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Abstract—We develop a virus-resistant HIV-1
mathematical model with behavior change in HIV-
1 resistant non-progressors which was analyzed
for both partial and total abstinence cases. The
model has both disease-free and endemic equilib-
rium points that are locally asymptotically stable
depending on the value of the associated threshold
quantities RT and R′T . In both cases, a non-
linear Goh–Volterra Lyapunov function was used
to prove that the endemic equilibrium point is
globally asymptotically stable for special case while
the method of Castillo-Chavez was used to prove
the global asymptotic stability of the disease-free
equilibrium point. In both the analytic and numer-
ical results, this study shows that in the context of
resistance to HIV/AIDS, total abstinence can also
play an important role in protection against this
notorious infectious disease.
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Total Abstinence; Goh–Volterra Lyapunov function.
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I. INTRODUCTION

As it was reported in the 1980s, the human
immunodeficiency virus (HIV), and the later stage
of infection through cell depletion known as AIDS
has continue to play a leading role in the series of
the greatest ever infectious disease. United Nations
Program on HIV/AIDS (UNAIDS) and the World
Health Organization (WHO) have already provided
the estimates of the number of cases since the
1980s.

More than 30 million people are currently HIV
positive. According to the current trends, at least
7300 people are infected with HIV and a minimum
of 5000 die from AIDS-related causes including
at-least 690 children on a daily basis (UNAIDS,
2009). This means that for every five HIV positive
individuals, at least four of them including adults
and children die from the infection daily [10], [32].
The two main types of HIV are HIV-1 and HIV-
2. The most dangerous that has spread worldwide
is HIV-1 while the latter is less pathogenic and
less spread since it’s confined to West African
countries. The test carried out on one can not
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sufficiently detect the other due to large genetic
differences between them.

Immediately after HIV infection, the lympho-
cytes, or white blood cells, known as CD4+ T
cells are the major target. Therefore, the anti-
HIV antibody and cytotoxic T cell production by
the immune system is consequently initiated. An
HIV positive individual is not classified as having
AIDS until CD4+T cell count which is approxi-
mately around 1000mm−3 depletes to 150mm−3

or thereabout. Since CD4+T plays a very important
role in the body immune mechanism, deterioration
and depletion result in acquired immunodeficiency
syndrome called AIDS. The average number of
times it takes HIV to develop to AIDS is depen-
dent on the strength of the immune system of the
victim [23].

It is therefore pertinent to study methods of
HIV prevention. Different control strategies such
as behavior change due to HIV awareness cam-
paign, reduction in sexual partners, anti retro-
viral treatment ART etc. have collectively played
important roles in combating the menace. They
are still very much relevant due to unavailability
of vaccine. The use of condom has also played
an important role and can possibly prevent HIV
transmission almost perfectly. Other intervention
methods that can concurrently prevent both sexes
are still very much needed. Recently, an experi-
mental product containing a drug that can prevent
rectal and vaginal transmission of HIV and other
sexually transmitted diseases was detected but
unfortunately did not see the light of the day due
to the fact that the gel is ineffective with high HIV
infection risk [24]. Other efforts such as the HIV
vaccine and diaphragm technique fail to manifest
to any meaningful impact [6], [21].

From biological point of view, HIV resistance
is known as the genetic mutation in the DNA
that delays AIDS progression or aids production
of permanent immunity (i.e. no progression) to
AIDS. This kind of mutation which is known
as CCR5-delta 32 plays an important role in the
development of the two kinds of HIV resistance
known. This CCR5-delta 32 breaks and distorts

the HIV’s ability to deplete and destroy the im-
munity of the CD4+T cells. The mutation makes
the CCR5 co-receptor on the outside of cells
to develop at a smaller rate than usual and no
longer sit outside of the cell. This co-receptor is
similar to a door that allows HIV passage into
the cell where within a second locks “the door”
which consequently prevents HIV entrance into the
CD4+T cells [14]. This genetic mutation has been
reported to be inborn. There are very few paper
on resistant mathematical model, some of them are
[25], [13] and [15] but the resistance was modeled
on influenza and SARS which is quite different
from HIV/AIDS. This still remains a biological
research question needed to be answered.

Research has shown that some people develop
resistance to the killer HIV-1 virus [22], [28]. In
fact, a report in [18] shows that though this resis-
tance is rare but actually exists. Virus resistance
can be understood in two scenarios. First, there
are cases of individuals that are exposed to HIV
but after a long period of times, diagnosis shows
that they are uninfected. This case of exposed un-
infected have been detected from among infants of
infected mothers, health workers during treatment
of infected individuals, commercial sex workers,
individuals having unprotected sex with seropos-
itive partners etc. The second category is HIV
infected individuals with low or no progression
to AIDS as expected under normal circumstances.
They live with the virus for many years with an
absolutely low level of HIV-1 RNA or no loss of
CD4+ cells that has been identified among various
individuals such as children and homosexual men
and women mutation [18], [8].

In 2014, the report in [12] confirms that some
people show partial or absolutely complete in-
born resistance to the HIV virus . The major or
main contributor to this strange development is
a mutation of the gene encoding CCR5 which
acts as a co-receptor for HIV. CCR5 may even be
defective in some individuals which will enhance
protection against disease. These individuals live
a normal life since the HIV-1 virus cannot bind
itself to it and its perhaps here that the key to
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overcome the disease lies hidden. Estimation later
shows that the proportion of individuals under
this category is less than 1%. Similar occurrences
make leading Oxford University researcher Sarah
Rowland-Jones to believe continual exposure is a
requirement for maintaining immunity after which
15 proteins were identified to be unique to those
virus-free sex workers [3], [2]. A genetic mutation
that blocks HIV which may hold the key to future
treatment was also studied in 2016 by [9].

