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Abstract—Leishmaniasis is a neglected and
emerging disease prevalent in Mediterranean and
tropical climates. As such, the study and develop-
ment of new models are of increasing importance.
We introduce a new immuno-epidemiological model
of visceral leishmaniasis in dogs. The within-host
system is based on previously collected and pub-
lished data, showing the movement and proliferation
of the parasite in the skin and the bone-marrow, as
well as the IgG response. The between-host system
structures the infected individuals in time-since-
infection and is of vector-host type. The within-host
system has a parasite-free equilibrium and at least
one endemic equilibrium, consistent with the fact
that infected dogs do not recover without treatment.
We compute the basic reproduction number R0 of
the immuno-epidemiological model and provide the
existence and stability results of the population-level
disease-free equilibrium. Additionally, we prove ex-
istence of an unique endemic equilibrium when
R0 > 1, and evidence of backward bifurcation
and existence of multiple endemic equilibria when
R0 < 1.

Keywords-leishmaniasis in dogs, backward bifur-
cation, immuno-epidemiological model, stability, pa-
rameter estimation, immune dynamics

AMS SUBJECT CLASSIFICATION: 92D30

I. INTRODUCTION

The leishmaniases are a group of diseases found
in over 90 countries around the world, spread by
over 30 species of the phlebotomine sand flies
and infecting a variety of hosts including humans
and dogs. While cutaneous leishmaniasis is more
common, visceral leishmaniasis (VL) is lethal if
untreated. We focus on zoonotic visceral leish-
maniasis (ZVL), which has symptoms including
enlarged spleen and liver and non-specific symp-
toms such as fever, weight loss, and anemia [1].
The non-specificity makes diagnosis challenging,
particularly in the case of dogs [15]. The leish-
maniases are classified as a Neglected Tropical
Disease (NTD), with an estimated 0.2-0.4 million
new human cases per year [14] and hundreds of
millions at risk of new infection [19]. The WHO
has stated that it is one of the most significant
tropical diseases in the world [19]. As such, it is
imperative to continue the study of VL, including
its epidemiology, immunology, control measures,
and identification.

Visceral leishmaniasis is usually caused by the
L. donovani and L. infantum protozoa. The L.
donovani-induced VL is more common in Africa
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and Asia, while the L. infantum-induced VL is
more common in the Americas and the Mediter-
ranean [10]. While dogs and other mammals are
infected by the L. donovani-induced VL, it has
been shown that dogs are a primary reservoir only
for the disease caused by the L. infantum species
[2]. In fact, previous work has postulated that dogs
are the main contributor to the spread of VL,
claiming that 20% of the infected dogs cause 80%
of transmission [2]. For these reasons, we focus
primarily on the role of dogs in the persistence of
VL.

To date, there have been few mathematical
models for the between-host dynamics of VL [15].
Some models have chosen to compartmentalize
asymptomatic or latently infected, resistant, and/or
recovered classes, but almost all models have been
ODEs. Some models, including the first model of
VL in dogs by Dye includes resistance from birth
[3]. Another model was developed by Ribas et al
[4] which studies the population level dynamics
between dogs and humans. The model was used to
argue that treatment in dogs does not reduce signif-
icantly human illness. Shimozako et al considered
a model of leishmaniasis in dogs and humans [16]
and concluded that latent dogs contribute more to
the illness than clinically ill dogs. Seva et al [12]
investigated an outbreak of VL in Spain through
a model that involved multiple host classes –
rabbits, hares, dogs, and humans. All of the VL
epidemic models studied to date are single-scale
ODE models.

Even fewer models have been made for the
within-host dynamics. Länger et al [8] developed
a model examining the effect of IgG1, IgG2a, and
lymphocytes on the parasite load, concluding that
their model could be used in identifying biologi-
cally significant parameters [8]. Siewe et al [17]
modeled macrophages, parasite loads, dendritic
cells, T cells, and cytokines, and simulated the
effects of various control measures. As a result,
they stated that an increase in IFN-γ production
should lead to a decrease in parasite load; an
implication for potential therapy.

