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Abstract: This article proposes a model for swimming
of red algae spores. The model considers a released spore
in unbound water as a spherical particle enclosing a
liquid incompressible cytosol, in which oscillates a solid
spherical organelle. An analysis of the solutions of the
Navier-Stokes equations for the cytosol flow caused by the
organelle motion within the cell is presented in the limit
of small Reynolds number. It is shown that in the case
when the cytosol has Newtonian or Maxwell properties,
the spore may swim only when the forward and backward
trajectories of the organelle are different. In the case
of the shear thinning cytosol properties the spore may
swim also when the organelle trajectories are the same,
but the velocities of forward and backward movements
of the organelle should differ. Such a cell may swim
in a straight line. The swimming of the model spores
completely satisfies experimental data.

Keywords: Cytosol, Fluid dynamics, Navier-Stokes equa-
tions, Organelle, Red algae spores

I. INTRODUCTION

It is obvious that the movement of living organ-
isms is of high importance for their survival. Many
swimming cells from bacteria to protists and further to
unicellular stages of more advanced organisms in the
plant and animal kingdoms use flagella as an effective
locomotory device [1]. Cilia are the other swimming
means exclusively for Ciliate structurally identical to
eukaryotic flagella, but in general shorter and present in
larger numbers, with a more difficult undulating pattern
than flagella [2]. Another possible way of swimming
of unicellular organisms relies on non-reversible cyclic
cell shape changes. For example it is characteristic

for protists euglenids or mammalian leukocytes [3, 4].
But each life stage of most zygnematalean green al-
gae, red algae, pennate diatoms, higher land plants,
ascomycetes and basidiomycetes are devoid of these
“transport means” [5, 6]. Thus red algae spores had
been generally considered to be non-motile, which
was especially surprising for these extremely successful
predominantly marine taxa. So Pickett-Heaps et al. [1]
taking into account sporadic reports of red algae spores
motility tried to record freshly released live spores with
time-lapse video microscopy. It was shown that only 7
of 26 investigated taxa belonging to genera Flintiella,
Glaucosphaera and Rhodospora had immobile spores.
About 15% of Sahlingia subintegra (Rosenvinge) Ko-
rnmann spores were amoeboid, that is they swam by
means of non-reversible cyclic cell shape changes.
There was considerable variation in mean swimming
speeds of the rest 18 taxa of red algae spores from 10−7

to 2.2 · 10−6 m · s−1. Most of spores of the latter taxa
moved directionally, but the spores belonging to taxa
Erythrotrichia carnea and Rhodochaete parvula moved
non-directionally. The maximal swimming velocity of
red algae spores recorded was 3.24 · 10−6 m · s−1. The
mechanism of such red algae spores motility is still
unknown, but it ensures their dissemination moving
them away from the quiescent boundary layer of their
sporangia into the turbulent flow of the surrounding
water [1, 6].

Thus, a question can be raised: how the cells are
able to swim without the flagella, cilia and the ability
to non-reversible cyclic cell shape changes? We have
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tried to answer this question taking into account that
the releasing spores are already polarized as they are
able to swim [1]. As it is known, in polarized cells
microtubules are mostly arranged symmetrically to the
cell axis like arcs with different radiuses of curvature
from the inner cell radius (close to the cell membrane)
up to infinity (along the cell axis), while their minus-
and plus-ends are clearly orientated relatively to the
cell poles [7], this is true also for brown algae zygotes
[8, 9] and for the monospores of red alga Porphyra
yezoensis [10]. Intracellular organelles are able to be
actively translocated on long-distances by means of
motor proteins, such as dynein and kinesin, which move
towards microtubule minus- and plus-ends, respectively,
with different velocities [7, 11, 12].

Ca2+-ions may decrease the relation of active kinesin
and dynein concentrations determining the direction
of a cargo movement in polarized cells [11, 13]. Not
only in animal, but also in plant cells including algae
there may take place oscillations of Ca2+ level and
bound with it oscillations of Ca2+ gradient [14, 15].
Thus the conditions are created, under which a cell
organelle may be translocated in turn towards different
cell poles with different velocities and by different
ways. In non-Newtonian fluids friction depends non-
linearly on a particle velocity [16, 17]. It allows us
to predict that during the whole cycle of intracellular
organelle oscillations the mean translocation of the cell
may be not equal zero. Rheological peculiarities of
cytosol may considerably influence such cell motility.
Thus the investigation of green alga Caenorhabiditis
elegans embryo cytoplasm streamings shows that the
cytoplasm is a Newtonian fluid [18]. Also it is re-
vealed that cytosol of many organisms including Chara
algae has viscoelastic rheological properties [19]. The
shear rate of some adherent cells depends by power
law on the constant stress quantity expressing shear-
thinning properties of their cytosol [20–22]. Thus let
us gradually consider the situation when cytosol is: 1)
a Newtonian fluid, 2) a viscoelastic Maxwell fluid, 3)
a shear thinning fluid.

