steady states (u∗,+, u∗,−) = (A+, A − A+) or
(u∗,+, u∗,−) = (A − A−, A−). To this end, we
consider small perturbations of these states:
u±(x, t) = u∗,± + a±e

σt+ikx, with a± � 1.
(Here σ describes the growth/decay of the
perturbations, while k is the wavenumber that
emerges when perturbations grow.) Substituting
these expressions into the linearised system (1),
leads to the following dispersion relation:

σ2 + σ
(
c1 + c2 + c3(D

− −D+)
)

+ (γk)2

−γik
(
c1 − c2 + c3(D

− +D+)
)

= 0, (6)

where

B = 2u∗(qr − qa)(pa − pb),
c3 = u∗λ2

(
f ′(B) + f ′(−B)

)
,

c1 = λ1 + λ2f(B), c2 = λ1 + λ2f(−B),
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(b) Hopf bifurcation(a) Real bifurcation

σ

(wavenumber) (wavenumber)

Re(   (k))σ
Im(   (k))

Re(   (k))σ
σIm(   (k))

Fig. 4. Real and imaginary parts of σ(k), for the symmetric steady state (A/2, A/2), showing: (a) a real bifurcation (for
qa = 0.6, λ2 = 0.9 and all other parameters as in Table II); (b) a Hopf bifurcation (for qa = 2.0, λ2 = 0.27, and all other
parameters as in Table II); Continuous curves show the largest eigenvalue (σ1(k)), while the dotted curves show the smallest
eigenvalue (σ2(k)). The circles on the x-axis show the discrete wavenumbers kn = 2πn/L, with n = 1, 2, ...

K̂+ =

∫ ∞
0

(
qrKr(s)− qaKa(s)

)
eiksds,

K̂− =

∫ ∞
0

(
qrKr(s)− qaKa(s)

)
e−iksds,

K̂±al =

∫ ∞
0

Kal(s)e
±iksds,

D+ = K̂+pa − K̂−pb + qal(K̂
+
alpa + K̂−alpb),

D− = K̂+pa − K̂−pb − qal(K̂+
alpa + K̂−alpb).

The real and imaginary components of this
dispersion relation (corresponding to the steady
state (u∗,+, u∗,−) = (A/2, A/2)) are graphed in
Figure 4, for different parameter values that gen-
erate: (a) a real bifurcation (i.e., Re(σ(k1)) > 0,
Im(σ(k1)) = 0), and (b) a Hopf bifurcation
(i.e., Re(σ(k1)) > 0, Im(σ(k1)) > 0). The
real bifurcations give rise to stationary aggregation
patterns (e.g., stationary pulses), while the Hopf
bifurcations give rise to moving aggregation pat-
terns (e.g., travelling pulses). These patterns form
primary solution branches, and can further bifur-
cate themselves forming more complex patterns,
as we will discuss below.

Next, we focus on the stability of different
steady states as we vary the magnitudes of the
perception sensitivities p∗a−p∗b , and different deter-
ministic perturbations (of magnitudes nm) of base-
line p∗a,b and λ∗1,2 values (as it will be considered

later in the numerical simulations in Figures 9, 10,
and 11). We see in Figure 5(a) that increasing nm
in the perception sensitivities pa,b = p∗a,b+nm has
opposite effects on the different steady states: (i) it
increases the amplitude of Re(σ(k)) for the steady
state (u∗,+, u∗,−) = (A/2, A/2) thus increasing
the instability of this state, and (ii) it decreases
the amplitude of Re(σ(k)) for the steady state
(u∗,+, u∗,−) = (A+, A−) (with A+ 6= A−) thus
leading to the stability of this state. In panels
(b) we see that increasing nm in the turning
rates λ1,2 = λ∗1,2 + nm has different effects
compared to the previous case: (i) it decreases
the amplitude of Re(σ(k)) for the steady state
(u∗,+, u∗,−) = (A/2, A/2) and (ii) it increases
the amplitude of Re(σ(k)) for the steady state
(u∗,+, u∗,−) = (A+, A−) (with A+ 6= A−).
We also note here that for large nm the state
(A/2, A/2) looses the nonzero imaginary part of
the eigenvalues (i.e., Im(σ(k)) = 0 for those k
values where Re(σ(k)) > 0; see Figure 5(b)(i)),
thus suggesting the possibility of having stationary
aggregations for large nm. Finally, we see in
panels (c) that increasing the difference pa − pb
(and thus the heterogeneity of the environment)
leads to lower amplitudes of Re(σ(k)), and thus
to stable states. Note that for pa − pb = 0.4, all
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Fig. 5. Stability of various steady states (s.s.) described in Figure 3, as given by the real parts (red on coloured figures) and
imaginary parts (green on coloured figures) of the largest eigenvalue in the dispersion relation σ(k), when we vary different
model parameters: (a) the magnitude of deterministic perturbation nm from the perception terms pa,b = p∗a,b + nm; (b) the
magnitude of deterministic perturbation nm from the turning rates λ1,2 = λ∗