We develop, for the first time, an immuno-

epidemiological model for VL. While still in the
early stages of development, we intend for this
model to display the effect that the within-host
dynamics may have on infection of the vector.
Additionally, we hope to assess the infectivity
of a vector based on parasite reproduction and,
eventually, control measure efficacy. Similarly, we
plan to examine the parasite reproduction inside
hosts with respect to the efficacy towards a vec-
tor, immune response, and treatment. Since these
processes occur at a drastically different rate, we
adopt the multi-scale approach.

Our within-host system was designed to fit data
from Courtenay et al [2]. Our between-host system
is of vector-host type, with the infected host class
structured by time-since-infection. The between-
host system contains susceptible, infected, and
recovered host classes and susceptible, carrier,
and infectious vector classes. Courtenay et al [2]
conclude that, while samples were taken from both
the skin tissue and bone marrow to record parasite
loads, it is the parasite load in the skin tissue that
is the most reliable indicator of VL infection [2].
We use this fact in the linking of the within- and
between-host systems.

Following the introduction of the model in
Section 2, we present a parasite-free equilibrium
of the within-host system and prove it to be
unstable in Section 3.1. Then, in Section 3.2, we
introduce the basic reproduction number R0, and
prove the disease-free equilibrium of the immuno-
epidemiological model to be locally asymptoti-
cally stable when R0 < 1. We show the existence
of an endemic equilibrium when R0 > 1, and the
existence of multiple endemic equilibria and the
presence of backward bifurcation, when R0 < 1.
In Section 4 we discuss our conclusions.

II. THE MODEL

A. The Within-Host System

Our within-host model is motivated by time
series data in Courtenay et al [2] pertaining to the
parasite loads in the skin tissue and bone marrow
of dogs, as well as the immunoglobulin G (IgG)
concentration. We derive a system coupling the
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Fig. 1: The flow-chart of the immuno-epidemiological model of VL in dogs

dynamics of the parasite load in the skin tissue
(PS(x)), the parasite load in the bone marrow
(PO(x)), and the IgG concentration (G(x)), where
x is the time-since-infection. The subscript S will
indicate skin tissue, while the subscript O will
indicate the bone marrow. We first introduce the
model below and then we explain and motivate it.
A full list of parameter meanings can be found in
Table I and the variable meanings in Table IV:

P ′S =rSPS

(
1− PS

KS

)
+

1

ρ
kOPO − kSPS

− εSPSG (1)

P ′O =rOPO

(
1− PO

KO

)
− kOPO + kSρPS

− εOPOG (2)

G′ =aSρPS + aOPO − dG (3)

For the parasite loads, we assume reproduction
is limited by a carrying capacities KS and KO.
Hence the equations for P ′S and P ′O use logistic
terms to model recruitment, with rates rS and rO.

We note that to infect a host, a sand fly must de-
posit parasites into the skin, when it takes a blood
meal. Similarly, for a sand fly to become infected,

it must take a blood meal from an infected host’s
skin. As there are parasites in the bone marrow, we
can assume mobility of the parasite between the
skin tissue and bone marrow. Hence our model
contains “travel terms,” with rates kO and kS and
density conversion coefficient ρ. Thus, for every
time within-host unit, a fraction of the parasites in
the skin move to the bone marrow, and vice versa.

While not much is known about the parasite,
we assume that the life span is short, and we
include the natural death as part of the logistic
term. However, we include the clearance of the
parasite induced by the immune response as a
separate term. Hence εS and εO are the IgG
induced clearance rates of the parasite.

Lastly, we assume that the IgG response is
caused by the presence of the foreign parasite,
i.e., the basal level of IgG present before the
introduction of the parasite is not counted towards
G. As such, aS and aO are the IgG production
rates caused by the parasite loads. We assume that
the clearance rate is the only way IgG leave the
system, which occurs at rate d.

