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Abstract: In this paper is considered a microalgae
growth model under the influence of sunlight. The model
is a two-dimensional system of the first order Ordinary
Differential Equations (ODE) with a ten-dimensional pa-
rameter space. For this model, we study the existence
of equilibrium points and their stability, and determine
a bifurcation of the system when the value of some
parameters is varied. The Lambert ω function is used to
calculate equilibrium points and apply the linearization
technique to provide their stabilities. By varying the value
of some parameters numerically, we found a transcritical
bifurcation of the system and show stability regions
of the equilibrium points in parameter diagrams. The
bifurcation shows that the microalgae have a minimum
sustainable nutrition supply and have a minimum light
intensity that plays an important role for survival in a
chemostat which has a certain depth. The results can be
used to design a chemostat in optimizing the growth of
microalgae.

Keywords: Microalgae growth model, Quota cell, Pa-
rameter diagram, Bifurcation

I. INTRODUCTION

At the moment, fossil fuels still generate about 80%
of the demand of global energy. This demand increases
along with the increase in population, because each
individual needs a means of transportation to carry
out activities and move to other places. However, the

extensive use of fossil fuels plays an important role
for global climate change, environmental pollution, and
problems in health [1].

Most scientists are looking for new types of energy.
The most interesting renewable energy that is expected
to have an important role in the future global energy
structure is biofuels. Biodiesel is one of the biofuels that
is recognized as an ideal carrier of renewable energy
which has the potential to become a primary energy
source.

There are several candidates of plants for biodiesel
production, but most of them grow slowly, contain
little vegetable oil for biodiesel, and require large areas
of land to be grown. Therefore, they are considered
inefficient for biodiesel production. Microalgae is a
microorganism that has an ability to convert solar en-
ergy to chemical energy through the fixation of carbon
dioxide (CO2). The growth of microalgae is relatively
fast, so it can be considered as a valuable source for
making biodiesel [1].

Microalgae can form their energy by photosynthesis
to support their life needs. It carries out photosynthesis
with the help of sunlight and absorbs carbon dioxide
and nutrients around it to form the various substances
it needs. The result of photosynthesis is glucose that
can be stored in cells as vegetable fats.
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Biofuel is mostly made from vegetable oil or animal
fats [2]. Therefore, microalgae can play an important
role to reduce carbon dioxide levels in the atmosphere
and become a candidate for renewable energy sources
to replace fossil fuels [3]. Furthermore, the potential of
biofuel products from the microalgae is expected to be
abundant [4].

The theoretical investigation of microbial growth and
nutrient dynamics in chemostats was pioneered by J.
Monod [5]. The model proposed that extracellular nu-
trient concentration is a determinant of cellular growth.
However, microorganisms have nutrient reserves in
cells that are used for growth and development, which
causes the growth rate of microorganisms depend on
the nutrient reserves in cells. Thus the Monod model
is a weak growth predictor. Furthermore, M.R. Droop
[6], purposed a new empirical model as an update of
the Monod model which is known as the cell quota
model with a specific growth rate. Droop’s model is a
function of cell quota (intracellular density) of limiting
nutrients.

The Monod and Droop models are the basis of
the general microorganism growth model. In fact, mi-
croalgae not only absorb nutrients but also perform
photosynthesis. The growth model of microalgae is
mostly based on the Droop model and then modified
with the addition of the sunlight factor. However, the
model is limited by the conditions of low nutrient levels.

Since light intensity which transmits a medium can
be explained with Lambert-Beer law [7], the maximum
growth of microalgae under influence of light can
be formulated by Lambert-Beer law. Furthermore, the
microalgae growth model – this is a new derivation
after the Lambert-Beer law is considered – contains the
exponential term.

There are several problems in the mathematical
models of microalgae growth. One of which is the
model with the influence of sunlight that contains an
exponential form, so it is quite difficult to carry out
stability analysis and bifurcation analysis on the model.

Our model is motivated by the one in [5], where the
mortality rate of the system in [5] represents chemostat
dilution. However, based on the fact that microalgae
have a natural mortality rate at room temperature, see
[8], we add the microalgae natural mortality rate in
our system. Since this model contains an exponential
term, we apply the Lambert ω function to determine
equilibrium points (see [9]). Furthermore, in the fourth
section, we analyze the stability of the equilibrium point
by linearization technique (see [10, 11]) to provide the
stability of the equilibrium points. Since the stability

conditions depend on the parameters, then we can di-
vide the parameter space into several regions. Lastly, the
occurrence of bifurcation is investigated by analyzing
those regions numerically (see the bifurcation theory
in [12–14]) and are established bifurcation parameters
with respect to four varying parameters.