1,2 +nm; (c) the difference between the baseline
perception sensitivities of neighbours ahead (p∗a) and behind (p∗b ), relative to the movement direction of a reference individual,
as well as the magnitude of the deterministic perturbation nm in both λ1,2 = λ∗

1,2 + nm, pa,b = p∗a,b + nm.

steady states are stable (as Re(σ(k)) ≤ 0).
The fact that multiple steady states can be

linearly unstable at the same time complicates
the analysis of the dynamics of model (1), since
the nonlinear interactions (and the magnitude of
the perturbations in the system) could lead to the
selection and persistence of particular types of
spatio-temporal patterns that can be either trav-
elling or stationary (irrespective of the types of
the bifurcation from the spatially homogeneous
state: real or Hopf bifurcations). These persistent
spatio-temporal patterns arise from secondary bi-
furcations from the primary solution branches.

As we show next, these stability results (ob-
tained via the dispersion relation (6)) support the
numerical simulation results in Figures 9, 10, and
11 (for both the deterministic version of model (1),
and its stochastic version with W (t) 6= 0).

IV. NUMERICAL RESULTS

In the following we describe some of the spatio-
temporal patterns that can be exhibited by the
deterministic and stochastic model (1)-(3) (i.e.,
with W (t) = 0 and W (t) 6= 0). For the numerical
simulations, we discretised the domain using a
space step ∆x = 0.01 and a time step ∆t = 0.02
(which ensures that the Courant-Friedrichs-Lewy
condition holds). The integrals were approximated
using Simpson’s method [38] (and were wrapped
around the domain to implement the periodic
boundary conditions), while the advection part in
the left-hand-side of equations (1), was discretised
using a classical predictor-corrector MacCormack
method. The noise W (t) (in the pa,b and λ1,2
terms; see cases (I) and (II) in model description)
was implemented by choosing at every time step
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randomly-perturbed pa,b values (as in (i’)). This travelling pulse pattern describes persistent moving aggregations.

∆t a random number uniformly distributed in the
interval [0, nm], with nm ≤ 1 (i.e., W (t) =
Rand(0, nm)). Finally, the noise W1(t) (in the pa,b
terms; see case (III) in model description) was
implemented by choosing at every time step ∆t
a random number uniformly distributed over the
interval [−nm, nm], with nm ≤ 1 (i.e., W1(t) =
Rand(−nm, nm)). The initial conditions for the
numerical simulations shown below are random
perturbations of the spatially-homogeneous steady
state (u∗,+, u∗,−) = (A/2, A/2) (where A = 2
throughout this study). Finally, the values of the
parameters used throughout these numerical sim-
ulations are summarised in Table II.

A. The effect of noise on the perception of neigh-
bours

a) Homogeneous environment: We start the
numerical investigation of model (1) by consider-
ing first a homogeneous environment (i.e., p∗a =
p∗b = 1; see also Figure 2(a)). In this case (and
for the parameter values described in Table II) the

simulations in Figure 6(ii) show the persistence
of travelling aggregations irrespective of the noise
level (and irrespective of the presence/absence of
the noise added to p∗a and p∗b parameters).