Courtenay et al [2] obtained data for the parasite
loads (PL) and IgG concentration. We present sim-
ulations of our within-host system. The behaviors
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TABLE I: Parameters for the within-host system.

Parameter Description Unit
aO PO induced IgG production rate IgG AU / [parasites · time x]
aS PS induced IgG production rate IgG AU / [parasites · time x]
d Natural clearance rate of IgG 1 / [time x]
εO IgG induced PO clearance 1 / [time x · IgG AU/mL]
εS IgG induced PS clearance 1 / [time x · IgG AU/mL]
KO Parasite carrying capacity in bone marrow parasites/mL
KS Parasite carrying capacity in skin tissue parasites/g
kO Parasite travel rate from bone marrow to skin tissue 1 / [time x]
kS Parasite travel rate from skin tissue to bone marrow 1 / [time x]
rO Parasite reproduction rate in bone marrow 1 / [time x]
rS Parasite reproduction rate in skin tissue 1 / [time x]
ρ Conversion Coefficient [g skin] / [mL bone marrow]

of these curves are similar to that of the data
provided. The result of our simulation is given by
the curves in Figures 2(A)-2(C). The parameter
values for the simulation can be found in Table II.

B. The Between-Host System

Few models exist for the between-host dynam-
ics of VL, and even fewer for zoonotic VL in
dogs. Previous models have largely been ODE in
structure. Some models included an asymptomatic
or latently infected class [15]. However, obtaning
data on infectious dogs is obstructed by the fact
that identifying infectious dogs can be very dif-
ficult [13]. Since an infectious host is considered
only infectious to the vector, the most reliable way
to test for VL is through xenodiagnosis, a process
in which a susceptible vector population bites a
possibly infected host, and is then tested for the
presence of the parasite [2].

However, xenodiagnosis is not always feasible
or practical [2]. Since the symptoms of VL are
non-specific, it is difficult to separate the latently
infected dogs from the infectious dogs. In our
multi-scale model, we structure the infectious
hosts by time-since-infection, with the assumption
that hosts are less infectious and less likely to
display symptoms closer to when they first con-
tract the parasite. The time-since-infection struc-
ture provides flexibility; allowing for fitting data
given in different time units in the two different
scales – the within-host and the between-host. We
first introduce the system for the between-host

dynamics of VL. Definitions of the parameters
used can be found in Table III and definitions of
the variables used in Table IV:

S′H = ΛH −
βHaSHIV

N
−mHSH + γRH , (4)

it + kuix = −(σ(x) + µ(x) +mH)i(t, x), (5)

kui(t, 0) =
βHaSHIV

N
, (6)

R′H =

∫ ∞
0

σ(x)i(t, x)dx− (γ +mH)RH , (7)

where x is the time-since-infection and the total
number of infected hosts, IH(t), is

IH(t) =

∫ ∞
0

i(t, x)dx. (8)

The host system consists of susceptible SH(t),
infected i(t, x), and recovered/resistant RH(t)
classes. The constant ku in (5) and (6) accounts for
the difference in the rates that the time t and time-
since-infection x occur, i.e., x = kut. For the sake
of initial analysis, we let ku = 1. Susceptible hosts
are born at rate ΛH , and move to the infected class
with standard incidence βHaSHIV /N . Recovery
takes place at rate σ. The integral term in (7)
is the total number of recovered individuals per
unit time. Hosts exit the system either through
natural death, mH , or disease-induced mortality,
µ. The existence of relapse and reinfection shows
the necessity of waning immunity at rate γ (see
Table III).

The vector system consists of susceptible vec-
tors SV (t), carrier vectors CV (t), who are infected
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(a) (b) (c)

Fig. 2: Figures (a) and (b) show simulations of the parasites in the skin and bone marrow, respectively,
in log10 values. Figure (c) shows simulations of log10 IgG antibody units.

TABLE II: Parameter values used.