II. MICROALGAE GROWTH MODEL

A. Microalgae

Microalgae are autotrophs that produce their food
through the process of photosynthesis [15]. Photosyn-
thesis is the process of converting inorganic compounds
CO2 and H2O into glucose under sunlight. Solar
energy is used in this process [16, 17].

Nutrients in cell quotas depend on nutrients in the
environment, while microalgae growth depends on pho-
tosynthesis and nutrient levels in cell quotas. Microal-
gae require large amounts of macro and micro nutrients
for their growth. There is a linear relationship between
nutrient density and biomass, because microalgae ab-
sorb nutrients from the environment and then store them
in the cell quotas [1]. Microalgae assimilate various
organic carbon and inorganic sources as nutrients (such
as glucose, acetate, nitrogen, and phosphor) for their
growth [18].

Light is used by microalgae to break down CO2

into glucose in the process of photosynthesis. To make
an efficient microalgae culture for microalgae growth,
it is necessary to optimize the intensity of light that
enters the culture. In indoor and outdoor microalgae
cultivation systems, light source and light intensity are
important factors that affect the phototrophic growth
performance of microalgae [1]. Light can be transmitted
by a medium that absorbs the light intensity. The light
intensity that is absorbed depends on the concentration
of liquid and the thickness of the medium [19].

Microalgae have a level of turbidity in the water
so that they can block the light intensity. Thus, if the
microalgae content in the chemostat is denser, less light
can enter. So, less light can be used by microalgae.
Several models in the literature have been developed
to explain microalgae growth under influence of light,
especially in monocultures [20].

B. Microalgae growth models under influence of sun-
light

We propose a new microalgae growth model under
the sunlight influence which is motivated by the one
in [5]. In our model, we consider the microalgae
natural mortality rate at room temperature m, not due
to harvesting D. This could explain more the natural
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behavior of microalgae at room temperature. The model
is as follows:

dA(t)

dt
= A(t)

(
lN(t)βkI0e

−(σ+kA(t))z

lN(t) + qβkI0e−(σ+kA(t))z
−m

)
(1)

dN(t)

dt
= D

(
Nc −N(t)

)
− lN(t)A(t), (2)

where A(t), N(t), σ, k, I0, Nc and z represent the mi-
croalgae content, nutrient content, turbidity of the wa-
ter, the coefficient of turbidity due to the presence
of microalgae concentration, light intensity, stock of
nutrient, and depth of the medium respectively. Note:
Nc, A(t), q, and N(t) were normalized by the density
of water (1 g cm−3) to obtain relative density (n.d. –
non-dimensional) in the model (see [5]).

The chemostat contains N(t) (in g cm−3) extra-
cellular nutrients for microalgae. Microalgae A(t) (in
g cm−3) in the chemostat is always given new nutrients
Nc in the form of dilution D to replace the old nutrients
in the chemostat. Furthermore, the new nutrients enter
the chemostat with the rate DNc and the old nutrients
are pushed out through the pipe with the rate DN(t).

According to Lambert-Beer law, the light intensity
can be absorbed by microalgae at the rate kA(t)z.
The thickness of the water causes the light intensity to
decrease with a decreasing rate σz. By using Lambert-
Beer law equation, the light intensity can be formulated
as I = I0e

−(σ+kA(t))z . Furthermore, microalgae need
sunlight to carry out photosynthesis and then the prod-
ucts of photosynthesis are used to grow. We assume
the maximum microalgae growth rate has a linear
relationship with the light intensity. The relationship
between the maximum microalgae growth rate and the
light intensity can be formulated as µmax = βkI , where
β represents a constant the ratio between the maximum
microalgae growth rate and the light intensity.

