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Abstract: In this paper, we study the well-posedness
and the qualitative behavior of equilibria of a SEIR
epidemic models with spatial diffusion for the spreading
of COVID-19. The well-posedness of the model is proved
using both the Semigroup Theory of sectorial operators
and existence results for abstract parabolic differential
equations. The asymptotical local stability of both disease-
free and endemic equilibria are established using standard
linearization theory, and confirmed by illustrative numer-
ical simulations. The asymptotical global stability of both
disease-free and endemic equilibria are established using
a Lyapunov function.

Keywords: Abstract differential equations, COVID-19,
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I. INTRODUCTION

At the end of December 2019, a new disease caused
a serious respiratory problem was identified in the
city of Wuhan, Hubei province, China [1, 2]. This
disease was named COVID-19 and in a short time
an increasing number of patients were admitted to

hospitals with it, prompting the authorities of the whole
world to introduce measures to contain the spreading
of the epidemic [3]. Despite these efforts, the virus has
managed to spread fast quickly, infecting large numbers
of people in various parts of the world. Since then,
several countries have been severely affected by the
disease, generating losses of human lives and a great
impact on the economy and health systems.

With the purpose to help governments to manage
disease control as well as understanding how they
might affect the populations in the short and long
terms, several mathematical models of this outbreak
have been proposed. In this field, epidemic models of
type SEIR with ordinary differential equations were
used to describe the spread of COVID-19 and also
to study the efficiency of non-pharmacological control
measures such as the use of masks. Epidemic models
with ordinary differential equations implicitly assume
uniform encounters between the infectious and suscep-
tible subpopulations, resulting in homogeneous spatial
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distributions. However, in the human population, espe-
cially under different levels of mobility restrictions, this
assumption is likely to fail. One way to get around this
problem is to consider models with reaction-diffusion
equations [4–12].

Reaction-diffusion equations are used to model a
variety of physical and biological phenomena [13–17].
These equations describe how the concentration or
density distributed in space varies under the influence
of two processes: local interactions of the species, and
diffusion, which causes the spread of species in space.
In population dynamics, diffusion terms correspond to
a random motion of individuals and reaction terms
describe local interactions of the populations. On epi-
demic models for COVID-19 with spatial diffusion, in
[18] Viguerie, et al. present an early version of a SEIRD
mathematical model based on partial differential equa-
tions coupled with a heterogeneous diffusion model.
The model describes the spatiotemporal spread of the
COVID-19 pandemic and aims to capture dynamics
also based on human habits and geographical features.
Tsori and Granek [19] suggest an epidemic model
with diffusion for COVID-19 and present numerical
experiments to show remarkable similarity heat maps
publicly available. In this paper, it is also demonstrated
how localized lockdown/quarantine conditions can slow
down the spreading of disease from epicenters. Zhu and
Zhu [20] proved the existence of the global exponential
attractor of general dissipative evolution systems of
a SEIQR model for COVID-19. However, the well-
posedness of SEIR diffusion models [5] is not addressed
in the literature. Accordingly, in this paper, we study
this subject by addressing the stability of disease-free
and endemic equilibrium points for the COVID-19
model with diffusion being the main contribution of
the paper.

For the well-posedness of the SEIR model for
COVID-19 with spatial diffusion, we used similar re-
sults to those found in [15, 21–24]. The stability of
the equilibrium points for the SEIR model was studied
using linearization and Lyapunov theories for partial
differential equations [13, 14, 25–31]. This paper is or-
ganized as follows: in Section II, we introduce some no-
tation and present relevant ideas to establish our results.
Section III is devoted to abstract and parabolic differen-
tial equations to show the existence and uniqueness of a
non-negative global solution, implying that the problem
is well posed in a biological sense. Section IV is
about the local stability of equilibria using linearization
theory and the global stability of the equilibria using
Lyapunov theory. Section V is devoted to illustrate

these analytical results by presenting examples using
numerical simulations. Finally, Section VI closes the
paper with our conclusions.

II. THEORETICAL BACKGROUND

In this section, we introduce notations and present
key ideas for the work involving function spaces, semi-
group of linear operators theory, abstract differential
equations, and qualitative analysis of parabolic differ-
ential equations. For more details, the reader is referred
to [16, 17, 32–35].

In this work, we denote by Ω a bounded domain in
R3. For 1 ≤ p ≤ ∞, the space of complex-valued
Lp functions in Ω denoted by Lp(Ω) with the usual
norm ‖ · ‖Lp . The complex Sobolev space in Ω of
order k, k = 0, 1, 2, . . . , is denoted by Hk(Ω) with
norm ‖ · ‖Hk . The space of complex-valued continuous
functions on Ω is denoted by C(Ω) with norm ‖ · ‖C .

Let X be a Banach space with norm ‖ · ‖, we
denote by C(Ω;X) and C1(Ω;X) the space of X-valued
continuous functions and of X-valued continuously
differentiable functions, respectively. Additionally, let
B(Ω;X) be the space of X-valued bounded functions.
The Sobolev space of fractional order s > 0 is denoted
by Hs(Ω) with norm ‖ · ‖Hs . We assume Ω has a C2

class boundary ∂Ω, and for 3
2 < s ≤ 2 by Hs

N (Ω) we
denote a closed subspace of Hs(Ω) such that

Hs
N (Ω) = {u ∈ Hs(Ω) : ∂nu = 0 on ∂Ω} .

In what follows, for the sake of simplicity, we use
the universal notation C to denote any constant that is
determined for each specific occurrence of Ω. In cases
in which C also depends on some parameter, say ξ, we
use the notation Cξ.

Let us comment on the existence theorem for local
solutions to an abstract equation in a Banach space. We
consider the following Cauchy problem for an abstract
evolution equation in X

dU

dt
+AU = F (U), 0 < t ≤ T,

U(0) = U0.
(1)

Here, A is a sectorial operator of X with angle 0 ≤
ωA <

π
2 . By definition,

σ(A) ⊂ Σω = {λ ∈ C : | arg(λ)| < ω}, ωA < ω <
π

2
,

and

‖(λ−A)−1‖ ≤ Mω

|λ|
, λ /∈ Σω, ωA < ω <

π

2
.
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Let F be a nonlinear mapping from D(Aη) into X,
where 0 ≤ η < 1, where Aη represents the fractional
power of the operator A, for more details see [35]. F is
assumed to satisfy the Lipschitz condition of the form

‖F (U)− F (V )‖ ≤ ϕ(‖U‖+ ‖V ‖) ·
(
‖Aη(U − V )‖

+ (‖AηU‖+ ‖AηV ‖)‖U − V ‖
)
,

U, V ∈ D(Aη), (2)

and ϕ(·) is some increasing continuous function. The
initial value U0 is taken in D(Aη).