Parameter Value Unit
aO 4.550060 × 10−1 IgG AU / [parasites · day]
aS 1.739817 × 10−5 IgG AU / [parasites · day]
d 4.136157 × 10−3 parasites/day
εO 8.927579 × 10−7 1 / [day · IgG AU/mL]
εS 6.968101 × 10−7 1 / [day · IgG AU/mL]
KO 1.034155 × 106 parasites/mL
KS 1.007303 × 108 parasites/g
kO 5.723339 × 10−9 1 / day
kS 5.228469 × 10−4 1 / day
rO 2.614700 × 10−2 1 / day
rS 2.965272 × 10−2 1 / day
ρ 1 [g skin] / [mL bone marrow]

TABLE III: Parameters for the between-host system.

Parameter Description Units
a Average biting rate bites / [time t · vectors]
βH Rate of host becoming infected after bite 1 / [bites/hosts]
βV Rate of vector becoming infected after bite 1 / [bites/vectors]
γ Rate of becoming susceptible after recovery 1 / [time t]
ku Time scaling constant [time x] / [time t]
ΛH Birth rate of hosts hosts / [time t]
ΛV Birth rate of vectors vectors / [time t]
mH Natural death rate of hosts 1 / [time t]
mV Natural death rate of vectors 1 / [time t]
µ(x) Disease induced death rate of hosts 1 / [time t]
σ(x) Rate of recovery of hosts 1 / [time t]
τ Rate of moving from carrier to infectious 1 / [time t]
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TABLE IV: Definitions of dependent variables.

Variable Description Unit
SH(t) Susceptible hosts at time t hosts
IH(t) Infected hosts at time t hosts
i(t, x) Density of hosts infected x time units ago at time t hosts / [time x]
RH(t) Recovered hosts at time t hosts
SV (t) Susceptible vectors at time t vectors
CV (t) Carrier vectors at time t vectors
N(t) Host population hosts
IV (t) Infectious vectors at time t vectors
PO(x) Parasite load of bone marrow at time x parasites/mL
PS(x) Parasite load of skin tissue at time x parasites/g
G(x) IgG concentration at time x IgG AU/mL

TABLE V: Parameters for linking.

Parameter Description Unit
ξ Rate of exponential decay 1 / [parasites/g]
cV Maximal transmission coefficient 1 / [bites/vector]
δ0 Constant 1 / mL
κ Constant 1 / [IgG AU/mL · time t]
η Constant 1 / [IgG AU/mL · time t]
ν Constant (unitless)
ψO Constant 1 / [parasites/mL · time t]
ψS Constant 1 / [parasites/g · time t]
θO Constant 1 / parasites
θS Constant 1 / parasites

but not infectious yet, and infectious vectors IV (t).
While there are many unknowns about the sand
flies and leishmania, it is known that the parasite
must make its way through the sand fly after a
blood meal before it can be deposited in a host.
The time elapsed for the parasite to potentially in-
fect a new host, called extrinsic incubation period,
is comparable to the life span of the sand fly. This
requires the carrier class for the vector.

S′V =ΛV −mV SV −
aSV
N

∫ ∞
0
βV (x)i(t, x)dx (9)

C ′V =
aSV
N

∫ ∞
0
βV (x)i(t, x)dx−(τ+mV )CV (10)

I ′V = τCV −mV IV , (11)

Vectors are born at rate ΛV , and exit the system
only through natural death rate mV . Vectors move
from the carrier class to the infectious class at rate
τ . The integral terms in (9) and (10) represent the
force of infection of humans to susceptible vectors.

Since the rate of infection (ROI) is assumed to
be dependent on x, the rate of recovery of hosts,

σ, the disease-induced death rate of hosts, µ, and
the rate of an infected host infecting a susceptible
vector at the time of the blood meal, βV , are also
dependent on x.

C. Linking the Within- and Between-Host Systems

While much analysis is left, we note the dif-
ferent time scales that will be utilized. That of
the parasites and vectors will occur much faster
than that of the hosts. We introduce the methods
in which we initially plan to incorporate the faster
time scale into the spread of the virus.