In 2010, [4] identified factors such as
APOBEC3G, Toll-like receptors, acute-phase
amyloid A protein, interleukin-22, APOBEC3G
and natural killer cells as the main reason why
some people do not even seroconvert let alone
progressing to AIDS despite multiple HIV expo-
sure. More interesting reasons behind this strange
occurrence has been examined by the university
of Minnesota in 2014 [33] and by [17] in 2013.
Another interesting factor that influence the spread
of HIV/AIDS is change in sexual behavior towards
sex. This is caused by the infectiousness nature,
high death rate and stigmatization encountered by
victims of HIV/AIDS. This has subsequently affect
the transmission of the disease in recent years.

Behavior change intervention will help individ-
uals change their drug-using behaviors and sexual
behavior that put them at a high risk of contracting
HIV. It also creates skills and knowledge that can
influence their motivation and ability to kick start
behavior change. Couples, peer groups, individu-
als, communities or institutions can be targeted on
a multiple level. This behavior change can also
be motivated through skills-building, motivational
or educational approach. Interventions can target
different kind of behaviors such as condom usage,
number of sexual partners, correct use of best
prevention approach etc. Though many researchers
have developed different models to examine the
dynamics of the virus, HIV-1 mathematical model
where infected individuals gain resistance to ac-
quisition of HIV and resistance to deterioration
of HIV incorporating behavior change in form of
partial and total abstinence is still a biological
question needed to be answered.

Researchers like [31], [19] have done commend-
able work in tackling the menace of the deadly
virus, in this research, we present a new virus-
resistant HIV-1 model with behavior change. This
behavior change to avoid infection happens as
a result of the wide spread of the agony and
death caused by HIV/AIDS. This change happens
either partially or totally. Those who show partial
abstinence are those that only reduced their sexual
partners but still involve in HIV-risk activities
or live in endemic environment while those who
totally abstain are those who maintain only one
sexual partner and do away from all HIV-risk
activities or exposed and endemic environment.

Mathematical modeling has become an effec-
tive tool in studying infectious disease by many
researchers. It shall be used again here to study
the dynamics of resistance in HIV-1 transmission
and how it produce significant reduction rate in
the community. We hope it helps policy-makers
and public health workers in the epidemic control.

Several researchers like [20], [19], [1] and
references therein have published commendable
research output about transmission dynamics of
HIV/AIDS. They have also studied control and
prevention strategies of this notorious epidemic. In
order to further extend, compliment and contribute
to the work of the aforementioned researchers, a
new comprehensive model has been designed. The
model extends the work of the aforementioned
researchers by, for instance,

1) Considering the influence of virus-resistance
i.e. resistance to acquisition and resistance to
deterioration.

2) Incorporating the change of behavior class
whose rate of progression is either through
partial abstinence or total abstinence.

3) Including a compartment (I1) for slow pro-
gressors. These are the category of people
with partial resistance to the virus.

4) Including a compartment (I2) for non pro-
gressors. These are the category of people
with complete resistance to the virus and do
not move to AIDS compartment (A).

5) Including a compartment (I3) for fast pro-
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gressors. These are the category of people
with no resistance to the virus.

All these instances have not been considered be-
fore.
The paper is organized as follows. Section 2
entails model formulation and assumptions while
section 3 contains basic properties of the model.
This is followed by the analysis of the sub-model
(model with total abstinence) and that of the full
model (model with partial abstinence) in section
4. Section 5 presents the numerical simulation and
discussion of results while the last section contains
the conclusion, acknowledgment and disclosure
statement.

II. MODEL FORMULATION AND MODEL

ASSUMPTIONS

We formulate an HIV-1 resistant and behavior
change model by splitting the total human popula-
tion at time t, denoted by N(t), into six mutually-
exclusive compartments of susceptible individuals
S(t), slow progressor HIV-1 infected class I1(t),
non progressor HIV-1 infected class I2(t), fast
progressor HIV-1 infected class I3(t), behavior
change class I4 and AIDS class A such that

N(t) = S(t)+I1(t)+I2(t)+I3(t)+I4(t)+A(t).

It is worth noting that the AIDS class consists of
weak and unhealthy infected individuals that are
assumed to be sexually inactive.
Sexually active individuals are recruited into the
susceptible population at a constant rate B. The
susceptible individuals acquire the virus through
effective contact with an HIV-1 positive and in-
fectious individuals at the rate λ given by

λ =
β(I3 + σ1I1 + σ2I2 + σ3I4)

N
, (1)

where β in (1) denotes the effective contact rate
that is capable of leading to infection, 0 ≤ σ1 ≤ 1
denotes the modification parameter that account
for the assumed reduction in the transmission of
virus by the slow progressor HIV-1 infected class
I1 in comparison to the fast progressor HIV-1
infected individuals in I3, 0 ≤ σ2, σ3 ≤ 1 are
the modification parameters accounting for the

assumed reduction of infectiousness by I2 and I4
classes in comparison to the slow-progressor and
fast progressor classes I1 and I3 respectively. So
that

σ3 < σ2 < σ1 < 1, σ3 ≥ 0. (2)

The acquisition of infection by the slow progres-
sor HIV-1 infected individuals I1 occur at the rate
α1λ, that of I2 occur at the rate α2λ and that of
I3 at the rate α3λ. Natural death occur constantly
to anybody at the rate µ and rate of progression
from I1 to AIDS class A at the rate ρ1. Therefore,
the rate of change of the total population of the
susceptible and and slow progressor classes is
respectively given by

Ṡ(t) =B − (α1 + α2 + α3)λS − µS,
İ1(t) =α1λS − ρ1I1 − µI1,

where · represents derivative with respect to time.
The non-progressor HIV-1 infected class is gener-
ated by the break-through of infection of suscep-
tible class at the rate α2λ, total abstinence due to
behavior change at the rate γ1, partial abstinence
from I4 due to behavior change at the rate γ2 and
natural death at the rate µ so that we have

İ2(t) = α2λS − γ1I2 + γ2I4 − µI2.