Then, from [35], we state the following local solution
existence theorem to (1):

Proposition 1 ([35], Theorem 4.4). Under the above
assumptions, for any U0 ∈ X, the equation (1) has
a unique local solution in the function space U ∈
C([0, TU0

];X) ∩ C1((0, TU0
];X) ∩ C((0, TU0

];D(A)),
with the bound

‖U(t)‖+ t

∥∥∥∥dU(t)

dt

∥∥∥∥+ t‖AU(t)‖ ≤ CU0
, 0 < t ≤ TU0

,

Here, TU0
and CU0

are positive constants depending
only on the norm ‖U0‖.

Proposition 2 ([35], Corollary 4.3). Let the assump-
tions of Proposition 1 holds and U0 ∈ X. Assume
that any local solution U of (1) in the function space
C([0, TU ];X)∩C((0, TU ];D(A))∩C1((0, TU ];X), sat-
isfies the estimative

‖U(t)‖ ≤ CU0
, 0 ≤ t ≤ TU , (3)

with some constant CU0
> 0 independent of TU . Then,

(1) possesses a unique global solution in the function
space C([0, T ];X) ∩ C((0, T ];D(A)) ∩ C1((0, T ];X).

Using the terminology of [32], define z =
(z1, z2, . . . , zk), f = (f1, f2, . . . , fk), D representing
the diagonal matrix D = (D1, D2, . . . , Dk), ∆z =
(∆z1,∆z2, . . . ,∆zk), α = (α1, α2, . . . , αk). Let

∂z

∂t
= D∆z + f(z). (4)

in [0,∞) × Ω where Ω is some bounded domain with
smooth boundary with initial data z(0, x) = α(x) and
Neumann boundary data ∂nz(t, x) = 0 for x on ∂Ω
and 0 ≤ t <∞.

Remark 1. The system (4) can be written in the
abstract form (1).

Under certain assumptions, one might expect that
solution to (4) would approach as t→∞ as a solution
of steady state equations

D∆z + f(z) = 0, (5)

in D with Neumann boundary data. Solutions of (5)
with the Neumann boundary condition are called equi-
librium solutions.

Definition 1. An equilibrium solution β(x) is:
(i) stable if for any ε > 0 there exists δ > 0 such that

if ‖z(0, x)−β(x)‖ < δ, then ‖z(t, x)−β(x)‖ < ε
for all t ≥ 0.

(ii) called asymptotically stable if (i) holds and there
exists δ > 0 such that if ‖z(0, x) − β(x)‖ < δ,
then ‖z(t, x) − β(x)‖ → 0 as t → ∞. If δ can
be chosen arbitrarily large, then the solution is
globally asymptotically stable.

(iii) unstable if (i) does not hold.

In this paper, we are interested in constant equilib-
rium solutions of (5). Let f(z) = Az + g(z) where
g(0) = 0,∇g(0) = 0, and define linearized system to
be

∂z

∂t
= D∆z +Az, (6)

with the same initial and boundary conditions as given
with (4). Then the zero solution of (4) is (locally)
asymptotically stable if the zero solution of (6) is
asymptotically stable.

Let 0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . , be the sequence
of eigenvalues of the operator −∆ subject to the homo-
geneous Neumann conditions on Ω, where each λi has
multiplicity mi ≥ 1. Also let Φij , 1 ≤ j ≤ mi (recall
that Φ0=constant λi →∞ as i→∞) be a normalized
eigenfunction corresponding to λi. That is Φij and λi
satisfy −∆Φij = λiΦij in Ω, with ∂nΦij = 0 and∫

Ω
Φ2
ij(x)dx = 1. Under these conditions we can have

the following result.

Theorem 1 ([32], Theorem 1). For the linearized
system (6):
(i) The zero solution is globally asymptotically stable

if for each non-negative integer n the eigenvalues
of A−λnD have negative real parts. Further, there
exist positive constants K,ω such that for any t >
0,

‖z(t, x)‖ ≤ Ke−ωt‖α(x)‖.

(ii) The zero solution is stable if for each non-negative
integer n the eigenvalues of A − λnD have non-
positive real parts and those with zero real parts
have simple elementary divisors.

(iii) The zero solution is unstable if for some n there
exists an eigenvalue of A − λnD with either a
positive real part or zero real part with a non-
simple elementary divisor.
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Theorem 2 ([32], Theorem 2). The zero solution of
(4) is asymptotically stable if the zero solution of the
linearized problem (6) is asymptotically stable.

The next result is used a lot throughout the text.

Lemma 1 ([35], Proposition 1.4). Let a ∈ C([0, T ];R)
and f ∈ C([0, T ];R), and let a function u ∈
C([0, T ];R) ∩ C1((0, T ];R) satisfying the differential
inequality

du

dt
+ a(t)u ≤ f(t), 0 < t ≤ T.

Then, for any fixed 0 < t ≤ T, we get

u(t) ≤ e−
∫ t
0
a(τ)dτu(0) +

∫ t

0

e−
∫ t
s
a(τ)dτf(s)ds.

In particular, if a(t) ≡ δ > 0 and f(t) ≡ f > 0, then
it follows that

u(t) ≤ e−δtu(0) + fδ−1, 0 < t ≤ T.

III. MATHEMATICAL MODELING AND RESULTS

Using the methodology of compartmental models
and spatial diffusion, we can study the spreading of
COVID-19 in regions of interest. For that, the popu-
lation can be divided into four subpopulations, which
can be described with the following parameters and
compartments:

• S(t, x) denotes the susceptible population,
• E(t, x) is the exposed population to COVID-19 by

the contact with an infected,
• I(t, x) denotes the infected population,
• R(t, x) is the population of removed/recovered,
• β > 0 is the transmission rate from the susceptible

population to the infected population,
• Λ > 0 comprises new births and new residents per

unit value of time,
• µ > 0 is the rate of death,
• γ > 0 is the transmission rate of confirmed

infected people from the exposed population (1/γ
is the duration of the latent period).

• α > 0 is the removed/recovery rate from the
infected population (the time spent in the “infec-
tious” compartment is 1/α).

• dS , dE , dI and dR denotes the diffusion coeffi-
cient of the populations S(t, x), E(t, x), I(t, x)
and R(t, x), respectively.