Since Courtenay et al [2] concluded that the
parasite load in the dog skin tissue was the best
indicator of infectiousness to the vector, we use
PS(x) to determine the rate of transmission βV (x):

βV (x) = cV e
−ξP νS (x), (12)

where ξ is the rate of exponential decay, cV is
the maximal transmission coefficient, and ν =
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−2/ ln(10). This relationship was derived by Li
et al [9], using data for dengue.

Assuming treatment, the recovery rate also de-
pends on the time-since-infection. We assume re-
covery occurs when the within-host parasite load
becomes zero. Thus, we let

σ(x) =
κG

δ0 + θSρPS + θOPO
, (13)

where δ0 is a small constant, and θS , θO, and κ
are constants [18]. Note that when PS and PO
approach 0, σ becomes large due to δ0.

To link the disease-induced mortality, µ, we let

µ(x) = ψSρPS + ψOPO + ηG, (14)

where ψS , ψO, and η are constants, [6].

III. ANALYSIS

A. Analysis of the Within-Host System

The within-host system (1)-(3) has a parasite-
free equilibrium E0 = (0, 0, 0). To determine its
stability, we consider the Jacobian at the parasite-
free equilibrium. We have the following result.

Theorem 1. The parasite-free equilibrium E0 is
always unstable.

Proof: Let k̂O = 1
ρkO, k̂S = kSρ, and

âS = aSρ. The Jacobian of the within-host system
evaluated at E0 is

J0 :=

rS − kS k̂O 0

k̂S rO − kO 0
âS aO −d

 ,

which has the eigenvalue λ1 = −d. The remaining
eigenvalues are eigenvalues of the submatrix

J1 :=

(
rS − kS k̂O
k̂S rO − kO

)
.

Note that k̂Ok̂S = kOkS . Then E0 is stable if and
only if det(J1) = (rS−kS)(rO−kO)−kSkO > 0
and Tr(J1) < 0. Suppose that det(J1) > 0. Note
that

det(J1) = rSrO − rSkO − rOkS
= rS(rO − kO)− rOkS .

So rS(rO−kO)−rOkS > 0 if and only if rS(rO−
kO) > rOkS . Then rO > kO. Similarly, we can get
rS > kS . Hence Tr(J1) > 0 when det(J1) > 0.
Therefore E0 is unstable.

This stability result heuristically makes sense
as, without the introduction of treatment, infected
hosts stay infected.

Theorem 2. The within-host system (1)-(3) al-
ways has at least one parasite equilibrium E∗. This
equilibrium is unique if rS < kS . If rS > kS , the
equilibrium is unique if

k̂O

(
εS
d
âS +

rS
KS

)
> (rS − kS)

εS
d
aO (15)

Proof: To show existence, we set the within-
host system equal to zero and reduce the system
to

0 =rSPS

(
1− PS

KS

)
+ k̂OPO − kSPS

− εS
d
PS(âSPS + aOPO) (16)

0 =rOPO

(
1− PO

KO

)
− kOPO + k̂SPS

− εO
d
PO(âSPS + aOPO). (17)

Solving (16) for PO, we obtain PO = PSf1(PS),
where

f1(PS)=
1

ΦO(PS)

[
kS+

εS
d
âSPS−rS

(
1− PS

KS

)]
and

ΦO(PS) = k̂O −
εS
d
aOPS .

Substituting PO in (17), we obtain the following
equation for PS :

F (PS) := f1(PS)G1(PS) = 0

with

G1(PS) =rO

(
1− PSf1(PS)

KS

)
− kO +

k̂S
f1(PS)

− εO
d

(âSPS + aOPSf1(PS)).
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Denote by P̂S the value of PS such that ΦO(P̂S) =
0. Further, denote by P̄S the value of PS such that
f1(P̄S) = 0. We have

P̄S =
rS − kS

εS âS
d

+
rS
KS

,

P̂S =
k̂O
εS
d
aO

.