Similarly, we compose the fast progressor class by
the break-through of infection of the susceptible
class at the rate α3λ, AIDS acquisition at the rate
ρ2 so that the class is given by

İ3(t) = α3λS − ρ2I3 − µI3.

The behavior change class is formulated through
the total abstinence of non progressors at the rate
γ1 and partial abstinence at the rate γ2 given by

İ4(t) = γ1I2 − γ2I4 − µI4.

While incorporating the behavior change in the
model, we deliberately focused on the behavior
change of the non-progressors HIV-1 infected in-
dividuals even though, it is imperative that all
individuals can change their behavior at any given
time. This is because this class of individuals are
the most dangerous class just that they won’t show
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Fig. 1. Flow chart of the model.

any sign of AIDS.
And finally, the AIDS class is given by

Ȧ(t) = ρ1I1 + ρ2I3 − (µ+ τ)A,

where τ is the AIDS-induced death rate. Since
progression are not the same, we have

α3 > α1 > α2, α1 + α2 + α3 = 1 (3)

where 0 < α1, α2, α3 < 1. The resultant math-
ematical model for the transmission dynamics of
HIV-1 incorporating virus resistance and behavior
change through partial and total abstinence using
a set of non-linear autonomous set of differential
equations is given by:

dS

dt
=B − (α1 + α2 + α3)λS − µS, (4)

dI1
dt

=α1λS −K1I1, (5)

dI2
dt

=α2λS + γ2I4 −K2I2, (6)

dI3
dt

=α3λS −K3I3, (7)

dI4
dt

=γ1I2 −K4I4, (8)

dA

dt
=ρ1I1 + ρ2I3 −K5A, (9)

where

K1 = ρ1 + µ,K2 = γ1 + µ,K3 = ρ2 + µ,

K4 = γ2 + µ,K5 = µ+ τ,

with initial condition

S(0) > 0, I1(0) > 0, I2(0) > 0,

I3(0) > 0, I4(0) > 0, A(0) > 0. (10)

The flow chart of this model is given in Figure 1.

III. BASIC PROPERTIES OF THE MODEL

Since the model is a dynamical system, it it is
therefore imperative to ensure that it is biologically
meaningful through the establishment of its posi-
tivity solution and boundedness at all time t ≥ 0.

A. Positivity and boundedness of the Model.

Lemma III.1. The closed set

Γ=

{
(S,I1,I2,I3,I4,A)∈R6

+|S+I1+...+I4+A≤
B

µ

}
is attracting and positively invariant with respect
to the model equation (4)-(9).

Proof: From (4), we define an integrating
factor as

ξ(t) = exp

{∫ t

o
[µ+ (α1 + α2 + α3)λ(η)]dη

}
,
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where λ(η) = λ(I1, I2, I3, I4). So that the solution
of (4) is given by

S(t)ξ(t) = B

∫ t

o
ξ(t)dt,

which can be re-written as

S(t) exp

{∫ t

o
[µ+(α1+α2+α3)λ(η)]dη

}
= S(0)

+B

∫ t

o

[
exp

{∫ s

o
[µ+(α1+α2+α3)λ(η)]dη

}]
ds,

which implies

S(t) exp

{
µt+

∫ t

o
(α1+α2+α3)λ(η)dη

}
= S(0)

+B

∫ t

o

[
exp

{
µs+

∫ s

o
(α1+α2+α3)λ(η)dη

}]
ds

so that

S(t)=B

∫ t

o

[
exp

{
µs+

∫ s

o
(α1+α2+α3)λ(η)dη

}]
ds

× exp

{
−µt−

∫ t

o
(α1+α2+α3)λ(η)dη

}
+ S(0) exp

{
−µt−

∫ t

o
(α1+α2+α3)λ(η)dη

}
,

where S(0) is an initial condition for S(t) and
hence it is a constant. This expression guarantees
the positivity of the state variable S(t) under
the condition that S(0) > 0 which consequently
ensures the positivity of I1(t), I2(t), I3(t), I4(t)
and A(t) provided that (10) is satisfied for all time
t ≥ 0.

Furthermore, addition of (4)-(9) gives
dN(t)
dt = B − µN(t)− τAw� (11)
dN(t)
dt ≤ B − µN(t),

whose solution is

N(t) ≤ B

µ
+

[
N(0)− B

µ

]
exp (−µt), (12)

lim
t→∞

N(t) ≤ B

µ
+ lim
t→∞

[
N(0)−B

µ

]
exp (−µt)

=
B

µ
.

This shows the boundedness of the solution above
by B

µ in the domain defined by the provision of
Lemma III.1. Therefore, the model is epidemically
well-posed and mathematically meaningful since
all the state variables are non-negative for all t ≥
0. Hence, it is sufficient to study and analyze the
model in Γ [26], [27]. This completes the proof.

IV. ANALYSIS OF THE MODEL

A. Analysis of the Model with Total Abstinence of
Non-progressors

Here, we analyze the model for non-progressors
that change their behavior through total abstinence
from all means of contracting HIV-1 and from all
HIV-1 endemic environments i.e. γ2 = 0, σ3 = 0
so that equation (4)-(9) becomes

dS

dt
=B − (α1 + α2 + α3)λ1S − µS, (13)

dI1
dt

=α1λ1S −K1I1, (14)

dI2
dt

=α2λ1S −K2I2, (15)

dI3
dt

=α3λ1S −K3I3, (16)

dI4
dt

=γ1I2 − µI4, (17)

dA

dt
=ρ1I1 + ρ2I3 −K5A, (18)

where

λ1 =
β(I3 + σ1I1 + σ2I2)

N
. (19)

All model parameters are positive.