b) Heterogeneous environment: Next, we in-
vestigate the effect of a heterogeneous environ-
ment (i.e., pa 6= pb; see also Figure 2(b)). Figure
7 shows that for a heterogeneous environment,
the increase in the noise level (from (a) W (t) =
Rand(0, 0.1) to (b) W (t) = Rand(0, 0.5)), which
here leads to an increase in the perception of
neighbours, destroys the formation and persistence
of moving aggregations. However, assuming that
noise can also decreases the perception of neigh-
bours (i.e., W1(t) = Rand(−0.5, 0.5)), preserves
the original pattern. Therefore, it is possible that
the heterogeneity of the environment (which leads
to poorer perception of some neighbours) com-
bined (non-linearly) with the noise which could
increase as well as decrease the perception of
some neighbours, might preserve the travelling
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aggregation pattern.
To have a better understanding on the decreas-

ing/increasing effects of noise on the perception
of neighbours, and on the preservation of patterns,
in Figure 8 we summarise the patterns obtained
in homogeneous vs. heterogeneous environments,
for various p∗a and p∗b baseline values with noise
of maximum amplitudes nm = 0.5: (a) W (t) =
Rand(0, 0.5), and (b) W1(t) = Rand(−0.5, 0.5).
We observe that, by assuming that noise can both
decrease and increase the perception of neighbours
(panel (b)), it is possible to have persistence of pat-
terns in strong heterogeneous environments (e.g.,
large p∗a > p∗b or p∗b > p∗a). We also observe
that because of the symmetry of the model, it
does not matter the direction of the environmental
heterogeneity (i.e., p∗a > p∗b or p∗b > p∗a).

B. The effect of noise on the turning rates

Next, we assume that the environmental noise
can affect the turning rates λ1 and λ2. Figure 9(a)-
(c) shows the types of spatio-temporal patterns
exhibited by model (1) as we vary the ampli-
tude of the noise: W (t) = Rand(0, nn), with
nm ∈ [0.1, 1]. We note three different types of
patterns: (a) stationary pulses (with very high

amplitudes; for nm > 0.725); (b) chaotic zigzags
(with amplitudes varying over wide ranges; for
nm ∈ (0.725, 0.2)); (c) travelling pulses (with
low amplitudes; for nm < 0.2). In panel (d) we
show the maximum local amplitudes (calculated
at every time step t ∈ 1700− 2000) of the spatio-
temporal patterns obtained as we decrease the
noise amplitude nm from 1 to 0.1. The zigzags
are characterised by amplitudes that vary between
a wide range (20 and 40-45), due to the changes in
moving directions that take place over a few time
steps, and which impact the spatial distributions
of individuals inside the moving aggregations.
In contrast, the travelling and stationary pulses
are characterised by amplitudes that span much
narrower ranges, suggesting that during these two
types of behaviours the aggregations are more
compact, and there is no significant change in
the spatial distribution of individuals inside the
aggregations (again, the small variations in the
amplitude of the patterns are the result of the
individual turning behaviour λ1,2 > 0).

In Figure 9(d) we observe that for low noise
(i.e., nm ∈ (0.1, 0.2)) there are actually two
branches for travel pulse dynamics: the upper (red)
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W1(t) = Rand(−0.5, 0.5).

branch was obtained starting with nm = 1.0
and decreasing it to nm = 0.1, while the lower
branch was obtained starting with nm = 0.1 and
increasing it up to nm = 1.0. These two branches
characterise a hysteresis-like behaviour: starting
with high noise (nm = 1) and decreasing it below
nm = 0.2 leads to high-amplitudes (∈ (20, 24))
travelling pulse patterns; on the other hand starting
with nm = 0.1 and increasing it leads to lower-
amplitudes (∈ (10, 12)) travelling pulse patterns.
This bifurcation result suggests that these branches
of travelling pulses co-exist at the same time,
and which one is attained depends on the initial
conditions.

Since the patterns in Figure 9 were obtained
when we perturbed λ∗1,2 with a non-negative (nor-
mally distributed) random variable W (t) of max-
imum amplitude nm, to check whether the tran-
sitions between patterns are indeed the result of
noise, next we investigate what happens when
we perturb λ∗1,2 with a deterministic value nm ∈
[0.1, 1] (i.e., W (t) = 0, and λ1,2 = λ∗1,2 + nm).