We consider the following cases
Case 1:] We have rS < kS or rO < kO. Then,
f1(PS) > 0 and ΦO(PS) > 0 iff PS ∈ (0, P̂S).
We have that f1(PS) is an incrasing function of
PS . Further G1(PS) is a decreasing function of
PS . As f1(PS) > 0 on PS ∈ (0, P̂S) the roots of
F (PS) = 0 are the same as the roots of G1(PS) =
0. Since G1 is decreasing, if a root exists, it must
be unique. Since

G1(0) = rO−kO+
kSkO
kS − rS

= rO+
kOrS
kS − rS

> 0

if kS > rS , as in this case. On the other hand

lim
PS→P̂S

−
G1(PS) = −∞

Since G1(PS) is continuous on (0, P̂S), then there
is at least one solution of G1(PS) = 0. Hence,
there exists a unique P ∗S ∈ (0, P̂S) such that
F (P ∗S) = 0 and P ∗O = P ∗Sf1(P ∗S) > 0. In this
case, it is easy to see that

G∗ =
âSP

∗
S + aOP

∗
O

d

is positive as well.
Case 2: We have rS > kS . Since f1(0) < 0, the
solution, if it exists, lies in a different interval.
Note f1(PS) > 0 iff PS ∈ (P̄S , P̂S). However, in
this case we don’t know whether P̄S < P̂S or vice
versa. So we have to consider two subcases.

Case 2A: Assume inequality (15), that is, as-
sume P̄S < P̂S . Then f1(PS) is an increasing
function of PS with

f1(P̄S) = 0, lim
PS→P̂S

−
f1(PS) =∞.

It is easy to see that in this case we also have

lim
PS→P̄S+

G1(PS) =∞,

lim
PS→P̂S

−
G1(PS) =−∞.

Further, G1(PS) is also monotone and con-
tinuous as in Case 1. Hence, there exists a
unique P ∗S ∈ (P̄S , P̂S) such that F (P ∗S) = 0
and P ∗O = P ∗Sf1(P ∗S) > 0. In this case it is
easy to see that G∗ is positive as well. We
also note that F (P̄S) = k̂S > 0. Thus, P̄S is
not a solution.
Case 2B: Assume P̄S > P̂S . Then f1(PS) is
a decreasing function of PS .

f1(P̄S) = 0, lim
PS→P̂S

−
f1(PS) =∞

It is easy to see that in this case we also have

lim
PS→P̄S+

G1(PS) =∞,

lim
PS→P̂S

−
G1(PS) =−∞.

Since G1(PS) is also continuous as in Case 1,
there exists at least one solution in (P̂S , P̄S).
However, in this case G1(PS) may not be
monotone and the equilibrium may not be
unique. Hence, there exists at least one P ∗S ∈
(P̂S , P̄S) such that F (P ∗S) = 0 and P ∗O =
P ∗Sf1(P ∗S) > 0. In this case it is easy to see
that G∗ is positive as well, and P̄S is not a
solution to F (PS) = 0.

B. Analysis of the Full Immuno-Epidemiological
Model

The immuno-epidemiological model has a
disease-free equilibrium

E0 =

(
ΛH
mH

, 0, 0,
ΛV
mV

, 0, 0

)
. (18)

We linearize model (4)-(11) around E0. Looking
for exponential solutions of the form ~z(t) = zeλt,
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we obtain the characteristic equation F (λ) = 1,
where λ ∈ C and

F (λ) =
τ

mV + λ
· am

τ +mV + λ
βHa·∫ ∞

0
βV (x)e−λxe−

∫ x
0

(σ(ξ)+µ(ξ)+mH)dξdx. (19)

Then the basic reproduction number is F (0), or

R0 =

% of vectors
that become
infectious︷ ︸︸ ︷
τ

τ +mV
·aβH
mV︸ ︷︷ ︸

RV

·

RH︷ ︸︸ ︷
am

∫ ∞
0
βV (x)e−

∫ x
0

(σ(ξ)+µ(ξ)+mH)dξdx, (20)

where RV is the basic reproduction number of the
vectors and RH is the basic reproduction number
of the hosts [11]. The parameter m denotes the
ratio of the vector to hosts and is defined as

m =
ΛV
mV

mH

ΛH
.