Microalgae absorb nutrients from outside the cells
into the quota cell at the rate lN(t). According to the
Droop quota cell model, the nutrients in the quota cells
help the microalgae to grow. Then the nutrient in the
quota cell can be formulated Q = lN(t)

µmax
+ q. By using

the Droop quota cell model, the microalgae growth rate
can be formulated as µ = µmax(1 − q

Q ), where q and
µ represent the minimum quota cell for microalgae to
grow and the growth rate of microalgae, respectively.
Furthermore, the microalgae content is increased by
µA(t).

Theorem 1 guarantees a non-negative model solution.
Next, Theorem 2 guarantees that the model solution is
bounded.

Theorem 1. Given A(0) and N(0) are non-negative.
If all parameters in the model are positive, then A(t)
and N(t) are non-negative.

Proof: Will be proved by contradiction. Assume
that the solution A(t) and N(t) always decrease and
then will be negative. Let say that as follows. For 0 <
t′ < t0, then A(t′) > 0 and N(t′) > 0. At the time
t0, the variables are A(t0) = 0 and N(t0) = 0, and its
derivatives are A′(t0) < 0 and N ′(t0) < 0. Substituting
t0 into Equation (1) and (2), then we get the following:

dA(t0)

dt
= A(t0)

(
lN(t0)βkI0e

−(σ+kA(t0))z

lN(t0) + qβkI0e−(σ+kA(t0))z
−m

)
= 0,

dN(t0)

dt
= D

(
Nc −N(t0)

)
− lN(t0)A(t0)

= DNc > 0.

So that, there is a contradiction. Hence, the solution
A(t) and N(t) will not be negative.

Theorem 2. Given A(0) and N(0) are non-negative.
If all parameters in the model are positive, then the
solution A(t) and N(t) are bounded.

Proof: Will be proved by contradiction. Assume
that the solution A(t) and N(t) are unbounded. Hence,
A(t) and N(t) always increase. For N(t) will be:

N(t) > Nc.

Let say that as follows. For 0 < t′ < t0, at the time t′:

N(t′) < Nc.

At the time t0, the variables are:

N(t0) = Nc.

Because the solution N(t) always increase, then
dN(t0)
dt > 0. Substituting t0 into Equation (2), then we

get the following:

dN(t0)

dt
= D (Nc −N(t0))− lN(t0)A(t0)

= −lNcA(t0) < 0.

So that, there is a contradiction. Hence, the solution
N(t) is bounded. Furthermore, N(t) will not be greater
than Nc.
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Define r1 = lβkI0, r2 = qβkI0. Now for the solution
A(t), considered below:

dA(t)

dt
= A(t)

(
lN(t)βkI0e

−(σ+kA(t))z

lN(t) + qβkI0e−(σ+kA(t))z
−m

)
= A(t)

(
N(t)r1

lN(t)e(σ+kA(t))z + r2
−m

)
= A(t)

(
N(t)

(
r1 −mle(σ+kA(t))z

)
−mr2

h1

)
,

for h1 = lN(t)e(σ+kA(t))z + r2. Since A(t) always
increase, then dA(t)/dt > 0 for all t > 0. It means,

N(t)
(
r1 −mle(σ+kA(t))z

)
−mr2

h1
> 0,

for all t > 0. Since h1 > 0, then:

N(t)
(
r1 −mle(σ+kA(t))z

)
> mr2.

Since N(t) and mr2 are non-negative, then we get as
follows:

r1 −mle(σ+kA(t))z > 0.

Furthermore, note that A(t) always increase. Let say
that as follows. For 0 < ts < t̄, such that at the time ts
we have:

r1 −mle(σ+kA(ts))z > 0.

Because the solution A(t) always increase, at the time
t̄ we get:

r1 −mle(σ+kA(t̄))z = 0,

and dA(t̄)/dt > 0. Next step, substituting t̄ into
Equation (1), then we get:

dA(t̄)

dt
= A(t̄)

N(t̄)
(
r1 −mle(σ+kA(t̄))z

)
−mr2

h1

= −A(t̄)
mr2

h1
< 0.

So that there is a contradiction. Hence, the solution A(t)
is bounded.

III. DETERMINE EQUILIBRIUM POINTS

In this section we will discuss about how to de-
termine equilibrium points of the model. The Lam-
bert ω function is used to determine the equilibrium
point. Equilibrium conditions are dA(t)/dt = 0 and
dN(t)/dt = 0, so that the following equation is
obtained:

0 = A(t)

(
lN(t)βkI0e

−(σ+kA(t))z

lN(t) + qβkI0e−(σ+kA(t))z
−m

)
, (3)

0 = D (Nc −N(t))− lN(t)A(t). (4)

From the equation (3) we divide it into two cases, they
are A = 0 or A 6= 0. For A = 0 obtained below:

0 = D (Nc −N(t))− lN(t)A(t)

⇒ N(t) = Nc.