Using the arguments of [12, 36], we can describe the
disease epidemic models with spatial diffusion given by
the following partial differential equations of parabolic

type with Neumann condition:

∂S(t, x)

∂t
= dS∆S(t, x)− βS(t, x)I(t, x)

−µS(t, x) + Λ,
∂E(t, x)

∂t
= dE∆E(t, x) + βS(t, x)I(t, x)

−(µ+ γ)E(t, x),
∂I(t, x)

∂t
= dI∆I(t, x) + γE(t, x)

−(µ+ α)I(t, x),
∂R(t, x)

∂t
= dR∆R(t, x) + αI(t, x)

−µR(t, x),

(t, x) ∈ (0,∞)× Ω,

(7)

S(0, x) = S0(x), E(0, x) = E0(x),

I(0, x) = I0(x), R(0, x) = R0(x), x ∈ Ω,
(8)

∂nS(t, x) = ∂nE(t, x) = ∂nI(t, x)

= ∂nR(t, x) = 0 for x on ∂Ω and t ∈ (0,∞),
(9)∫

Ω

S(0, x)+E(0, x)+I(0, x)+R(0, x)dx ≡ N. (10)

Let U =


S
E
I
R

. The problem (7)-(10) can be

formulated as an abstract Cauchy problem:

U ′(t) +AU(t) = F(U), t > 0,

U(0) = U0 ∈ X,
(11)

where

U0 =


S0

E0

I0
R0



A =


1− dS∆ 0 0 0

0 1− dE∆ 0 0
0 0 1− dI∆ 0
0 0 0 1− dR∆



F(U) =


Λ− βS(t, x)I(t, x)− µS(t, x) + S(t, x)
βS(t, x)I(t, x)− (γ + µ)E(t, x) + E(t, x)

γE(t, x)− (α+ µ)I(t, x) + I(t, x)
αI(t, x)− µR(t, x) +R(t, x)


In (11), the space X is defined by X = L2(Ω)×L2(Ω)
×L2(Ω)× L2(Ω) under the norm∥∥∥∥∥∥∥∥

S
E
I
R


∥∥∥∥∥∥∥∥ =

(∫
Ω

|S|2 + |E|2 + |I|2 + |R|2dx
) 1

2

.
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It is easy to verify that X is a Hilbert space. We define
the D(A) by

D(A) =



S
E
I
R

 ∈ X : S,E, I,R ∈ H2
N (Ω)

 .

A. Global Existence, Positivity of Solutions

In the sequel, we show the existence of local solu-
tions associated with the system (7)-9.

Theorem 3. For each initial function

(S0, E0, I0, R0) ∈ L2(Ω)× L2(Ω)× L2(Ω)× L2(Ω),

the problem (11) admits a unique local-in-time solution
U = (S,E, I,R) in the space

S,E, I,R ∈C([0, TU0 ];L2(Ω))∩
C1((0, TU0 ];L2(Ω)) ∩ C((0, TU0 ];H2

N (Ω)),

where TU0 is a positive constant depending only on the
norm ‖S0‖L2 + ‖E0‖L2 + ‖I0‖L2 + ‖R0‖L2 .

Proof: We denote by L∞(Ω) = L∞(Ω)×L∞(Ω)×
L∞(Ω) × L∞(Ω) with the norm ‖ · ‖L∞ = ‖ · ‖L∞ +
‖ · ‖L∞ + ‖ · ‖L∞ + ‖ · ‖L∞ and

A =


AS 0 0 0
0 AE 0 0
0 0 AI 0
0 0 0 AR

 .

Where Aξ are realizations of operators 1− dξ∆ξ, with
ξ = S,E, I and R, respectively, in L2(Ω) under the
Neumann boundary conditions on ∂Ω.

By [35, Theorem 2.4] we get that A is a sectorial
operator of X with angle 0 ≤ ωA < π

2 . Furthermore,
according to [35, Theorem 16.7],

D(Aηξ ) = H2η(Ω), if 0 ≤ η < 3

4

D(Aηξ ) = H2η
N (Ω), if

3

4
< η ≤ 1.

Let F(Ui), i = 1, 2, be

F(Ui) =
Λ− βSi(t, x)Ii(t, x)− µSi(t, x) + Si(t, x)
βSi(t, x)Ii(t, x)− (γ + µ)Ei(t, x) + Ei(t, x)

γEi(t, x)− (α+ µ)Ii(t, x) + Ii(t, x)
αIi(t, x)− µRi(t, x) +Ri(t, x)

 .

By H2η
N (Ω) ⊂ L∞(Ω) with 3

4 < η ≤ 1, we get

‖F(U1)−F(U2)‖2

≤ C(‖S1‖2L∞‖I1 − I2‖2L2 + ‖I2‖2L∞‖S1 − S2‖2L2

+ ‖S1 − S2‖2L2 + ‖E1 − E2‖2L2 + ‖I1 − I2‖2L2

+ ‖R1 −R2‖2L2)

≤ C
(
(‖S1‖L∞ + ‖E1‖L∞ + ‖I1‖L∞ + ‖R1‖L∞)2

· ‖I1 − I2‖2L2 + ‖S1 − S2‖2L2

· (‖S2‖L∞ + ‖E2‖L∞ + ‖I2‖L∞ + ‖R2‖L∞)2

+ ‖S1 − S2‖2L2 + ‖E1 − E2‖2L2

+ ‖I1 − I2‖2L2 + ‖R1 −R2‖2L2

)
≤ C

(
(‖S1‖L∞ + ‖E1‖L∞ + ‖I1‖L∞ + ‖R1‖L∞

+ ‖S2‖L∞ + ‖E2‖L∞ + ‖I2‖L∞ + ‖R2‖L∞)2

· (‖S1 − S2‖2L2 + ‖E1 − E2‖2L2 + ‖I1 − I2‖2L2

+ ‖R1 −R2‖2L2) + ‖S1 − S2‖2L2 + ‖E1 − E2‖2L2

+ ‖I1 − I2‖2L2 + ‖R1 −R2‖2L2

)
≤ C

(
(‖AηSS1‖L2 + ‖AηEE1‖L2 + ‖AηI I1‖L2

+ ‖AηRR1‖L2 + ‖AηSS2‖L2 + ‖AηEE2‖L2

+ ‖AηI I2‖L2 + ‖AηRR2‖L2)2 · (‖S1 − S2‖2L2

+ ‖E1 − E2‖2L2 + ‖I1 − I2‖2L2 + ‖R1 −R2‖2L2)

+ ‖S1 − S2‖2L2 + ‖E1 − E2‖2L2

+ ‖I1 − I2‖2L2 + ‖R1 −R2‖2L2

)
≤ C(‖AηU1‖+ ‖AηU2‖+ 1)2‖U1 − U2‖2,

with U1,U2 ∈ D(Aη), where

D(Aη) =



S
E
I
R

 ∈ X : S,E, I,R ∈ H2η
N (Ω)

 .

By Proposition 1, the problem (7)-(9) has a unique local
solution in the function space

S,E, I,R ∈C([0, TU0 ];L2(Ω))∩
C1((0, TU0 ];L2(Ω)) ∩ C((0, TU0 ];H2

N (Ω)).

Theorem 4. For any given initial data satisfying the
condition (7)-(10), there exists a unique solution to
the problem defined on t ∈ [0, TU0 ] and this solution
remains nonnegative for all t ∈ [0, TU0 ].