It should be noted that R0 is dependent on the
within-host system.

Theorem 3. If R0 < 1, then the disease-free
equilibrium E0 is locally asymptotically stable. If
R0 > 1, then E0 is unstable.

Proof: Suppose R0 < 1. Then F (λ) = 1 has
a unique negative solution λ∗ ∈ R. For a complex
λ, let λ = α1 + iα2, and assume α1 ≥ 0. Then

|F (λ)| ≤ a2βHmτ

|mV + λ| |τ +mV + λ|

·
∫ ∞

0
βV (x)

∣∣∣e−λx∣∣∣π(x)dx

≤ a2βHmτ

(mV + α1)(τ +mV + α1)

·
∫ ∞

0
βV (x)e−α1xπ(x)dx

=F (α1) ≤ F (0) = R0 < 1.

Since 1 = |F (λ)| ≤ R0 < 1, a contradiction,
we must have α1 < 0. Hence every complex

solution to F (λ) = 1 must have a negative real
part. Therefore, E0 is locally asymptotically stable
when R0 < 1.

Now suppose that R0 > 1. Then for positive
λ ∈ R,

F ′(λ) =
(mV + λ)(τ +mV + λ)(a2βHmτ)

(mV + λ)2(τ +mV + λ)2

·
∫ ∞

0
(−x)βV (x)e−λxπ(x)dx

− a2βHmτ(τ + 2mV + 2λ)

(mV + λ)2(τ +mV + λ)2

·
∫ ∞

0
βV (x)e−λxπ(x)dx

=− a2βHmτ

(mV + λ)2(τ +mV + λ)2

·
[
(mV + λ)(τ +mV + λ)

·
∫ ∞

0
xβV (x)e−λxπ(x)dx

+ (τ+2mV +2λ)

∫ ∞
0
βV (x)e−λxπ(x)dx

]
< 0,

since the bracketed expression is always positive
for non-negative βV (x) 6≡ 0. Since R0 > 1, then
F (0) > 1. Since

lim
λ→∞

F (λ) = 0

and F is decreasing, F (λ) = 1 has a unique
positive solution λ∗ ∈ R. Thus E0 is unstable.

To study existence of endemic equilibria, we set
the time derivatives in the between-host system
equal to zero and reduce the system to

0 = ΛH −
βHaSHIV

N
−mHSH

+
γ

γ +mH
· βHaSHIV

N
Σ, (21)

fSV (IV )SH
N2

= Q, (22)

N2 − ΛH
mH

N = −βHaSHIV
mH

M, (23)
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where

fSV (IV ) := SV =
ΛV
mV
− τ +mV

τ
IV ,

Q =
(τ +mV )mV

τ
· 1

βHa2BV
,

M =

∫ ∞
0

µ(x)π(x)dx,

Σ =

∫ ∞
0

σ(x)π(x)dx,

BV =

∫ ∞
0

βV (x)π(x)dx,

π(x) = exp

(
−
∫ x

0
(σ(ξ) + µ(ξ) +mH)dξ

)
,

N = SH +

∫ ∞
0

i(t, x)dx+RH

=
ΛH
mH
− βHaSHIV

N
M.

Solving (21) for SH gives fSH (IV /N). Substitut-
ing that into (23) yields

N =
ΛH
mH
−
βHa

[
fSH

(
IV
N

)]
IV
N

mH
M =: fN (IV /N).

We let X = βHaIV /N and p = 1−γΣ/(γ+mH).
We redefine fSH and fN as functions of X , and
obtain

fSH (X) =
ΛH

mH + pX
,

fN (X) =
ΛH
mH

[
1− MX

mH + pX

]
.

We have that

QN = SV SH/N = fSV (X)fSH (x)/fN (X).