So, the first equilibrium point is (A∗1, N
∗
1 ) = (0, Nc).

For A 6= 0 in the nutritional equation dN(t)/dt = 0,
it is obtained as follows:

0 = D (Nc −N(t))− lN(t)A(t)

⇒ N(t) =
DNc

D + lA(t)
. (5)

Furthermore, because A 6= 0, in order to satisfy the
equilibrium condition, it is obtained as follows:

N(t)
(
r1 −mle(σ+kA(t))z

)
−mr2 = 0. (6)

Substituting Equation (5) into Equation (6) yields:

DNc
(
r1 −mle(σ+kA(t))z

)
−mr2(D + lA(t))

D + lA(t)
= 0.

(7)
Prior to further discussion, note the following coeffi-
cients. Recall that r1 = lβkI0, r2 = qβkI0. Define
a = mlDNce

σz , b = lmr2, c = Dmr2 −DNcr1, and
d = kz. So that to meet the equilibrium conditions, (7)
yields:

aedA(t) + bA(t) + c = 0. (8)

Furthermore, Equation (8) is an exponential equation,
using the Lambert ω function (for example see [21]),
the root of the equation is as follows:

A∗ = −
bω
(
ade−cd/b

b

)
+ cd

bd
, (9)

where ω
(
ade−cd/b

b

)
is the Lambert ω function that is

executed on ade−cd/b

b . By substituting Equation (9) into
Equation (5), we get the following:

N∗ =
DNcbd

Dbd− l
(
bω(ade

−cd/b

b ) + cd
) . (10)

So, the second equilibrium point (A∗2, N
∗
2 ) is:(

−
bω(ade

−cd/b

b ) + cd

bd
,

DNcbd

Dbd− l
(
bω(ade

−cd/b

b ) + cd
)) .

Furthermore, the existence of these two equilibrium
points will be investigated. In this model, the equilib-
rium point exist, if A∗, N∗ ≥ 0.

Lemma 3. If all parameters in the model are positive,
then the equilibrium point (A∗1, N

∗
1 ) = (0, Nc) exists.

Biomath 12 (2023), 2301307, https://doi.org/10.55630/j.biomath.2023.01.307 4/9

https://doi.org/10.55630/j.biomath.2023.01.307


Mahardhika et al., Bifurcation analysis of mathematical model of microalgae growth under the influence of sunlight

Proof: It is known that all parameters are greater
than 0, then Nc > 0. Since A∗1 = 0 and N∗1 = Nc > 0,
the equilibrium point (A∗1, N

∗
1 ) = (0, Nc) exists.

Lemma 4. If all parameters in the model are positive
and a ≤ −c, then the equilibrium point (A∗2, N

∗
2 ) =(

− bω( ade
−cd/b
b )+cd

db , DNc
D+lA∗

2

)
exists.

Proof: First, we will prove that A∗2, N
∗
2 ∈ R. It

is known that all parameters are positive, then a =
mlDNce

σz , b = lmr2, and d = kz are positive. So,
it yields:

ade−cd/b

b
> 0 > −1

e
.

Let y = ade−cd/b

b . According to the nature of the
Lambert ω function, since y > − 1

e , then ω(y) ∈ R.
So that A∗2, N

∗
2 ∈ R.

Next, we will prove A∗2, N
∗
2 ≥ 0. It is known that

a ≤ −c, then because b, d > 0, it is obtained as follows:

a ≤ −c⇒ ade−cd/b

b
≤ −cde

−cd/b

b
.

Let x = − cdb , then y = adex

b . Let g = xex, as follows:

g = xex = −cde
−cd/b

b
.

Therefore, y ≤ g. Also, we have x = ω(g). Since
0 < a ≤ −c, then y and g are ascending (increas-
ing) functions. Then we apply Lambert ω function as
follows:

ω(y) ≤ ω(g)

⇒ ω
(ade−cd/b

b

)
≤ −cd

b

⇒ −
bω
(
ade−cd/b

b

)
+ cd

b
≥ 0

⇒ −d
bω
(
ade−cd/b

b

)
+ cd

bd
≥ 0

⇒ dA∗2 ≥ 0.