B. Local Stability of Disease-Free equilibrium
(DFE)

The disease-free equilibrium of (13)-(18) is
given by

ψ∗1 = (S∗, I∗1 , I
∗
2 , I
∗
3 , I
∗
4 , A

∗)

=

(
B

µ
, 0, 0, 0, 0, 0

)
. (20)

This shows that

N∗ = S∗ =
B

µ
and

S∗

N∗
= 1
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at disease-free equilibrium point ψ∗1 . By employing
the next generation method [7], [34], F1 (the
new infection terms) and V1 (transfer terms) are
expressed as

F1 =


α1σ1β βσ2α1 βα1 0 0
α2σ1β βσ2α2 βα2 0 0
α3σ1β βσ2α3 βα3 0 0

0 0 0 0 0
0 0 0 0 0

 ,

V1 =


K1 0 0 0 0
0 K2 0 0 0
0 0 K3 0 0
0 −γ1 0 µ 0
−ρ1 0 −ρ2 0 K5

 .
Taking ρ as the spectral radius (magnitude of the
dominate eigenvalue) of the next generation matrix
F1V−11 , the reproduction number is given by

R′T =
β(α1K2K3σ1 + α2K1K3σ2 + α3K1K2)

K1K2K3
.

(21)

The quantityR′T represents the measure of average
number of new virus infection of HIV-1 developed
by a single HIV-1 infected individual in a popu-
lation where there are people who practice total
abstinence and are completely susceptible. Hence,
we present the following Lemma.

Lemma IV.1. The DFE of the reduced model (13)-
(18) with total abstinence is locally asymptotically
stable (LAS) if R′T < 1, and unstable if R′T > 1.

The proof is standard and can be established using
theorem 2 of [34].

C. Existence of Endemic Equilibrium

The reduced model with total abstinence has a
unique positive endemic equilibrium point (EEP).
This is the point where at least one of the virus
infected compartments is non-zero. Let

ψ∗∗1 = (S∗∗, I∗∗1 , I
∗∗
2 , I

∗∗
3 , I

∗∗
4 , A

∗∗) (22)

be the endemic equilibrium point. We further de-
fine the force of infection as

λ∗∗1 =
β(I∗∗3 + σ1I

∗∗
1 + σ2I

∗∗
2 )

N∗∗
. (23)

Solving equation (13)-(18) in terms of the force of
infection λ∗∗1 at steady-state gives:

S∗∗=
B

µ+ (α1 + α2 + α3)λ∗∗1
,

I∗∗1 =
α1Bλ

∗∗
1

K1[µ+ (α1 + α2 + α3)λ∗∗1 ]
,

I∗∗3 =
Bλ∗∗1

K3[µ+ (α1 + α2 + α3)λ∗∗1 ]
,

I∗∗4 =
γ1Bα2λ

∗∗
1

K2µ[µ+ (α1 + α2 + α3)λ∗∗1 ]
, (24)

A∗∗=
Bλ∗∗1 (ρ1α1K3 +K1ρ2)

K1K3K5[µ+ (α1 + α2 + α3)λ∗∗1 ]
,

I∗∗2 =
α2Bλ

∗∗
1

K2[µ+ (α1 + α2 + α3)λ∗∗1 ]
,

N∗∗=
BK1K3K5f1−τBλ∗∗1 (ρ1α1K3+K1ρ2)

µK1K3K5f1
,

where f1 = µ + (α1 + α2 + α3)λ
∗∗
1 . Substituting

all the equations in (24) into (23), it can be shown
that the non-zero equilibria of the model satisfy
the following linear equation in terms of λ∗∗1 :

aoλ
∗∗
1 + a1 = 0, (25)

where

ao = α1µK2K3(µ+ τ + ρ1)

+K1K2[µα3(ρ2 + µ+ τ) +K3K5α2], (26)

a1 = µK1K2K3K5(1−R
′

T ). (27)

Clearly, ao > 0, a1 ≥ 0 if and only if R′T ≤ 1
so that λ∗∗1 = −a1

ao
≤ 0. This shows that no ex-

istence of positive endemic equilibrium whenever
R′T ≤ 1. Hence, the endemic equilibrium point
ψ∗∗1 exists and unique whenever R′T > 1. We
claim the following result.

Lemma IV.2. The endemic equilibrium point
(EEP) of the reduced model (13)-(18) with total
abstinence is locally asymptotically stable (LAS)
if R′T > 1.

D. Global Stability of DFE

To establish the global stability of DFE points,
we adopt the approach of [5] to re express (13)-
(18) in the following vector form

Ẋ = L(X,Y ), (28)
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Ẏ = M(X,Y ),M(X, 0) = 0, (29)

where the vector X = (S) denotes the HIV-1
uninfected compartment of the system and
Y = (I1, I2, I3, I4, A) ∈ R5

+ represents the HIV-
1 infected compartments. Using the DFE point to
establish the stability analysis, the following two
conditions must be satisfied:
N1 : For Ẋ(t) = L(Xo, 0), Xo is globally
asymptotically stable.
N2 : M(X,Y ) = JY − M̂(X,Y ), M̂(X,Y ) ≥ 0
for X,Y ∈ Ωm where J = ∂M

∂Y (Xo, 0).
For this analysis, the expressions for J1, Y1, M̂1

and M1 are for the reduced model with the same
definition as above while expressions for J, Y, M̂
and M are for the full model with the same
definition. From our model equation, we obtain the
Jacobian matrix of only the infected compartment
at DFE as follows:

J1 =

α1σ1βS∗

N∗ −K1
βσ2α1S∗

N∗
βα1S∗

N∗ 0 0
α2σ1βS∗

N∗
α2σ2βS∗

N∗ −K2
βα2S∗

N∗ 0 0
α3σ1βS∗

N∗
α3σ2βS∗

N∗
βα3S∗

N∗ −K3 0 0

0 γ1 0 −µ 0

ρ1 0 ρ2 0 −K5



J1Y1=J1


I1
I2
I3
I4
A

=



βα1(σ1I1+σ2I2+I3)S∗

N∗ −K1I1
βα2(σ1I1+σ2I2+I3)S∗

N∗ −K2I2
βα3(σ1I1+σ2I2+I3)S∗

N∗ −K3I3

γ1I2 − µI4
ρ1I1 + ρ2I3 −K5A


M̂1(X,Y ) = J1Y1 −M1(X,Y ) ≥ 0 where

M1(X,Y )=



βα1(σ1I1+σ2I2+I3)S
N −K1I1

βα2(σ1I1+σ2I2+I3)S
N −K2I2

βα3(σ1I1+σ2I2+I3)S
N −K3I3

γ1I2 − µI4
ρ1I1 + ρ2I3 −K5A



and

M̂1(X,Y )=


βα1(σ1I1+σ2I2+I3)

(
1− S

N

)
βα2(σ1I1+σ2I2+I3)

(
1− S

N

)
βα3(σ1I1+σ2I2+I3)

(
1− S

N

)
0

0

 ,

Since S ≤ N , this shows that M̂1(X,Y ) ≥ 0. It
can be seen that limt→∞X(t) = Xo and J is
an M-matrix, thus Xo is globally asymptotically
stable, hence, N1 is satisfied. Also, M̂1(X,Y ) ≥ 0
for (X,Y ) ∈ Ωm. Hence, N2 is satisfied and
Eo is globally asymptotically stable whenever
R′T < 1.

E. Global Stability of Endemic Equilibrium Point

Following the provision of Lemma IV.2, we
establish the following theorem.

Theorem IV.3. The endemic equilibrium point of
the reduced model (13)-(18) is globally asymptot-
ically stable (GAS) whenever R′T > 1.

Proof: Using the idea of [1], we construct the
Lyapunov function:

B =

6∑
k=1

AkBk, Ak > 0, (30)

where Ak is a constant and Bk is given by

Bk =

∫ f

f∗∗k

(
1−

f∗∗k
x

)
dx, (31)

for
f∗∗k ∈W = {S, I1, I2, I3, I4, A} ,

where k = 1, 2, 3, 4, 5, 6. This vividly shows that
Bk is positive definite, continuous and differen-
tiable in Γ. Hence, Bk ∈ C

′
[Γ,R+]. Differentiat-

ing B partially with respect to each fk we have

∂B

∂fk
= Ak

(
1−

f∗∗k
fk

)
, (32)

so that
∂B

∂fk
= 0 =⇒ Ak

(
1−

f∗∗k
fk

)
= 0.
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Differentiating (32) again partially with respect to
each fk gives

∂2B

∂f2k
=
Akf

∗∗
k

f2k
, k = 1, ..., 6. (33)

From (32), if fk = f∗∗k , then S = S∗∗, I1 =
I∗∗1 , I2 = I∗∗2 , I3 = I∗∗3 , I4 = I∗∗4 , A = A∗∗. This
clearly shows that the endemic equilibrium point is
the only stationary point of B. Since (30) is always
positive, it means that the endemic equilibrium is
a global minimum point of the function B for
all fk ∈ Γ ⊆ R6

+. Next is to establish that the
function B is a Lyapunov function which can be
done by proving that B is negative definite. The
time derivative of B is given by

dB

dt
=

6∑
k=1

Ak

(
1−

f∗∗k
fk

)
ḟk, (34)

which is negative definite for all time t > 0. It is
worth noting here that for all f∗∗k ∈ Γ, ḟk ≤ Ṅ
which makes equation (34) to be

dB

dt
≤

6∑
k=1

Ak

(
1−

f∗∗k
fk

)
Ṅ . (35)

From equation (12), we obtain the derivative

dN

dt
= µ

(
B

µ
−N(0)

)
exp(−µt). (36)

Substituting (36) in (35), we have

dB

dt
≤

6∑
k=1

Ak

(
1−

f∗∗k
fk

)
µ

(
B

µ
−N(0)

)
exp(−µt).

(37)

When t → ∞, dB
dt ≤ 0 which means that the

total initial population N(0) is within the basin Γ
i.e. N(0) ≤ B

µ . Also when the initial population
is outside the basin of attraction i.e. N(0) ≥ B

µ

as t → ∞, then dB
dt ≤ 0 and hence, the right-

hand side of (37) is negative definite. This proves
that irrespective of the size of the initial population
N(0), the left hand side is always less or equal to
zero as t > 0. This consequently clarifies that the
constructed function B is a Lyapunov type and

can be used to establish the global stability of the
system. Moreover, dB

dt = 0 if and only if

S = S∗∗, I1 = I∗∗1 , I1 = I∗∗1 , I2 = I∗∗2 ,

I3 = I∗∗3 , I4 = I∗∗4 , A = A∗∗,

and the largest positive invariant subset of Γ that
satisfies dB

dt = 0 is the singleton ψ∗∗1 . Hence, ψ∗∗1 is
a unique endemic equilibrium point of the system
(13)-(18) which is GAS in Γ.

F. Analysis of the Full Model

G. Local Stability of DFE

In this section, we shall analyze the full model
just as we did for the sub-model in the previous
section. It is worth noting that the full model has
the same DFE as the sub-model given by equation
(20) which exists in the same region Γ. We employ
the same next generation matrix to establish the
reproduction number as follows:

F =


α1σ1β βσ2α1 βα1 βα1σ3 0
α2σ1β βσ2α2 βα2 βα2σ3 0
α3σ1β βσ2α3 βα3 βα3σ3 0

0 0 0 0 0
0 0 0 0 0

 ,

V =


K1 0 0 0 0
0 K2 0 −γ2 0
0 0 K3 0 0
0 −γ1 0 K4 0
−ρ1 0 −ρ2 0 K5

 .
Taking ρ as the spectral radius (magnitude of the
dominate eigenvalue) of the next generation matrix
FV−1, the reproduction number is given by

RT =

[
P +Q

K1K3(K2K4−γ1γ2)

]
, (38)

where

P = (K2K4−γ1γ2)(α1K3σ1+α3K1),

Q = α2K1K3(γ1σ3+K4σ2).