Expanding and rearranging, we obtain

a0X
2 + b0X + c0 = 0, (24)

where

a0 =
(p−M)2

mH

m

R0
+
τ +mV

τβHa
(p−M), (25)

b0 =
2m

R0
(p−M)−mp+

τ +mV

τβHa
mH , (26)

c0 =

(
1

R0
− 1

)
mHm, (27)

and m = S0
V /N

0.

Theorem 4. When R0 > 1, there exists a unique
positive endemic equilibrium.

Proof: We have that a0 > 0, since p−M >
0. If R0 > 1, then c0 is necessarily negative.
Hence, the equation (24) has exactly one positive
solution. It is not hard to see that in this case
SH = fSH (X) > 0 and N = fN (X) > 0. This
also implies that SV > 0. Hence, a unique positive
equilibrium exists.

On the other hand, if R0 < 1, (24) may have
two positive soluitons or no positive solutions. Two
positive solutions are obtained if equation (24)
exhibits backward bifurcation. We find a necessary
and sufficient condition for the existence of two
equilibria:

p+ aBVmH < 2M,

noting that M is the disease-induced mortality.
Thus, backward bifurcation in this model can
occur only if M > 0.

Theorem 5. If R0 < 1 and b0 is negative,
then backward bifurcation occurs and two endemic
equilibria exist. If R0 < 1 and b0 is positive, there
are no endemic equilibria.

The existence of the two endemic equilibria is
established by the backward bifurcation shown in
Figure 3 where X is plotted on the y-axis and R0

is plotted on the x axis. The parameter varied in
the figure is the mortality rate of the vector mV . It
may be important to note the decrease in the level
of the upper equilibrium upon increasing mV . This
could imply that a stronger control measure on the
vector could greatly affect the level of persistence
of the disease.

IV. DISCUSSION AND CONCLUSION

In this paper, we present a new immuno-
epidemiological model for zoonotic visceral leish-
maniasis (ZVL) in dogs, in which the within-host
model simulated infectiousness based on parasite
load and the between-host model was structured
by time-since-infection.
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Fig. 3: Backward bifurcation of (24) when R0 < 1
and b0 < 0. Various values of mV are shown.

The within-host system examined the parasite
loads in the skin and bone marrow, as well as
the IgG concentration. This system agrees well
with data provided by Courtenay et al [2]. The
within-host model was shown to have an unstable
parasite-free equilibrium, in which the parasite
population dies out within the host. This equi-
librium’s stability is in the absence of treatment,
consistent with the persistence of ZVL without
treatment.

While the agreement of the model solutions with
the data was satisfactory, in future work we will fit
the model to the data and examine the biological
significance of the values found for the parameters.
Upon establishing the existence of equilibria and
their stability, it is of great importance to examine
the effect of control measures on the parasite
population, as originally presented by Dye [3].
This would include existing medicinal treatments,
a hypothetical vaccine, and control measures di-
rectly affecting the vector.

The basic reproduction number for the immuno-
epidemiological model R0 was introduced, and
the disease-free equilibrium of the between-host
system was shown to be locally asymptotically
stable when R0 < 1. We then derived a quadratic
equation for the equilibria of the full system, based

on a reduction of the system. This equation in
X := βHaIV /N was used to establish the ex-
istence and characterize the endemic equilibria of
the immuno-epidemiological model. When R0 >
1, the model was shown to have a unique positive
endemic equilibrium. However, when R0 < 1
and the coefficient of the linear term of the
quadratic equation was negative, the presence of
disease-induced mortality allowed for backward
bifurcation to occur, consistent with the results
found in ODE cases [5]. This provided justifica-
tion for the existence of two endemic equilibria.
The presence of subthreshold equilibria generally
obstructs disease eradication. Control measures in
this case should be directed towards (A) removing
the cause of the backward bifurcation which in this
case is the disease-induced mortality in dogs or
(B) coupling sustain control measures that bring
R0 below one with temporary control measures,
such as mosquito spraying, to put the disease on
elimination path [7].
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