Proof: We will show that S(t) ≥ 0, E(t) ≥ 0,
I(t) ≥ 0 and R(t) ≥ 0 for all 0 < t ≤ TU0 . For this
purpose, however, we have to introduce the modified
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nonlinear operator

F(Ũ) =


Λ− βS̃(t, x)Ĩ(t, x)− µS̃(t, x) + S̃(t, x)

βS̃(t, x)Ĩ(t, x)− (γ + µ)χ(ReẼ)(t, x)

+χ(ReẼ)(t, x)

γχ(ReẼ)(t, x)− (α+ µ)Ĩ(t, x) + Ĩ(t, x)

αĨ(t, x)− µR̃(t, x) + R̃(t, x)


where χ(u) denotes a function such that χ(u) ≡ 0 for
−∞ < u < 0 and χ(u) = u for 0 ≤ u <∞. We have
to consider the auxiliary problem

Ũ ′(t) +AŨ(t) = F̃(U), t > 0,

Ũ(0) = U0 ∈ X,
(12)

It is clear that the new nonlinear operator F̃ also
satisfies (2) with the same exponent η because

‖χ(Re u)− χ(Re v)‖L2 ≤ ‖u− v‖ for u, v ∈ L2(Ω).

Therefore, (12) possesses a unique local solution
U = (S̃, Ẽ, Ĩ, R̃) on an interval [0, T̃U0 ] in the same
functions spaces S̃, Ẽ, Ĩ, R̃ ∈ C([0, T̃U0 ];L2(Ω)) ∩
C1((0, T̃U0 ];L2(Ω)) ∩ C((0, T̃U0 ];H2

N (Ω)). First, we
will show that S̃(t) ≥ 0, Ẽ(t) ≥ 0, Ĩ(t) ≥ 0 and
R̃(t) ≥ 0 for all 0 < t ≤ T̃U0 .

We note that Ũ(t) is real-valued. Indeed, the complex
conjugate Ũ(t) of Ũ(t) is also a local solution of (12)
with the same initial value U0. From the uniqueness of
solutions, Ũ(t) = Ũ(t), hence Ũ(t) is real-valued.

Let H(·) be a C1,1 custoff function such that H(u) =
u2

2 for −∞ < u < 0 and H(u) ≡ 0 for 0 ≤ u <∞. By
Yagi [35, page 52], the function ψ(t) =

∫
Ω
H(u(t))dx

is continuously differentiable.
Computing the derivative of ψ(t) with u(t) = S̃(t),

we get

ψ′(t) =

∫
Ω

H ′(S̃)S̃′(t)dx

=

∫
Ω

H ′(S̃)
(

Λ + dS∆S̃(t)− βS̃(t)Ĩ(t)− µS̃(t)
)
dx

= dS

∫
Ω

H ′(S̃)∆S̃(t)dx+ Λ

∫
Ω

H ′(S̃)dx

−
∫

Ω

H ′(S̃)S̃(t)(βĨ(t) + µ)dx,

By the property (1.96) from [35], we can get∫
Ω

H ′(S̃)∆S̃dx = −
∫

Ω

∇H ′(S̃) · ∇S̃(t)dx

= −
∫

Ω

∇H ′(S̃) · ∇H ′(S̃)dx

= −
∫

Ω

|∇H ′(S̃)|2dx ≤ 0,

therefore

ψ′(t) = −dS
∫

Ω

|∇H ′(S̃)|2dx+ Λ

∫
Ω

H ′(S̃)dx

−
∫

Ω

H ′(S̃)S̃(t)(βĨ(t) + µ)dx.

Since H ′(S̃) ≤ 0,

ψ′(t) ≤ −
∫

Ω

H ′(S̃)S̃(t)(βS̃(t) + µ)dx

≤ C‖H ′(S̃)S̃‖L1(1 + ‖S̃‖L∞)

≤ C‖H(S̃)‖L1(1 + ‖S̃‖L∞ + ‖Ẽ‖L∞
+ ‖Ĩ‖L∞ + ‖R̃‖L∞)

≤ C‖H(S̃)‖L1(1 + ‖S̃‖H2η + ‖Ẽ‖H2η

+ ‖Ĩ‖H2η + ‖R̃‖H2η )

= Cψ(t)(1 + ‖S̃‖H2η + ‖Ẽ‖H2η

+ ‖Ĩ‖H2η + ‖R̃‖H2η ).

Therefore

ψ′(t) ≤ Cψ(t)(1 + ‖AηŨ(t)‖).

Thus, by Lemma 1,

ψ(t) ≤ ψ(0)eC
∫ t
0

(1+‖AηŨ(τ)‖)dτ .

Using the bound ‖AηŨ(τ)‖ ≤ CU0τ
−η, which means

that ‖AηŨ(τ)‖ is integrable in 0 ≤ t ≤ T̃U0 . Hence,
ψ(0) = 0 implies ψ(t) ≡ 0, namely S̃(t) ≥ 0 for
0 ≤ t ≤ T̃U0 .

Now, computing the derivative of ψ(t) with u(t) =
Ĩ(t), we get

ψ′(t) =

∫
Ω

H ′(Ĩ)Ĩ ′(t)dx

=

∫
Ω

H ′(Ĩ)
(
dI∆Ĩ(t) + γχ(Ẽ(t))− (α+ µ)Ĩ(t)

)
dx

= dI

∫
Ω

H ′(Ĩ)∆Ĩ(t)dx+ γ

∫
Ω

H ′(Ĩ)χ(Ẽ(t))dx

− (α+ µ)

∫
Ω

H ′(Ĩ)Ĩdx

= −dI
∫

Ω

|∇H ′(Ĩ)|2dx+ γ

∫
Ω

H ′(Ĩ)χ(Ẽ(t))dx

− 2(α+ µ)

∫
Ω

H(Ĩ)dx.

By H(Ĩ) ≥ 0 and H ′(Ĩ) < 0 we get ψ′(t) ≤ Cψ(t).
Therefore ψ(t) ≤ ψ(0)eCt. From ψ(0) = 0, we get
ψ(t) ≡ 0, this implies Ĩ(t) ≥ 0 for 0 ≤ t ≤ T̃U0 .
From the same argument before, we get Ẽ(t) ≥ 0 and
R̃(t) ≥ 0 for 0 ≤ t ≤ T̃U0 .
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We now note that χ(Ẽ(t)) = Ẽ(t), which implies
Ũ is a local solution of the original problem (11) too.
The uniqueness of solution then implies Ũ = U . Hence
S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0 and R(t) ≥ 0 for
0 < t ≤ T̃U0 . Now we have the possibilities:
• If T̃U0 ≥ TU0 we have finished the proof.
• If not, we define T0 = sup{0 < T ≤ TU0 : S(t) ≥

0, E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0 for every 0 <
t ≤ T}. From∫

Ω

H(S(T0))dx = lim
t→T−0

∫
Ω

H(S(t))dx = 0,

we see that S(T0) ≥ 0. By a similar argument, we
have E(T0) ≥ 0, I(T0) ≥ 0 and R(T0) ≥ 0. So,
if T0 = TU0 , we have finished the proof.

• If T0 < TU0 , we will consider again the problem
(12) but with the initial time T0 and the initial
value U(T0). Repeating the same argument as
above, we conclude that there exists a δ > 0 such
that S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0 and R(t) ≥ 0
for every T0 ≤ t ≤ T0 + δ. This is a contradiction,
hence T0 = TU0 .