Lemma IV.4. The disease-free equilibrium point
(DFE) of the full model (4)-(9) with partial ab-
stinence is locally asymptotically stable (LAS) if
RT < 1 and unstable otherwise.
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H. Existence of Endemic Equilibrium

The full model with partial abstinence has a
unique positive endemic equilibrium point (EEP).
This is the point where at least one of the virus
infected compartments is non-zero. Let

ψ∗∗ = (S∗∗, I∗∗1 , I
∗∗
2 , I

∗∗
3 , I

∗∗
4 , A

∗∗) (39)

be the endemic equilibrium point. We further de-
fine the force of infection as

λ∗∗ =
β(I∗∗3 + σ1I

∗∗
1 + σ2I

∗∗
2 + σ3I

∗∗
4 )

N∗∗
. (40)

Solving equation (4)-(9) in terms of the force of
infection λ∗∗ at steady-state we obtain:

S∗∗ =
B

µ+ (α1 + α2 + α3)λ∗∗
,

I∗∗1 =
α1Bλ

∗∗

K1[µ+ (α1 + α2 + α3)λ∗∗]
,

I∗∗3 =
Bλ∗∗

K3[µ+ (α1 + α2 + α3)λ∗∗]
, (41)

A∗∗ =
Bλ∗∗(ρ1α1K3 +K1ρ2)

K1K3K5[µ+ (α1 + α2 + α3)λ∗∗]
,

I∗∗2 =
α2Bλ

∗∗K4

f1(K2K4 − γ1γ2)
,

N∗∗=
BK1K3K5f1−τBλ∗∗(ρ1α1K3+K1ρ2)

µK1K3K5f1
,

I∗∗4 =
γ1Bα2λ

∗∗K4

K4[µ+(α1+α2+α3)λ∗∗](K2K4−γ1γ2)
,

where f1 = µ + (α1 + α2 + α3)λ
∗∗. Substituting

all the equations in (41) into (40), it can be shown
that the non-zero equilibria of the model satisfy
the following linear equation in terms of λ∗∗:

a2λ
∗∗ + a3 = 0, (42)

where

a2=α3µK1(ρ2+µ+τ)+α1K3µ(µ+ρ1+τ)

+K1K3K5α2 > 0 (43)

a3=µK1K3K5(1−RT ). (44)

Clearly, a2 > 0, a3 ≥ 0 if and only if RT ≤ 1 so
that λ∗∗ = −a3

a2
≤ 0 which shows no existence of

positive endemic equilibrium whenever RT ≤ 1.

Hence, the endemic equilibrium point ψ∗∗ exists
and unique whenever RT > 1. We claim the
following result.

Lemma IV.5. The endemic equilibrium point
(EEP) of the full model (4)-(9) with partial ab-
stinence is locally asymptotically stable (LAS) if
RT > 1.

I. Global Stability of DFE of the full model

We will establish the proof using the same
approach as in Section IV.C as follows:

M̂(X,Y ) = JY −M(X,Y )

=



βα1(σ1I1+σ2I2+I3+σ3I4)S
∗

N∗
−K1I1

βα2(σ1I1+σ2I2+I3+σ3I4)S
∗

N∗
−K2I2+γ2I4

β(σ1I1+σ2I2+I3+σ3I4)S
∗

N∗
−K3I3

γ1I2 −K4I4
ρ1I1 + ρ2I3 −K5A



−



βα1(σ1I1+σ2I2+I3+σ3I4)S
∗

N∗
−K1I1

βα2(σ1I1+σ2I2+I3+σ3I4)S
∗

N∗
−K2I2+γ2I4

β(σ1I1+σ2I2+I3+σ3I4)S
∗

N∗
−K3I3

γ1I2 −K4I4
ρ1I1 + ρ2I3 −K5A



=



βα1(σ1I1+σ2I2+I3+σ3I4)

(
1− S

N

)
βα2(σ1I1+σ2I2+I3+σ3I4)

(
1− S

N

)
βα3(σ1I1+σ2I2+I3+σ3I4)

(
1− S

N

)
0
0


≥ 0,

where S∗

N∗ ≤ 1 at DFE and since S ≤ N , this
shows that M̂(X,Y ) ≥ 0. It can be seen that
limt→∞X(t) = Xo and J is an M-matrix, thus
Xo is globally asymptotically stable, hence, N1 is
satisfied. Also, M̂(X,Y ) ≥ 0 for (X,Y ) ∈ Ωm.
Hence, N2 is satisfied and Eo is globally asymp-
totically stable whenever RT < 1.
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J. Global Stability of The Endemic Equilibrium

We consider the special case where the virus-
induced death rate τ is negligible. This is very
much realistic since HIV-1 positive individuals
under treatment can live many years hail and
healthy without dying of the virus. Substituting
τ = 0 into (11), as t→∞ gives N → B

µ . Putting
this in equation (1), we have

λ = β1(I3 + σ1I1 + σ2I2 + σ3I4) (45)

where β1 =
βµ

B
.

Theorem IV.6. The endemic equilibrium point of
the full model (4)-(9) is globally asymptotically
stable (GAS) whenever RT > 1.

Proof: Since Lemma IV.5 has already been
established, we construct the following non-linear
Lyapunov function for the system (4)-(9) as fol-
lows:

L =
β1
f2µ

∫ S

S∗

(
1−S

∗

x

)
dx+

1

α1α2

∫ I1

I∗1

(
1− I

∗
1

x

)
dx

+
γ2
α2

∫ I2

I∗2

(
1− I

∗
2

x

)
dx+

α1

β1α3

∫ I3

I∗3

(
1− I

∗
3

x

)
dx

+
β21

K2K3γ1

∫ I4

I∗4

(
1− I

∗
4

x

)
dx+

1

ρ1ρ2

∫ A

A∗

(
1−A

∗

x

)
dx.