Since d > 0, then A∗2 ≥ 0. Furthermore, because
all parameters are positive, then N∗2 = NcD

D+lA∗
2
≥ 0.

Therefore, the second equilibrium point exists.

IV. STABILITY ANALYSIS

In this section, we will discuss the stability of the
equilibrium points that had been obtained. Further on
we use A = A(t) and N = N(t) for brevity. Define

dA/dt = g1(A,N) and dN/dt = g2(A,N). Note the
following:

∂

∂A
g1(A,N) =

−Ar1kzlNe
(σ+kA)z

(lNe(σ+kA)z + r2)2

+
r1N

lNe(σ+kA)z + r2
−m

∂

∂N
g1(A,N) =

Ar1r2

(lNe(σ+kA)z + r2)2

∂

∂A
g2(A,N) = −lN

∂

∂N
g2(A,N) = −D − lA.

By using the above equations, the Jacobian matrix is
obtained as follows,

J(A,N) =

 ∂
∂Ag1(A,N) ∂

∂N g1(A,N)

∂
∂Ag2(A,N) ∂

∂N g2(A,N)

 .

Theorem 5. Given all of the parameters are positive.
If ∂g1(A∗1, N

∗
1 )/∂A < 0 ⇒ r1Nc

lNceσz+r2
< m, then the

first equilibrium point (A∗1, N
∗
1 ) is stable.

Proof: Note that ∂
∂N g1(A∗1, N

∗
1 ) = 0. Substituting

the first equilibrium point into the Jacobian matrix, it
yields:

J(A∗1, N
∗
1 ) =

 ∂
∂Ag1(A∗1, N

∗
1 ) 0

∂
∂Ag2(A∗1, N

∗
1 ) ∂

∂N g2(A∗1, N
∗
1 )

 .

According to the Jacobian matrix, the polynomial char-
acteristic is as follows:

|J(A∗1, N
∗
1 )− λI| = 0(

∂

∂A
g1(A∗1, N

∗
1 )− λ

)(
∂

∂N
g2(A∗1, N

∗
1 )− λ

)
= 0.

Furthermore, the eigenvalues of the Jacobian matrix at
the first equilibrium point are obtained:

λ∗1 =
∂

∂A
g1(A∗1, N

∗
1 ) =

r1Nc
lNceσz + r2

−m

λ∗2 =
∂

∂N
g2(A∗1, N

∗
1 ) = −D.

Because all parameters are positive and r1Nc
lNceσz+r2

<

m ⇒ r1Nc
lNceσz+r2

− m < 0, then λ∗1 < 0 and λ∗2 < 0.
So, the first equilibrium point is stable.

Theorem 6. Given all of the parameters are positive.
If ∂g1(A∗2, N

∗
2 )/∂A < 0, then the second (A∗2, N

∗
2 )

equilibrium point is stable.
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Proof: By substituting the second equilibrium
point into the Jacobian matrix, it yields:

J(A∗2, N
∗
2 ) =

 ∂
∂Ag1(A∗2, N

∗
2 ) ∂

∂N g1(A∗2, N
∗
2 )

∂
∂Ag2(A∗2, N

∗
2 ) ∂

∂N g2(A∗2, N
∗
2 )

 .

Let:

J(A∗2, N
∗
2 ) =

t1 t2

t3 t4

 .

Furthermore, the polynomial characteristic is

|J(A∗2, N
∗
2 )− λI| = 0,

λ2 − (t1 + t4)λ+ t1t4 − t2t3 = 0.

So, the eigenvalues are obtained:

λ∗∗1,2 =
t1 + t4 ±

√
(t1 + t4)2 − 4(t1t4 − t2t3)

2
.

Note that all parameters are positive. Then:

t1 < 0, t2 > 0, t3 < 0, t4 < 0,

since by the theorem we have t1 < 0. Therefore the
real part is negative: Re(λ∗∗1,2) < 0. So, the second
equilibrium point is stable.

V. BIFURCATION ANALYSIS

In the previous section, the equilibrium point stability
conditions have been obtained. In this section, we will
discuss bifurcation analysis of the model (1) and (2).
Since the equilibrium point stability conditions are a
function of parameters, then these functions divide the
parameter space into several regions. Furthermore, the
stability areas are formed on the parameter space.