The above arguments imply the non-negativity of
solutions for all 0 ≤ t ≤ TU0 .

B. Boundedness of Solutions

In the next results, we show the boundedness of
solutions.

Lemma 2. Let (S,E, I,R) be a local-in-time solution
to (7)-(9). Then, it holds that

‖S(t)‖L1 ≤ e−µtN +
Λ|Ω|
µ

,

‖E(t)‖L1 ≤ e−µtN +
Λ|Ω|
µ

,

‖I(t)‖L1 ≤ e−µtN +
Λ|Ω|
µ

,

‖R(t)‖L1 ≤ e−µtN +
Λ|Ω|
µ

.

Proof: Let

N(t) =

∫
Ω

S(t, x) + E(t, x) + I(t, x)dx+R(t, x)dx.

Using the Green’s first identity we infer

N ′(t) =

∫
Ω

dS∆S(t, x) + dE∆E(t, x)

+ dI∆I(t, x) + dR∆R(t, x)

+ Λ− µS(t, x)− µE(t, x)

− µI(t, x)− µR(t, x)dx

= dS

∫
∂Ω

∂S

∂ν
ds+ dE

∫
∂Ω

∂E

∂ν
ds+ dI

∫
∂Ω

∂I

∂ν
ds

+ dR

∫
∂Ω

∂R

∂ν
ds+

∫
Ω

Λ− µ(S(t, x) + E(t, x)

+ I(t, x) +R(t, x))dx

=

∫
Ω

Λ− µ(S(t, x) + E(t, x) + I(t, x) +R(t, x))dx

≤ Λ|Ω| − µN(t).

By Lemma 1,

N(t) ≤ e−µtN +
Λ|Ω|
µ

,

therefore

‖S(t) + E(t) + I(t) +R(t)‖L1 ≤ e−µtN +
Λ|Ω|
µ

.

From S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, and R(t) ≥ 0 for
all 0 ≤ t ≤ TU0 we get

‖S(t)‖L1 ≤ e−µtN +
Λ|Ω|
µ

,

‖E(t)‖L1 ≤ e−µtN +
Λ|Ω|
µ

,

‖I(t)‖L1 ≤ e−µtN +
Λ|Ω|
µ

,

‖R(t)‖L1 ≤ e−µtN +
Λ|Ω|
µ

.

Now we show the existence of global solutions for
the problem (7)-(9).

Theorem 5. For any given initial data satisfying the
condition (7)-(9), there exists a unique solution to the
problem defined on [0,∞) and this solution remains
nonnegative and bounded for all t ≥ 0.

Proof: Let S,E, I,R ∈ C([0, TU0 ];L2(Ω)). We
have that S,E, I,R are bounded in L2 norm in [0, T ]
with T < TU0 . For all t ≥ T, we consider∫

Ω

SS′dx =

∫
Ω

dSS∆Sdx+

∫
Ω

ΛS − µS2 − βS2Idx

= −
∫

Ω

dS |∇S|2dx+

∫
Ω

ΛS − µS2 − βS2Idx

= −
∫

Ω

(√
µ

2
S − 1

2

√
2

µ
Λ

)2

dx− µ

2

∫
Ω

|S|2dx

+

∫
Ω

Λ2

2µ
dx ≤ −µ

2

∫
Ω

|S|2dx+
Λ2

2µ
|Ω|.

Therefore
1

2

d

dt

∫
Ω

|S|2dx ≤ −µ
2

∫
Ω

|S|2dx+
Λ2

2µ
|Ω|.
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By Lemma 1, we infer

‖S(t)‖2L2 ≤ ‖S(0)‖2L2e−µt +
Λ2

µ2
|Ω|.

Multiplying the third equation of the system by I(·),
we get∫

Ω

I ′Idx =

∫
Ω

dII∆Idx+

∫
Ω

γIE − (α+ µ)I2dx,

and

1

2

d

dt

∫
Ω

|I|2dx

= −dI
∫

Ω

|∇I|2dx+

∫
Ω

γEI − (α+ µ)I2dx

≤ −
∫

Ω

(α+ µ)|I|2dx+ γ‖I‖L∞‖E‖L1

≤ −(α+ µ)

∫
Ω

|I|2dx+ γ‖I‖H2η‖E‖L1

≤ −(α+ µ)

∫
Ω

|I|2dx+ γ‖AηI‖L2‖E‖L1

≤ −(α+ µ)

∫
Ω

|I|2dx+
C

tη

≤ −(α+ µ)

∫
Ω

|I|2dx+
C

T η
.

By Lemma 1, we show

‖I(t)‖2L2 ≤ e−2(α+µ)t‖I(0)‖2L2 +
C

(α+ µ)T η
.

Now, multiplying the second equation of the system
by E(·), we get∫

Ω

EE′dx =

∫
Ω

dEE∆Edx−
∫

Ω

(µ+ γ)|E|2dx

+

∫
Ω

βSEIdx

= −
∫

Ω

dE |∇E|2dx−
∫

Ω

(µ+ γ)|E|2dx

+

∫
Ω

βSEIdx.

By the Hölder inequality and Lemma 2, we get∫
Ω

βSEIdx ≤ β‖E‖L∞‖SI‖L1

≤ β‖E‖H2η‖S‖L2‖I‖L2

≤ β‖AηE‖L2‖S‖L2‖I‖L2

≤ C

tη
≤ C

T η
.

From the previous argument, it follows that

1

2

d

dt

∫
Ω

|E|2dx ≤ −
∫

Ω

(γ + µ)|E|2dx+
C

T η
.

By Lemma 1, we get

‖E‖2L2 ≤ ‖E(0)‖2L2e−2(γ+µ)t +
C

(γ + µ)T η
.

Multiplying the fourth equation of the system by
R(·), we get∫

Ω

R′Rdx =

∫
Ω

dRR∆Rdx+

∫
Ω

αIR− µR2dx

= −
∫

Ω

dR|∇R|2dx+

∫
Ω

αIR− µR2dx

≤ −
∫

Ω

(
α√
2µ
I −

√
µ

2
R

)2

+
α2

2µ
I2 − µ

2
R2dx.

Therefore,

d

dt

∫
Ω

|R|2dx+
µ

2

∫
Ω

|R|2dx ≤ α2

µ
‖I‖L2 ≤ C.

By Lemma 1, we infer

‖R‖2L2 ≤ ‖R(0)‖2L2e−µt +
C

µ
.

By Proposition 2, the solution S(·), E(·), I(·) and
R(·) of (7)-(9) are globally defined for all t ∈ [0,∞).
By previous argument and Theorem 4 we obtain the
unique solution of (7)-9 which is positive and defined
for all t ≥ 0.

IV. STABILITY ANALYSIS

A. Local Stability

In this work, the basic reproductive number is given
by

R0 =
Λβγ

(µ+ γ)(µ+ α)µ
.