The derivative of L along the solution of the
system (4)-(9) is given by

L̇ =
β1
f2µ

(
1− S∗

S

)
Ṡ +

1

α1α2

(
1− I∗1

I1

)
İ1

+
γ2
α2

(
1− I∗2

I2

)
İ2 +

α1

β1α3

(
1− I∗3

I3

)
İ3

+
β21

K2K3γ1

(
1− I∗4

I4

)
İ4 +

1

ρ1ρ2

(
1− A∗

A

)
Ȧ.

Using (4)-(9), we have

L̇=
β1
f2µ

[
B−(f2λ+µ)S−S

∗∗

S
{B−(f2λ+µ)S}

]

+
1

α1α2

[
α1λS−K1I1−

I∗∗1
I1
{α1λS−K1I1}

]
+

γ2
α2

[
α2λS+γ2I4−K2I2−

I∗∗2
I2
{α2λS+γ2I4−K2I2}

]
+

α1

β1α3

[
α3λS −K3I3 −

I∗∗3
I3
{α3λS −K3I3}

]
+

β21
K2K3γ1

[
γ1I2−K4I4−

I∗∗4
I4
{γ1I2−K4I4}

]
+

1

ρ1ρ2

[
ρ1I1 + ρ2I3 −K5A

−A
∗∗

A
{ρ1I1 + ρ2I3 −K5A}

]
, (46)

where f2 = α1 +α2 +α3. At endemic equilibrium
point of (4)-(9), we have the following expres-
sions.

B = µS∗∗+f2(I
∗∗
3 +σ1I

∗∗
1 +σ2I

∗∗
2 +σ3I

∗∗
4 )S∗∗,

K1 =
α1β1(I

∗∗
3 + σ1I

∗∗
1 + σ2I

∗∗
2 + σ3I

∗∗
4 )S∗∗

I∗∗1
,

K2=
γ2I
∗∗
4 +α2β1(I

∗∗
3 +σ1I

∗∗
1 +σ2I

∗∗
2 +σ3I

∗∗
4 )S∗∗

I∗∗2
,

K3 =
α3β1(I

∗∗
3 + σ1I

∗∗
1 + σ2I

∗∗
2 + σ3I

∗∗
4 )S∗∗

I∗∗3
,

K4 =
γ1I
∗∗
2

I∗∗4
,

K5 =
ρ1I
∗∗
1 + ρ2I

∗∗
3

A∗∗
(47)

Substituting expressions in (47) into (46), after
some simplifications and factorization, we have

L̇ =
β1S

∗∗

f2

(
2− S

S∗∗
− S∗∗

S

)
+
β21
µ

(I∗∗3 +σ1I
∗∗
1 +σ2I

∗∗
2 +σ3I

∗∗
4 )S∗∗

(
2− S

S∗∗
−S

∗∗

S

)
+
β1
α2

[
(I∗∗3 +σ1I

∗∗
1 + σ2I

∗∗
2 +σ3I

∗∗
4 )S∗∗

(
2− I1

I∗∗1
− I
∗∗
1

I1

)
+ (I3+σ1I1+σ2I2+σ3I4)S

(
2− I1

I∗∗1
− I
∗∗
1

I1

)]
+

(
1

ρ2
+

1

ρ1

)(
2− A

A∗∗
− A∗∗

A

)
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+γ2

[
β1(I3+σ1I1+σ2I2+σ3I4)S

(
2− I2

I∗∗2
− I
∗∗
2

I2

)
+β1(I

∗∗
3 +σ1I

∗∗
1 +σ2I

∗∗
2 +σ3I

∗∗
4 )S∗∗

(
2− I2

I∗∗2
− I
∗∗
2

I2

)]
+

(
γ22
α2

+
α1β

2
1

K2K3

)
I22I
∗∗
3

I∗∗4

(
3− I

∗∗
2

I2
− I2I

∗∗
3

I∗∗2 I3
− I∗∗2 I3I4
I2I∗∗3 I

∗∗
4

)
.

Consequently, since the arithmetic mean exceeds
the geometric mean, then we have

2− S

S∗∗
− S∗∗

S
≤ 0,

2− A

A∗∗
− A∗∗

A
≤ 0,

2− I1
I∗∗1
− I∗∗1

I1
≤ 0,

2− I2
I∗∗2
− I∗∗2

I2
≤ 0,

3− I∗∗2
I2
− I2I

∗∗
3

I∗∗2 I3
− I∗∗2 I3I4
I2I∗∗3 I

∗∗
4

≤ 0.

Since S ≥ 0, I1 ≥ 0, I2 ≥ 0, I3 ≥ 0, I4 ≥
0, A ≥ 0 and Lemma IV.5 is satisfied, it follows
that L̇ ≤ 0 since all other model parameters are
non-negative for RT > 1. Furthermore, L̇ = 0 if
and only if S = S∗∗, I1 = I∗∗1 , I2 = I∗∗2 , I3 =
I∗∗3 , I4 = I∗∗4 , A = A∗∗. Thus, L is a Lyapunov
function of the subsystem (4)-(9) on Γ. It therefore
follows by LaSalle’s Invariance Principle [16] that
the subsystem (4)-(9) has a globally asymptoti-
cally stable endemic equilibrium point ψ∗∗. The
result presented here shows that for a special case
(τ = 0), the virus will consistently persist in the
community whenever the associated reproduction
number RT > 1.

V. NUMERICAL SIMULATION AND DISCUSSION

OF RESULTS

In this section, we shall carry out the numerical
simulation of the model to corroborate the analytic
results. We shall solve the model equation (4)-
(9) numerically and present the results graphically
using Maple 18 and Python mathematical soft-
ware. A 3D surface plot shall also be presented to
examine the relationship between the reproduction
number, the partial abstinence rate γ2 and σ3

which is the modification parameter which account
for the assumed reduction of infectiousness by the
behavior change class I4.