Figures 10(a)-(c) show that similar types of
spatio-temporal patterns can emerge for deter-
ministic λ1,2 values. However, the numerically-
computed bifurcation structure of the deterministic
system is slightly different compared to the bi-

furcation structure of the stochastic system (see
panel (d)). More precisely, the deterministic sys-
tem seems to exhibit multiple stable branches
of spatially-heterogeneous stationary solutions for
nm ∈ (0.525, 1), and one can reach these solution
branches starting with different nm parameters.
For example, starting with nm = 0.1 and in-
creasing it towards nm = 1 leads to an up-
per branch of high-amplitude stationary pulses,
while starting with nm = 1 and decreasing it
towards nm = 0.1 leads to a lower branch of
low-amplitude stationary pulses (as in panel (a)).
Moreover, the parameter range where the zigzags
occur is slightly different for the deterministic
system (nm ∈ (0.175, 0.525)) compared to the
stochastic system (nm ∈ (0.2, 0.75)).

Remark 3. These numerical results on pattern
formation (for the deterministic system) are sup-
ported by the linear stability results discussed
in Figure 5(b): for the steady state (u∗,+, u∗,−),
low nm can give rise (via Hopf bifurcations) to
travelling patterns, while high nm can give rise
(via real bifurcations) to stationary patterns. We
emphasise that these these travelling and station-
ary patterns that arise from Hopf or real bifurca-
tions form primary bifurcation branches. However,
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Fig. 9. Dynamics of model (1) when we vary the magnitude of the noise (nm) that affects both random and directed turning:
λi = λ∗

i + Rand(0, nm), i = 1, 2. (a) Stationary pulses for nm = 0.8; (b) Chaotic zigzags for nm = 0.5; (c) Travelling
pulses for nm = 0.1; (d) Bifurcation diagram for the amplitude of the total population density u = u++u− corresponding to
the different spatio-temporal patterns obtained as we vary the amplitude of the noise nm ∈ [0.1, 1]. This local amplitude was
calculated and graphed at every time step t ∈ (1700, 2000). The dotted arrows show the direction in which the bifurcation
diagram was obtained: nm = 1.0→ nm = 0.1 (red branch) or nm = 0.1→ nm = 1.0 (black branch). All other parameters
are as in Table II.

since these bifurcation branches are unstable (with
the corresponding patterns not persisting for time
t > 1000), they are not shown in Figures 9(d) and
10(d).

Overall, the numerical simulations discussed in
this Section suggest the co-existence of multi-
ple (secondary) solution branches, with different
amplitudes of u = u+ + u−, which can be
reached by starting with different magnitudes of
perturbations for parameter values. We emphasise
that these bifurcation diagrams are not complete,
being possible to discover also other branches with
higher/lower amplitudes of solutions. A rigorous
analytical investigation of the bifurcation structure
can be performed, for example, via a weakly non-
linear analysis of the travelling pulse patterns ob-
tained for nm � 1 (or the stationary pulse patterns

obtained for nm < 1), near the parameter value
at which these patterns transform into zigzags
(see Figures 9(d) and 10(d)). However, due to the
complexity of such an investigation for the non-
local hyperbolic models (1) (which involves per-
turbations of the spatially-heterogeneous travelling
pulse; thus being more complex than the weakly
nonlinear analysis of spatially-homogeneous states
in [23]), this investigation is beyond the scope of
the current study.

C. The effect of noise on both individual turning
rates and perception of neighbours

Finally, we consider the combined effect of
noise (W (t) = Rand(0, nm) with nm = 0.5)
on both the individual turning rates (λ1,2) and
on the perception of neighbours ahead/behind the
reference individual (pa,b). Figure 11 shows that
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(black branch). All other parameters are as in Table II.

while noise in the turning rates does seem to
dominate the dynamics for pa ≈ pb (see the
stationary chaotic zigzag in panel (a), and the
travelling chaotic zigzag in panel (b)), increasing
the perception strength of neighbours ahead (i.e.,
pa � pb) leads to a loss in the spatio-temporal
patterns with the dynamics approaching a stable
spatially homogeneous steady state, where u∗,+ �
u∗,− (see the two lower figures in panel (c)).