As we claim in the sequel, the disease-free equilibrium
point is asymptotically stable for R0 < 1. This result
is similar to the epidemic models completely described
by ordinary differential equations [36].

Remark 2. In [37] the authors show that the ba-
sic reproduction numbers for the partial differential
equations epidemic models are the same for their
corresponding ordinary differential equations models in
several important cases.

Let

F (S,E, I,R) = (Λ− βSI − µS, βSI − (µ+ γ)E,

γE − (α+ µ)I, αI − µR).
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The system (7) has two constant equilibrium points.
The disease-free equilibrium point is

E0 = (S0, 0, 0, 0) =

(
Λ

µ
, 0, 0, 0

)
,

and the endemic equilibrium point is

E1 = (S∗, E∗, I∗, R∗) =

(
(µ+ γ)(µ+ α)

βγ
,

µ(µ+ α)

βγ
(R0 − 1),

µ

β
(R0 − 1),

α

β
(R0 − 1)

)
.

In the next result, we show the local asymptotically
stability of disease-free equilibrium.

Theorem 6. If R0 < 1, the disease-free equilibrium
point E0 is asymptotically stable.

Proof: Let A = DF (E0) be the Jacobian matrix
of F (·). By Theorem 1 and Theorem 2 the equilibrium
point E0 is asymptotically stable if for each nonnegative
integer i the eigenvalue of the matrix A − µiD have
negative real part where µi are the eigenvalues of −∆
and

D =


dS 0 0 0
0 dE 0 0
0 0 dI 0
0 0 0 dR

 .

Let

A− µiD − ξI =
−µ− µidS − ξ 0

0 −(γ + µ)− µidE − ξ
0 γ
0 0

−βS0 0
βS0 0

−(α+ µ)− µidI − ξ 0
α −µ− µidR − ξ

 .

Computing det(A− µiD − ξI) = 0, we get

det(A− µiD − ξI)

= (−µ− µidS − ξ)(−µ− µidR − ξ)a,

where

a = ξ2 + (µidE + µidI + (α+ µ) + (γ + µ))ξ

+ µ2
i dEdI + µi(α+ µ)dE + µi(γ + µ)dI

+ (α+ µ)(γ + µ)− βS0γ.

The eigenvalues are ξ1 = −µ−µidS , ξ2 = −µ−µidR
and the rest of the eigenvalues have negative real part
if a = 0 has roots with a negative real part. But this

is true since R0 < 1. This implies that the equilibrium
point (S0, E0, I0, R0) is asymptotically stable.

Theorem 7. If R0 > 1, the endemic equilibrium point
E1 is asymptotically stable.

Proof: Let A = DF (E1), for each non-negative
integer i, let

A− µiD − ξI =
−µ− βI∗ − µidS − ξ 0

βI∗ −(γ + µ)− µidE − ξ
0 γ
0 0

−βS∗ 0
βS∗ 0

−(µ+ α)− µidI − ξ 0
α −µ− µidR − ξ

 .

Make det(A− µiD − ξI) = 0 by

det(A− µiD − ξI)

= −(−µ− µidR − ξ)(ξ3 + a2ξ
2 + a1ξ + a0),

where

a0 = (βI∗ + µ+ µidS)
(
µi(α+ µ)dE + µi(γ + µ)dI

+ µ2
i dIdE + (α+ µ)(γ + µ)

)
− β2S∗I∗γ,

a1 = (βI∗ + µ+ µidS)
(
µidE + µidI

+ (α+ µ) + (γ + µ)
)

+ (α+ µ)(γ + µ)

+ µi(α+ µ)dE + µi(γ + µ)dI + µ2
i dIdE ,

a2 = βI∗ + µ+ µidS + µidE + µidI

+ (α+ µ) + (γ + µ).

We get that ξ1 = −µ− µidR is an eigenvalue and the
rest of the eigenvalues have negative real part if

ξ3 + a2ξ
2 + a1ξ + a0 = 0

has roots with negative real part. Using βS∗γ = (α +
µ)(µ + γ) we have a2 > 0, a1 > 0 and a2a1 > a0.
By the Routh-Hurwitz criterion we obtain ξ3 + a2ξ

2 +
a1ξ+a0 = 0 has all roots with negative real part. From
Theorem 1 and Theorem 2 we get that the equilibrium
point (S∗, E∗, I∗, R∗) is asymptotically stable.

B. Global Stability

In this section, we apply the theory of Lyapunov
functionals method to study the global stability of
the SEIR model for COVID-19 with spatial diffusion.
The method is based on the construction of Lyapunov
functionals for partial differential equations using the
knowledge of Lyapunov functions for ordinary differ-
ential systems [27].
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Theorem 8. If R0 ≤ 1, the disease-free equilibrium
point E0 is globally asymptotically stable.

Proof: We define the Lyapunov function on X =
L2(Ω)× L2(Ω)× L2(Ω)× L2(Ω) by

V (U(t)) =

∫
Ω

L(S,E, I,R)dx,

where

L(S,E, I,R) = θ

(
S−S0−S0 ln

S

S0

)
+

1

µ+ γ
E+

1

γ
I.

It is easy to see that

dV (U(t))

dt
=

∫
Ω

L′(S,E, I,R)dx

=

∫
Ω

θ

(
1− S0

S

)
S′ +

1

µ+ γ
E′ +

1

γ
I ′dx

= dSθ

∫
Ω

(S − S0)

S
∆Sdx+

dE
µ+ γ

∫
Ω

∆Edx

+
dI
γ

∫
Ω

∆Idx+

∫
Ω

2Λθ − θβSI − θµS

− θΛ2

µS
+

β

µ+ γ
SI +

(
θβΛ

µ
− µ+ α

γ

)
Idx.

Change θ =
1

µ+ γ
,

dV (U(t))

dt
= −dSθS0

∫
Ω

|∇S|2

S2
dx

−
∫

Ω

θ

µS
(Λ− µS)2 − µ+ α

γ
(1−R0)Idx

≤ −
∫

Ω

θ

µS
(Λ− µS)2 − µ+ α

γ
(1−R0)Idx.

We define

ϕ(t) =

∫
Ω

θ

µS
(Λ− µS)2 +

(µ+ α)

γ
(1−R0)Idx.

By integration from 1 to t, we get

V (U(t))− V (U(1)) ≤ −
∫ t

1

ϕ(s)ds,

and we have
∫∞

1
ϕ(s)ds ≤ V (U(1)) <∞.

The positivity of ϕ(t) indicates that ϕ(t) → 0 as
t→∞. We have the convergence to the S(t)→ S0 in
L2−norm and I(t)→ 0 in L1−norm.

Now we have again as in the proof of Theorem 5∫
Ω

EE′dx = −
∫

Ω

dE |∇E|2dx−
∫

Ω

(µ+ γ)E2dx

+

∫
Ω

βSEIdx.