Table 1: Hypothetical Value of Parameters

Parameter Value (per year) Source
B 5600 Estimated
α1 0.25 Estimated
α2 0.10 Estimated
β 0.015 Estimated
µ 0.016 Estimated
α3 0.65 Estimated
ρ1 0.12 Estimated
γ1 1.00 [30], [20]
γ2 0.95 Estimated
ρ2 0.75 Estimated
τ 0.0909 [11]
σ1 0.85 Estimated
σ2 0.55 Estimated
σ3 0.008 [29]

Table 2: Initial Conditions
S(0) I1(0) I2(0) I3(0) I4(0) A(0)

450 10 8 5 10 15
400 40 25 20 10 5
300 70 50 40 30 10
200 95 65 53 47 40
100 120 88 67 65 60

To start with, we will show numerically that the
disease-free equilibrium ψ∗ is locally asymptot-
ically stable. The parameter values presented in
Table 1 and the initial conditions shown in Table
2 shall be used.

Considering the case when the reproduction
number is less than unity i.e. RT = 0.025 < 1,
the graphical solution of model equation (4)-(9) is
given in fig.2 - fig.7. It can be seen that only the
susceptible population S = 500 survive while the
infected population in the slow progression class
I1, non progression class I2, fast progression class
I3, behavior change class I4 and AIDS class A
goes into extinction. This confirms that the DFE
of (4)-(9) as presented in Lemma (IV.4) is locally
asymptotically stable whenever RT < 1.
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Fig. 2 and Fig. 3 Showing The Behavior of Both Susceptible and Slow Progression Populations
when RT is Less Than Unity.

Fig. 4 and Fig. 5 Showing The Behavior of Both Non Progression and Fast Progression
Populations when RT is less than Unity.

Fig. 6 and Fig. 7 Showing The Behavior of Both Fast Progression and AIDS Populations when
RT is Less Than Unity.
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Fig. 8 and Fig. 9 Showing The Behavior of Both Susceptible and Slow Progression Populations
when RT is Greater Than Unity.

Fig. 10 and Fig. 11 Showing The Behavior of Both Non Progression and Fast Progression
Populations when RT is Greater Than Unity.

Fig. 12 and Fig. 13 Showing The Behavior of Both Fast Progression and AIDS Populations
when RT is Greater Than Unity.
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Considering the case when the reproduction
number is greater than unity i.e. RT = 5.903 > 1,
the graphical solution of model equation (4)-(9)
is given in fig.8 - fig.13. It can be observed that
when the reproduction number RT > 1, all the
populations survive that’s

[S∗∗, I∗∗1 , I
∗∗
2 , I

∗∗
3 , I

∗∗
4 , A

∗∗] =

[0.0155, 0.6575, 0.9452, 0.8105, 0.5421, 0.7813],

which clearly indicates that the population con-
verges or tends to the endemic equilibrium points
ψ∗∗ whenever RT > 1. It can also be seen that the
susceptible population reduces drastically because
of the reproduction number being greater than
unity while all the remaining infected populations
increases with time. This confirms that the en-
demic equilibrium points ψ∗∗ is locally asymptot-
ically stable and thus, confirms the analytic results
presented in Lemma IV.5.

A. Effect of Partial and Total Abstinence in
HIV/AIDS Transmission

Here, we will observe the effect of partial and
total abstinence in the transmission of HIV/AIDS.
We simulate the reproduction number in equation
(21) and (38). For the case of partial abstinence
(i.e. when σ3 = γ2 6= 0), with the parameter values
in Table 1, when γ2 = 0.95 and σ3 = 0.008,
RT = 0.025. For the case of total abstinence (i.e.
when σ3 = γ2 = 0), with the parameter values in
Table 1, R′T = 0.020 meaning that R′T for the
total abstinence is less than RT for the partial
abstinence. Since our aim in epidemiology is to
find all possible means to reduce the reproduction
number of infectious disease, it means that those
that changed their sexual attitude through total
abstinence from HIV/AIDS and all factors that can
cause its transmission are at lower or no risk of
contacting HIV/AIDS. Hence, total abstinence is
one of the key factors to be safe from HIV/AIDS.
Figure 14 below shows a 3D surface plot to
understand more about the relationship between
the reproduction number and γ2 and σ3.

We can easily observe that the higher the value
of both σ3 and γ2, the higher the reproduction

number and the lower their values the lower the re-
production number. The lowest reproduction num-
ber 0.018 is gotten when σ3 = γ2 = 0 i.e. (total
abstinence). Hence, total abstinence is essential in
the protection against HIV/AIDS transmission.
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In this study, a new virus resistant HIV-1 model
with behavior change was proposed and systemati-
cally analyzed for both partial and total abstinence
from HIV/AIDS. Basic analysis of the model
such as positivity solution, reproduction number,
invariant region, establishment of both disease-free
and endemic equilibrium points for both scenarios
were carried out. The local asymptotic stability of
the DFE and EE for both models whenever the
associated reproduction number is less than unity
and greater than unity respectively were proved.
A non-linear Goh–Volterra Lyapunov function is
used to prove that the endemic equilibrium point
is globally asymptotically stable for the case when
the virus-induced death rate τ = 0 while the
method of Castillo-Chavez is used to prove the
global asymptotic stability of the disease-free equi-
librium point whenever the reproduction number
is less than unity. In the numerical simulation, it
was established that people with total abstinence
are more protected against HIV/AIDS than those
with partial abstinence and also established that
the reproduction number is minimal under this
same condition. Since those with resistance to
HIV/AIDS do not proceed to the AIDS compart-
ment, this also highlight the importance of HIV-
resistance which plays an important role in the
protection against HIV/AIDS.
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