Remark 4. We note that the linear stability anal-
ysis for the deterministic model (1) suggested that
an increase in nm for both pa,b = p∗a,b + nm
and λ1,2 = λ∗1,2 + nm can lead to a stable
steady state (u∗,+, u∗,−) = (A+, A−) – see Figure
5(c). Given the observed numerical similarities be-
tween the bifurcation structure of the deterministic
model (see Figure 9(d)) and the stochastic model
(with W (t) = Rand(0, nm); see Figure 10(d)),

one could expect that in this particular case the
stochastic stability results for the model with noise
might also lead to stable states in a relatively
similar parameter region, as the magnitude (nm)
of noise is increased. We need to emphasise that
this is not a rigorous result (just an observation
based on numerical simulations), as proving any
extrapolation of mathematical results from the
nonlocal deterministic model (1) to the nonlocal
model with noise, is still an open problem. A
linear stochastic stability analysis for this class of
nonlocal hyperbolic models (with noise affecting
turning behaviours) will be presented in a future
study.

V. SUMMARY AND DISCUSSION

In this study, we considered a nonlocal hyper-
bolic model for the collective movement and self-
organised behaviour of a population inhabiting a
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Fig. 11. Dynamics of system (1) when we increase pa compared to pb (to simulate a heterogeneous environment) and vary both
λ1,2 and pa,b by a stochastic term of maximum amplitude nm = 0.5: λ1,2 = λ∗

1,2+Rand(0, 0.5), pa,b = p∗a,b+Rand(0, 0.5).
(a) Stationary chaotic zigzags; (b) Travelling chaotic zigzags; (c) Spatially homogeneous state, with u∗,+ > u∗,−.

1D domain (and thus formed of individuals mov-
ing left and right). Since noise in the environment
can influence the interactions between individuals
(e.g., how they perceive their neighbours, how they
choose their movement direction, etc.) we also
considered various stochastic terms.

We first focused on the deterministic version of
the model and investigated the number and sta-
bility of the spatially-homogeneous steady states
exhibited by this model. Then, we investigated
numerically the stochastic model (with various
stochastic terms, W (t) and W1(t)) and discussed
the types of spatio-temporal patterns that can be
exhibited by the model as we vary the amplitude
of the noise (when we fix all other model pa-
rameters). We have shown that in the presence
of noise, by increasing the difference between the
perception of neighbours from ahead and behind
(e.g., due to environmental heterogeneity), it is
easy to loose the moving aggregation structure,
and to obtain spatially heterogeneous solutions
(where individuals are dispersed over the whole
domain); see Figure 8. Moreover, the moving
aggregation is more easily lost when we assume
that the noise leads to an increase in the perception

of neighbours (by forcing individuals to modulate
their communication to increase their chances of
being detected [5]), compared to the case when we
assume that noise can lead to either an increase or
a decrease in the perception of neighbours.

We have also compared the spatio-temporal pat-
terns obtained with the deterministic and stochastic
versions of model (1); see Figures 9 and 10.
The results showed that both models can exhibit
similar patterns (at least for the parameter values
considered in this study; see Table II): station-
ary pulses (i.e., aggregations), travelling pulses,
zigzagging aggregations. However, the transition
between these aggregations is slightly different
between deterministic and stochastic cases (with
the deterministic zigzagging pattern persisting in a
smaller parameter region compared to the stochas-
tic zigzagging pattern, and the presence of multiple
branches of stationary pulses for the deterministic
case compared to the stochastic case). The simi-
larity between the patterns (and the transitions be-
tween them) observed with both the deterministic
and stochastic models suggests that some of the
stability results (for spatially homogeneous steady
states) obtained with the deterministic model could
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be extrapolated to the stochastic model.
We focused here only on a particular parameter

space (as described in Table II), since the goal of
our study was to investigate the effect of noise
on one of the most common patterns exhibited by
self-organised animal aggregations, namely travel-
ling aggregations (i.e., travelling pulses). However,
it is possible that noise can have different effects
on different spatio-temporal patterns (see [22] for
a summary of the patterns that can be exhibited
by model (1)). Moreover, considering other types
of communication mechanisms as in [22], [32]
(e.g., unidirectional perception and emission of
signals, or omnidirectional perception and emis-
sion of signals), could lead to different types of
spatio-temporal patterns and different transitions
between these patterns. All these aspects could be
investigated in a future study.