By the Hölder inequality, we get
1

2

d

dt

∫
Ω

|E|2dx+ (µ+ γ)

∫
Ω

|E|2dx

≤
∫

Ω

βSEIdx

≤
∫

Ω

β(S − S0)EIdx+

∫
Ω

βS0EIdx

≤ β‖E‖∞‖S − S0‖L2‖I‖L2 + βS0‖E‖∞‖I‖L1

≤ C‖E‖H2η (‖S − S0‖L2 + ‖I‖L1)

≤ C‖AηE‖L2(‖S − S0‖L2 + ‖I‖L1)

≤ C

tη
(‖S − S0‖L2 + ‖I‖L1).

From Lemma 1, we have

‖E‖2L2 ≤ ‖E(0)‖2L2e−
µ+γ

2 t +
2C

(µ+ γ)

·
∫ t

0

e−
µ+γ

2 (t−s)s−η(‖S(s)− S0‖L2 + ‖I‖L1)ds.

By the convergence of the S(t)→ S0 in L2−norm and
I(t) → 0 in L1−norm it implies that, for all ε > 0,
there exists T > 0 such that ‖S − S0‖L2 + ‖I‖L1 < ε
for all t > T, therefore

‖E‖2L2 ≤ ‖E(0)‖2L2e−
µ+γ

2 t +
2C

(µ+ γ)
e−

µ+γ
2 t

·
∫ T

0

e−
µ+γ

2 ss−η(‖S(s)− S0‖L2 + ‖I‖L1)ds

+
2C

(µ+ γ)

∫ t

T

e−
µ+γ

2 (t−s)s−ηεds.

This implies that E(t)→ 0 as t→∞ in L2-norm.
Using the same argument of the proof of Theorem 5

we arrive at the expression
d

dt

∫
Ω

|I|2dx+ (α+ µ)

∫
Ω

|I|2dx

≤
∫

Ω

γ2

2(α+ µ)2
|E|2dx.

By Lemma 1, we obtain

‖I(t)‖2L2 ≤ e−(α+µ)t‖I(0)‖2L2 +
γ2

2(α+ µ)2

·
∫ t

0

e−(α+µ)(t−s)‖E(s)‖2L2ds

≤ e−(α+µ)t‖I(0)‖2L2 +
γ2

2(α+ µ)2

·
∫ T

0

e−(α+µ)(t−s)‖E(s)‖2L2ds

+
γ2

2(α+ µ)2

∫ t

T

e−(α+µ)(t−s)‖E(s)‖2L2ds.
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From the previous statement, it implies that I(t) → 0
as t→∞ in L2-norm as t→∞.

Multiplying R(·) in the fourth equation of the system
(7), and repeating the same idea as before, we get

d

dt

∫
Ω

|R|2dx+
µ

2

∫
Ω

|R|2dx ≤ α2

2µ
‖I‖L2 .

By Lemma 1, we get

‖R‖2L2 ≤ ‖R(0)‖2L2e−µt+
α2

µ2

∫ t

0

e−µ(t−s)‖I(s)‖L2ds.

From the previous statement implies that R(t)→ 0 as
t→∞ in L2-norm as t→∞.

Therefore, (S,E, I,R) converge to (S0, 0, 0, 0) in the
X = L2(Ω) × L2(Ω) × L2(Ω) × L2(Ω) norm. This
completes the proof.

Theorem 9. If R0 > 1 and dS = dE , the endemic
equilibrium E1 is globally asymptotically stable.

Proof: We define a Lyapunov function

V (U(t)) =

∫
Ω

L(S,E, I,R)dx,

and

L(S,E, I,R) = θ1

(
S − S∗ − S∗ ln

S

S∗

)
+ θ2

(
E − E∗ − E∗ ln

E

E∗

)
+ θ3

(
I − I∗ − I∗ ln

I

I∗

)
,

where θ1, θ2, θ3 are positive constants. Then
dV (U(t))

dt
=

∫
Ω

θ1

(
1− S∗

S

)
S′

+ θ2

(
1− E∗

E

)
E′ + θ3

(
1− I∗

I

)
I ′dx.

Substituting the previous equations of the system in the
expressions and using the first equation in equilibrium

Λ = βS∗I∗ + µS∗,

we get

dV (U(t))

dt
= −

∫
Ω

dSθ1S
∗ |∇S|2

S2
+ dEE

∗θ2
|∇E|2

E2

+ dII
∗θ3
|∇I|2

I2
dx+

∫
Ω

−θ1µ
(S − S∗)2

S
+ θ1βS

∗I∗

− θ1βSI − θ1
βS∗2I∗

S
+ θ1βS

∗I

+ θ2βSI − θ2(µ+ γ)E − θ2
βE∗SI

E
+ θ2(µ+ γ)E∗

+ θ3γE − θ3(µ+ α)I − θ3
γI∗E

I
+ θ3(µ+ α)I∗dx.

Making θ1 = θ2 and using the equation in the equilib-
rium,

βS∗I∗

E∗
= µ+ γ,

γE∗ = (µ+ α)I∗,

βS∗ =
(µ+ γ)(µ+ α)

γ
,

and choose θ3 such that θ3 = θ1
µ+ γ

γ
, we get

θ1(µ+ γ)E∗ = θ1βS
∗I∗,

θ1βS
∗I − θ3(µ+ α)I = 0,

θ3γE − θ1(µ+ γ)E = 0,

θ3
γI∗E

I
=
βS∗I∗2E

IE∗
,

θ3(µ+ α)I∗ = θ1βS
∗I∗.

Using the previous equalities and the relation between
geometric mean and arithmetic mean, we get

dV (U(t))

dt
= −

∫
Ω

dSθ1S
∗ |∇S|2

S2
+ dEθ2E

∗ |∇E|2

E2

+ dIθ3I
∗ |∇I|2

I2
dx−

∫
Ω

θ1µ
(S − S∗)2

S

− θ1βS
∗I∗
(

3− S∗

S
− I∗E

IE∗
− E∗SI

ES∗I∗

)
dx

≤ −
∫

Ω

θ1µ
(S − S∗)2

S
dx.

Defining ψ(t) =

∫
Ω

θ1µ
(S − S∗)2

S
dx. By integration

from 1 to t, we get

V (U(t))− V (U(1)) ≤ −
∫ t

1

ψ(s)ds,

where
∫∞

1
ψ(s)ds ≤ V (U(1)) < ∞. The positivity of

ψ(t) indicates that ψ(t)→ 0 as t→∞.
We note that∫
Ω

(S − S∗)2dx =

∫
Ω

(S − S∗)2

S
Sdx

≤ 1

θ1µ
‖S‖L∞ψ(t)

≤ 1

θ1µ
‖AηS(t)‖L2ψ(t) ≤ C

tη
ψ(t)→ 0,

as t→∞. This implies the convergence to S(t)→ S∗

in L2−norm.
Using that Λ = −dS∆S∗+βS∗I∗+µS∗, ζ = dS =

dE and multiplying S − S∗ and E − E∗ in the first
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equation of (7) we get∫
Ω

S∗S
′
∗dx =

∫
Ω

ζS∗∆S∗dx−
∫

Ω

µS2
∗ − βS∗S∗∗dx,

(13)∫
Ω

E∗S
′
∗dx =

∫
Ω

ζE∗∆S∗dx−
∫

Ω

µE∗S∗

− βE∗S∗∗dx, (14)

where we replace for readability

S∗ = (S −S∗), E∗ = (E −E∗), S∗∗ = (SI −S∗I∗).