First, we investigate the bifurcation for the varied Nc
and D parameters. To find the bifurcation line, at least
one of the eigenvalues in Theorem 5 should be 0. Let:

λ∗1 =
∂

∂A
g1(A∗1, N

∗
1 ) =

r1Nc
lNceσz + r2

−m = 0,

λ∗2 =
∂

∂N
g2(A∗1, N

∗
1 ) = −D 6= 0.

It means that a = −c. Hence, we get the first equi-
librium point A∗1 = 0 and N∗1 = Nc. Since the other
parameter values have been determined in Table I, then
we get the bifurcation line as function of parameters:

B(Nc, D) =
r1Nc

lNceσz + r2
−m.

The graph of the function B(Nc, D) = 0 can be seen
in Figure 1. This function divides the parameter space
into two regions, i.e., D1 and D2.

In the D1 region for (Nc, D) = (0.048, 1) and D2

region for (Nc, D) = (0.378266, 1), the phase portrait
can be seen in Figure 2 and Figure 3 respectively. In
both figures, the red dot is the first equilibrium point
(A∗1, N

∗
1 ), while the blue dot is the second equilibrium

point (A∗2, N
∗
2 ).

In the region D1 for the parameter value Nc = 0.048
and D = 1, the solution A(t) converges at 0 while
the solution N(t) converges at 0.048. So, the solution
(A(t), N(t)) is stable at the first equilibrium point
(A∗1, N

∗
1 ) = (0, 0.048), as can be seen in Figure 2. Note

that in the phase portrait, the second equilibrium point
(A∗2, N

∗
2 ) = (−1.865, 0.077) is not only non-existent

but also unstable. So, the microalgae population tends
to be 0 g cm−3 and nutrition tends to be 0.048 g cm−3

as t→∞.
In the region D2 for the parameter value Nc =

0.3783 and D = 1, the solution A(t) converges at
9.1807 while the solution N(t) converges at 0.1334.
So, the solution (A(t), N(t)) is stable at the second
equilibrium point (A∗2, N

∗
2 ) = (9.1807, 0.1334), as can

be seen in Figure 3. Note that in the phase portrait,
the first equilibrium point (A∗1, N

∗
1 ) = (0, 0.3783) is

unstable. So, the microalgae population tends to be
9.1807 g cm−3 and nutrition tends to be 0.1334 g cm−3

as t→∞.
Based on the bifurcation analysis for the varied Nc

and D parameters, it shows that there is a shift in the
stability of the equilibrium point. In the region D1, the
first equilibrium point is stable while the second equi-
librium point is unstable. In the region D2, the second
equilibrium point is stable while the first equilibrium
point is unstable, thus a transcritical bifurcation occurs.

In the next discussion, we investigate the bifurcation
for the varied I0 and z parameters. To find the bifurca-
tion line, at least one of the eigenvalues in Theorem 6
should be 0. Let:

λ∗∗1 =
t1 + t4 +

√
(t1 + t4)2 − 4(t1t4 − t2t3)

2
6= 0,

λ∗∗2 =
t1 + t4 −

√
(t1 + t4)2 − 4(t1t4 − t2t3)

2
= 0.

We easily derive:

λ∗∗2 = t1t4 − t2t3

=
AlNr1r2 +A(D + lA)r1kzlNe

(σ+kA)z

(lNe(σ+kA)z + r2)2

− r1N(D + lA)

lNe(σ+kA)z + r2
+m(D + lA) = 0.

It means that a < −c. Hence, we get the second equi-
librium point (A∗2, N

∗
2 ) defined earlier in Section III.
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Table I: Parameter table with variations Nc and D.

Parameter Description Value Reference
D Dilution (0, 1] day−1 assumption
m Microalgae natural death rate 0.3 day−1 [8]
k Algae turbidity 0.032 cm−1 [5]
β Proportional constant 10 J−1 cm3 [5]
σ Water turbidity 0.1 cm−1 [5]
z Chemostat depth 8 cm assumption
l Nutrition uptake rate 0.2 day−1 [5]
I0 Sunlight intensity 50 J cm−1 day−1 [5]
Nc Stock nutrition (0, 1] g cm−3 assumption
q Minimum quota cell for algae grow 0.05 g cm−3 [5]

Table II: Parameter table with variations I0 and z.