Throughout this study, we focused on the nu-
merical investigation of the noise and its effects on
various patterns (and transitions between patterns).
We note here that transitions between the deter-
ministic patterns can be investigated analytically
with the help of bifurcation theory (see, for exam-
ple, [22], [39], [40], [41] for the application of the
equivariant bifurcation theory to the classification
and investigation of patterns exhibited by nonlocal
hyperbolic models (1)). Given the complexity of
the nonlocal models (1) the application of this
theory (which involves perturbations of the spatial
states u±(x, t)) is not very straightforward. The
bifurcation theory for stochastic systems is still in
its infancy, and thus the analytical investigation
of the transitions between the stochastic patterns
shown in Figures 9 and 11 has never been at-
tempted before (being currently an open problem).

Finally, we have shown numerically the ex-
istence of different types of (finite amplitude)
spatio-temporal patterns exhibited by model (1):
from stationary aggregations, to travelling pulses
and chaotic and deterministic zigzags. Existence
of mild and classical solutions for the nonlocal
deterministic model (1) has been shown in [22],
[29]. Future studies would need to focus on the
existence of solutions for the stochastic model (1)

(including the existence of solutions with specific
spatio-temporal structures mentioned above).

Acknowledgements: R.E acknowledges in
kind support from the Fields Institute (Toronto,
Canada), where part of this work has been carried
on.

APPENDIX: SUMMARY OF MODEL PARAMETERS

AND VARIABLES

In Table II we summarise the parameters that
appear in model (1), and their values used for
the numerical simulations. Since it is difficult
to find biologically-realistic approximations for
many of these parameter values (e.g., strengths of
social interactions qr,al,a, or perception intensities
pa,b), we choose to use values similar to those in
[21], [22]. We acknowledge that while connecting
these parameters to realistic biological situations
(e.g., the behaviour of a particular animal species)
would be the best approach, little available data
on inter-individual interactions and quantifying
animal communication makes it relatively diffi-
cult to take this approach. Finally, we need to
emphasise that the aim of this study is not to
focus on a particular animal species characterised
by particular parameter values. Rather it is to in-
vestigate pattern formation and transitions between
patterns as induced by external environmental and
anthropogenic noise, in a class of mathematical
models that could be applied to describe collective
movement of animals, with the overall aim of gen-
erating new questions that could be investigated
analytically.
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and Life Sciences, Birkhäuser, Boston, 2010, pp. 297–
336.

[16] N. E. Saadi, A. Bah, Numerical simulations of a non-

Biomath 7 (2018), 1807217, http://dx.doi.org/10.11145/j.biomath.2018.07.217 Page 17 of 18

http://dx.doi.org/10.11145/j.biomath.2018.07.217


Raluca Eftimie, The impact of environmental noise on animal communication: pattern formation in ...

linear stochastic partial differential equation modeling
phytoplankton aggregation, J. Biological Systems 23 (4)
(2015) 1550032.

[17] R. Carmona, R. Rozovskii (Eds.), Stochastic partial
differential equations: six perspectives, American math-
ematical Society, Providence, Rhode Island, 1998.

[18] J. Kim, On a stochastic scalar conservation law, Indiana
Univ. Math. J. 52 (2003) 227–256.

[19] J. Feng, D. Nualart, Stochastic scalar conservation laws,
J. Funct. Anal. 255 (2008) 313–373.

[20] G. Vallet, P. Wittbold, On a stochastic first-order hy-
perbolic equation in a bounded domain, Infin. Dimens.
Anal. Quantum Probab. Relat. Top. 12 (2009) 613–651.

[21] R. Eftimie, G. de Vries, M. A. Lewis, F. Lutscher,
Modeling group formation and activity patterns in self-
organizing collectives of individuals, Bull. Math. Biol.
69 (5) (2007) 1537–1566.

[22] R. Eftimie, G. de Vries, M. A. Lewis, Complex spatial
group patterns result from different animal communica-
tion mechanisms, Proc. Natl. Acad. Sci. 104 (17) (2007)
6974–6979.

[23] R. Eftimie, G. de Vries, M. Lewis, Weakly nonlinear
analysis of a hyperbolic model for animal group forma-
tion, J. Math. Biol. 59 (2009) 37–74.

[24] R. Fetecau, Collective behaviour of biological aggrega-
tions in two dimensions: a nonlocal kinetic model, Math.
Models methods Appl. Sci. 21 (2011) 1539–1569.