By dE∆E∗+βS∗I∗− (µ+γ)E∗ = 0 and multiplying
E − E∗ and S − S∗ in second equation of (7) we get∫

Ω

E∗E
′
∗dx =

∫
Ω

ζE∗∆E∗dx−
∫

Ω

(µ+ γ)E2
∗dx

+

∫
Ω

βE∗S∗∗dx, (15)∫
Ω

S∗E
′
∗dx =

∫
Ω

ζS∗∆E∗dx−
∫

Ω

(µ+ γ)S∗E∗dx

+

∫
Ω

βS∗S∗∗dx. (16)

Adding the previous equations (13)-(16) we infer

d

dt

∫
Ω

1

2
(S∗ + E∗)

2dx = −ζ
∫

Ω

(∇S∗ +∇E∗)2dx

− µ
∫

Ω

(S∗ + E∗)
2dx− γ

∫
Ω

E2
∗dx− γ

∫
Ω

S∗E∗dx

≤ −µ
2

∫
Ω

(S∗ + E∗)
2dx− γ

2

∫
Ω

E2
∗dx

− γ
∫

Ω

S∗E∗dx−
γ

2

∫
Ω

S2
∗dx+

γ

2

∫
Ω

S2
∗dx

≤ −µ+ γ

2

∫
Ω

(S∗ + E∗)
2dx+

γ

2

∫
Ω

S2
∗dx.

This implies

d

dt

∫
Ω

(S∗ + E∗)
2dx+ (µ+ γ)

∫
Ω

(S∗ + E∗)
2dx

≤ γ
∫

Ω

S2
∗dx.

From Lemma 1, and replacement back of S∗ and E∗,
we get

‖S − S∗ + E − E∗‖L2

≤ e−(µ+γ)t‖S(0)− S∗ + E(0)− E∗‖L2

+
γ

µ+ γ

∫ t

0

e−(µ+γ)(t−s)‖S(s)− S∗‖L2ds.

Therefore

‖E − E∗‖L2 ≤ ‖S − S∗ + E − E∗‖L2 + ‖S − S∗‖L2

≤ e−(µ+γ)t‖S(0)− S∗ + E(0)− E∗‖L2

+
γ

µ+ γ

∫ t

0

e−(µ+γ)(t−s)‖S(s)− S∗‖L2ds

+ ‖S − S∗‖L2 .

This implies that E(t)→ E∗ as t→∞ in L2-norm as
t→∞.

Using that dI∆I∗ + γE∗ − (µ + α)I∗ = 0 and
multiplying I − I∗ in third equation of (7) we get∫

Ω

(I − I∗)′(I − I∗)dx =

∫
Ω

dI(I − I∗)∆(I − I∗)dx

+

∫
Ω

γ(E − E∗)(I − I∗)− (µ+ α)(I − I∗)2dx,

from the same idea of Theorem 5 we have

1

2

d

dt

∫
Ω

|I − I∗|2dx ≤ −µ+ α

2

∫
Ω

(I − I∗)2dx

+

∫
Ω

γ2

2(µ+ α)
(E − E∗)2dx.

From Lemma 1, we infer

‖I(t)− I∗‖2L2 ≤ e−(α+µ)t‖I(0)− I∗‖2L2

+
γ2

(µ+ α)2

∫ t

0

e−(α+µ)(t−s)‖E(s)− E∗‖2L2ds.

From the previous statement, I(t) → I∗ as t → ∞ in
L2-norm as t→∞.

Using dR∆R∗ + αI∗ − µR∗ = 0 in the fourth
equation of the system (7) we get

(R−R∗)′ = dR∆(R−R∗) +α(I − I∗)−µ(R−R∗).

Multiplying by R − R∗ and using the same argument
of Theorem 5 and Lemma 1 we get

‖R−R∗‖2L2 ≤ ‖R(0)−R∗‖2L2e−µt

+
α2

µ2

∫ t

0

e−µ(t−s)‖I(s)− I∗‖L2ds.

Thus, R(t)→ R∗ as t→∞ in L2-norm.
Hence, (S,E, I,R) converges to the equilibrium

point (S∗, E∗, I∗, R∗) in the X = L2(Ω) × L2(Ω) ×
L2(Ω)× L2(Ω) norm, finishing the proof.
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V. NUMERICAL EXAMPLES

To illustrate the analytical results of stability more
concretely, in this section we present numerical solu-
tions in one spatial dimension on the interval [0, 1]
which evolve to the disease-free (E0) and endemic
(E1) equilibria asymptotically. For that, only the three
first equations of the system (7) are considered, since
R(t, x) has no influence on S(t, x), E(t, x), I(t, x).
Consistently with the Neumann homogeneous boundary
condition, we also set the initial condition I(0, x) =
sin2(πx), S(0, x) = 1 − sin2(πx), and E(0, x) = 0.
As for the parameter values, these are listed in Table I.

The two representative cases we address here are
defined by different values of R0 changing the value
of µ. Based on the analytical results of stability derived
in the previous section, and according to the values
presented in Table I, the value of µ = 0.5 implies
in R0 ≈ 0.88 < 1 ensuring that E0 = (2, 0, 0, 0)
is globally asymptotically stable. On the other hand,
the value of µ = 0.1 implies in R0 ≈ 8.26 > 1,
ensuring that E1 ≈ (1.21, 0.80, 0.73, 7.26) is globally
asymptotically stable. The respective numerical results
for these two cases are shown in Figure 1 (a)-(b), where
the constant values observed all over the domain at
t = 20 represent their respective steady states; E0 in
Figure 1(a), and E2 in Figure 1(b). These numerical re-
sults are in agreement with Theorem 6 and Theorem 7.
Although the global stability cannot be entirely ac-
cessed by the use of numerical simulations, these results
are also consistent with Theorem 8 and Theorem 9.

VI. CONCLUSIONS

In this paper, we studied the well-posedness and
the qualitative behavior of equilibrium points to a
SEIR epidemic models with spatial diffusion for the
spreading of COVID-19. The well-posedness of the
model was proved using the theory of abstract parabolic
differential equations. The asymptotical local stabil-
ity of both disease-free and endemic equilibria were
established using standard linearization theory, and
confirmed by illustrative numerical simulations. The
asymptotical global stability of both disease-free and
endemic equilibria were established using a Lyapunov
function.
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