Parameter Definition Value Reference
D Dilution 0.24 day−1 [5]
m Microalgae natural death rate 0.3 day−1 [8]
k Algae turbidity 0.032 cm−1 [5]
β Proportional constant 10 J−1 cm3 [5]
σ Water turbidity 0.1 cm−1 [5]
z Chemostat depth (0, 100] cm assumption
l Nutrition uptake rate 0.2 day−1 [5]
I0 Sunlight intensity (0, 100] J cm−1 day−1 assumption
Nc Stock nutrition 1 g cm−3 assumption
q Minimum quota cell for algae grow 0.05 g cm−3 [5]

Since the other parameter values have been determined
in Table II, then we get the bifurcation line as function
of parameters:

B(I0, z) = λ∗∗2 .

The graph of the function B(I0, z) = 0 can be seen
in Figure 4. This function divides the parameter space
into two regions, i.e., D1 and D2.

In the D1 region for (I0, z) = (88, 50) and D2 region
for (I0, z) = (88, 20), the portrait phase can be seen in
Figure 5 and Figure 6 respectively. In both figures, the
red dot is the first equilibrium point (A∗1, N

∗
1 ) while the

blue dot is the second equilibrium point (A∗2, N
∗
2 ).

In the region D1 for the parameter value I0 = 88
and z = 50, the solution A(t) converges at 0 while
the solution N(t) converges at 1. So, the solution
(A(t), N(t)) is stable at the first equilibrium point
(A∗1, N

∗
1 ) = (0, 1), as can be seen in Figure 5. Note

that in the phase portrait, the second equilibrium point
(A∗2, N

∗
2 ) = (−0.3216, 1.3661) is not only non-existent

but also unstable. So, the microalgae population tends
to be 0 g cm−3 and nutrition tends to be 1 g cm−3 as
t→∞.

In the region D2 for the parameter value I0 = 88
and z = 20, the solution A(t) converges at 3.437 while

the solution N(t) converges at 0.259. So, the solution
(A(t), N(t)) is stable at the second equilibrium point
(A∗2, N

∗
2 ) = (3.437, 0.258), as can be seen in Figure 6.

Note that in the phase portrait, the first equilibrium
point (A∗1, N

∗
1 ) = (0, 1) is unstable. So, the microalgae

population tends to be 3.437 g cm−3 and nutrition tends
to be 0.258 g cm−3 as t→∞.

Based on the bifurcation analysis for the varied I0
and z parameters, it shows that there is a shift in the
stability of the equilibrium point. In the D1 area, the
first equilibrium point is stable while the second equi-
librium point is unstable. For the D2 region, the second
equilibrium point is stable while the first equilibrium
point is unstable, thus a transcritical bifurcation occurs.

VI. CONCLUSION

According to the bifurcation analysis in the previous
section, the transcritical bifurcation occurred for the
varied Nc and D parameters. In the same way, the
transcritical bifurcation occurred for the varied I0 and
z parameters. Furthermore, for the varied Nc and D
parameters, the occurrence of transcritical bifurcations
indicated that microalgae have the minimum supply of
nutrition to survive. In the other words, microalgae can
survive, if nutrition supply is more than the minimum
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Fig. 1: Parameter Diagram (Nc, D).
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Fig. 2: Phase portrait in region D1 for Nc = 0.048, D = 1.
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Fig. 3: Phase portrait in region D2 for Nc = 0.3783, D = 1.
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Fig. 5: Phase portrait in region D1 for I0 = 88, z = 50.
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Fig. 6: Phase portrait in region D2 for I0 = 88, z = 20.
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supply of nutrition required for their survival. In this
study, microalgae can be sustained, if the supply of
nutrition is greater than 0.0967 g cm−3.

Meanwhile, for the varied I0 and z parameter, the
occurrence of transcritical bifurcation can be interpreted
as follows. Microalgae that live in chemostat at depth
z requires sufficient light intensity to survive. In other
words, microalgae can be sustained in the chemostat at
a constant light intensity I0, if the chemostat has a depth
no more than a certain value. Thus, microalgae have the
minimum light intensity required for their survival in a
chemostat at a certain depth.
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