[25] B. Pfistner, A one-dimensional model for the swarming
behaviour of Myxobacteria, in: W. Alt, G. Hoffmann
(Eds.), Lecture Notes on Biomath, Vol. 89, Springer-
Verlag, 1990, pp. 556–565.

[26] F. Lutscher, Modeling alignment and movement of ani-
mals and cells, Journal of Mathematical Biology 45 (3)
(2002) 234–260.

[27] F. Lutscher, A. Stevens, Emerging patterns in a hy-
perbolic model for locally interacting cell systems, J.
Nonlinear Sci. 12 (2002) 619–640.

[28] L. Arlotti, A. Deutsch, M. Lachowicz, A discrete
Boltzmann-type model of swarming, Mathematical and
Computer Modelling 41 (2005) 1193–1201.

[29] R. Fetecau, R. Eftimie, An investigation of a nonlocal
hyperbolic model for self-organisation of biological
groups, J. Math. Biol. 61 (4) (2010) 545–579.

[30] J. Banasiak, M. Lachowicz, On a macroscopic limit
of a kinetic model of alignment, Mathematical Models
and Methods in Applied Sciences 23 (14) (2013) 2647–
2670.

[31] T. Platkowski, R. Iliner, Discrete velocity models of
the Boltzmann equation: a survey on the mathematical
aspects of the theory, SIAM Rev. 30 (2) (1988) 213–
255.

[32] R. Eftimie, Hyperbolic and kinetic models for self-
organized biological aggregations and movement: a brief
review, J. Math. Biol. 65 (1) (2012) 35–75.

[33] J. Kim, N. Mandrak, Assessing the potential movement
of invasive fishes through the Welland Canal, Journal of
Great Lake Research 42 (5) (2016) 1102–1108.

[34] D. Golani, Impact of Red Sea fish migrants through the
Suez Canal of the aquatic environment of the Eastern
Mediterranean, Bulletin of the Yale School for Forestry
and Environment Studies 103 (1998) 375–387.

[35] Y. Katz, K. Tunstrøom, C. Iannou, C. Huepe, I. Couzin,
Inferring the structure and dynamics of interactions in
schooling fish, Proc. Natl. Acad. Sci. USA 108 (46)
(2011) 18720–18725.

[36] D. Calovi, A. Litchinko, V. Lecheval, U. Lopez, A. P.
Escudero, H. Chaté, C. Sire, G. Theraulaz, Disentan-
gling and modeling interactions in fish with burst-and-
coast swimming reveal distinct alignment and attraction
behaviors, PLoS Comput. Biol. 14 (1) (2017) e1005933.

[37] K. Hadeler, Reaction telegraph equations and random
walk systems, in: S. van Strien, S. V. Lunel (Eds.),
Stochastic and spatial structures of dynamical systems,
Royal Academy of the Netherlands, North Holland,
Amsterdam, 1996, pp. 133–162.

[38] W. Press, S. Teukolsky, W. Vetterling, B. Flannery,
Numerical Recipes: The Art of Scientific Computing,
Cambridge University Press, 2007.

[39] P.-L. Buono, R. Eftimie, Codimension-two bifurcations
in animal aggregation models with symmetry, SIAM J.
Appl. Dyn. Syst. 13 (4) (2014) 1542–1582.

[40] P.-L. Buono, R. Eftimie, Analysis of Hopf/Hopf bifur-
cations in nonlocal hyperbolic models for self-organised
aggregations, Math. Models Methods Appl. Sci. 24 (2)
(2014) 327–357.

[41] P.-L. Buono, R. Eftimie, Lyapunov-Schmidt and Centre
Manifold reduction methods for nonlocal PDEs mod-
elling animal aggregations, in: B. Toni (Ed.), Mathemat-
ical Sciences with Multidisciplinary Applications, Vol.
157, Springer, 2016, pp. 29–59.

Biomath 7 (2018), 1807217, http://dx.doi.org/10.11145/j.biomath.2018.07.217 Page 18 of 18

http://dx.doi.org/10.11145/j.biomath.2018.07.217

	Introduction
	Model derivation
	Deterministic model: spatially-homogeneous states and their linear stability
	Numerical results
	The effect of noise on the perception of neighbours
	The effect of noise on the turning rates
	The effect of noise on both individual turning rates and perception of neighbours

	Summary and Discussion
	References