II. MODEL DESCRIPTION

Let us consider the movement of a microscopic
spherical cell in unbound water. The cell encloses an
incompressible liquid homogeneous cytosol by solid
homogeneous cell wall. A spherical solid organelle
moves within the cytosol due to a locomotion force,
which also simultaneously pushes the cell in the oppo-
site direction. The locomotion force pulls the organelle
toward in turn the forward and rear poles of the cell.

The locomotion toward one cell pole when reached is
changed to the locomotion toward the other pole and
then the cycle repeats itself identically. Our goal is to
find the mean swimming velocity of the cell.

The world of microscopic particles is the world of
low ‘Reynolds number’, a world where inertia can be
neglected. It concerns also the centrifugal force as a
variety of the inertial force [23]. During intracellular
translocations of an organelle the drag force may reach
the order of 10−12 N [12, 24–27], while the particles
weights and the fluctuation force have the order not
bigger than 10−16 N. Thus we can neglect the latter as
is customary to do so in microswimmers investigations
[23, 28]. The Young’s modulus of red algae spores
walls lies within the framework of 106 to 108 Pa [29].
Young’s modulus of biological lipid bilayers at 20◦C
is not less than 106 Pa [30]. The thickness of yellow
algae cell walls is close to red algae ones and is of
order 10−7 m [31], while the total thickness of the
double membrane of a red alga rhodoplast (in red algae
cells plastids are called rhodoplasts) is of order 10−8 m
[32]. Thus under the loading of order 10−12 N the
deformations of the cell and the plastid don’t exceed
10−2 % of their dimensions. It allows us to neglect
mentioned deformations.

III. CYTOSOL AS A NEWTONIAN FLUID

Let uc be the cell swimming velocity, uo – the
velocity of the organelle, uoc – the organelle velocity
relative to the cell. Thus we have uoc = uo−uc. Let uoc
be known. Then to determine uc we need to solve for
the flow field ν and pressure p in the surrounding fluids
applying the laws of mass and momentum conservation.
As it is known, the Navier-Stokes equations express
the mentioned laws for an incompressible fluid [23,33].
At low Reynolds numbers, which characterize cellular
and intracellular biological systems the Navier-Stokes
equations can be simplified by equations:

∇σ = 0, ∇ · ν = 0, σ ≡ −p · δ + τ, (1)

where σ is the Cauchy stress tensor, τ is the viscous
stress tensor, δ is the Kronecker delta tensor. For time
independent fluids the viscous stress tensor is written
as:

τ = η
(
∇ν + (∇ν)T

)
= η · γ′, (2)

where η is the fluid viscosity, γ′ is the shear rate
tensor. When the fluid is Newtonian, equations (1) are
simplified to the Stokes equations [23]:

∇p = η∇2ν, ∇ · ν = 0. (3)
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Remark 1. Let the cytoplasm filling the cell doesn’t
slip on its inner surface and the organelle outer surface.
Analogically, let the same be said for the outside water.
The boundary conditions in that case state that the
velocities of the fluids at the wall boundaries equal the
velocities of such walls. Once ν and p are known, the
hydrodynamic force Fs acting on a sphere within a fluid
is found by integrating the Cauchy stress tensor over its
surface Si:

Fs =

∮
si

σ · ndSi, (4)

where n is the unit normal to dSi into the fluid [23].

A. The average speed of the spore swimming

The average speed of the spore swimming can be
calculated as:

U = ω · (∆xcf + ∆xcb), ω ≡ (tf + tb )−1, (5)

where ∆xcf , ∆xcb are the net motions of the cell during
forward and backward movements of the organelle,
which have duration times tf and tb correspondingly, ω
is the frequency of the organelle oscillation. The sum
of the net motions of the organelle during the whole
oscillation cycle equals 0:

∆xof + ∆xob = 0. (6)

For the finding of the net motions of the spore during
forward and backward movement of the organelle we
should integrate equation:

Ξ = − uc
uoc

(7)

with respect to the organelle coordinate relatively to the
cell center (xo).Taking into account that uocdt = dxo
we get:

∆xcf = −
∫ xo2

xo1

Ξ(xo, if )dxo,

∆xcb = −
∫ xo1

xo2

Ξ(xo, ib)dxo,

∆xof = −∆xob = xo2 − xo1 ,

(8)

where if and ib are the forward and backward unitary
organelle velocity vectors respectively: i ≡ uoc/|uoc|.
The velocities ratio Ξ is the function of: 1) the organelle
coordinate xo; 2) the organelle velocity direction i,
because in a bounded fluid, spatial homogeneity and
isotropy are broken [34]; 3) the spore and the organelle
radiuses (Rc and Ro correspondingly). According to
(1), (2), (3), σ only change its sign under simultane-
ous sign changings of the velocities ν in all points

of the fluids. Therefore according to (4) we have
Ξ(xo, i) = Ξ(xo,−i). Thus in the case, when the
organelle trajectories are the same for the forward and
backward movements, we have Ξ(xo, if ) = Ξ(xo, ib)
and according to (8) we get ∆xcf = −∆xcb so such a
cell is non-motile: U = 0.

B. The case when the forward and backward trajecto-
ries of the organelle are different

That is maximally expressed, when, for example,
the forward motion of the organelle is axisymmet-
ric (Fig. 1a), while the backward motion is orbital
(Fig. 1b). The organelle velocity direction on the be-
ginning of each stage of its movement is perpendicular
to the trajectory on the end of the previous stage.
Analogically, it is the same for the spore trajectory.

The average speed of the cell depends on the chain of
successive choices of directions of orbital motion of the
organelle. The maximal value of U is achieved in the
case when the vector of the organelle angular velocity
each time in turn changes to the opposite one. In the
case of the organelle orbital movement, there appears
a torque acting on the spore causing its trajectory to
bend.

When both considered fluids are Newtonian, the cell
velocity and the rate of the cell velocity orientation
changings is proportional to uoc. Thus the radius of
curvature of the spore trajectory Rcur is a constant dur-
ing the whole time of the organelle orbital movement
regardless of its speed (Fig. 2). According to situation
showed on Fig. 2 we have:

U =
1

2
ω · (∆xcf − 2iaRcur) · (1− cos Ψ). (9)

where ia is the unitary velocity vector of the organelle
axisymmetrical movement.

Thus for the finding of the main spore velocity U we
should find: 1) the net motion of the cell during forward
axisymmetric movement of the organelle ∆xcf ; 2) the
radius of curvature Rcur and the angle deviation Ψ of
the spore trajectory from the start position during orbital
movement of the organelle.

C. Analytical consideration of axisymmetric movement
of the organelle

Let us consider translating movement of the organelle
in a viscous cytoplasm filling the spore along the line
connecting their centers (Fig. 3). A microhydrodynamic
model for such kind of movement was carefully con-
sidered by Keh and Lee [35]. But they investigated the
case when the cavity (in our case it is the spore) was
immobile.
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(a) axisymmetric movement 
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(b) orbital movement

Fig. 1: Geometric sketch of different motions patterns of
the organelle and spore movements caused by it: (a) –
axisymmetric movement; (b) – orbital movement; + and −
are the cell poles, where the + and − microtubule ends are
concentrated; 1 is the spore wall; 2 is the organelle; 3, 4 are
the organelle axisymmetric and orbital trajectories relative to
the cell; 5, 6 are the cell trajectories; 7 is the cell drag force
FDc; 8 is the locomotion force Mc; 9 is the hydrodynamic
force acting on the inner walls of the cell caused by the
organelle movement FDc; 10 is the organelle drag force FDo.
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(a) the case when ∆xcf > 2Rcur
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(b) the case when ∆xcf < 2Rcur

Fig. 2: Geometric sketch of the trajectory of the spore move-
ment in the case when the forward motion of the organelle is
axisymmetric, while the backward motion is orbital (figures
show two series of both movements) and the vector of angular
velocity of the organelle orbital motion changes in turn to the
opposite one. S and F mark the start and finish positions
of the cell correspondingly; straight solid arrows mean the
cell trajectories during axisymmetric motion of the organelle;
curved solid arrows mean the cell trajectories during orbital
movement of the organelle; straight dashed lines mean the
radius of curvature Rcur and dashed arcs mean the angle
deviation of the spore trajectory from the start position Ψ
during orbital movement of the organelle. (a) – the case when
∆xcf > 2Rcur; (b) – the case when ∆xcf < 2Rcur .
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Fig. 3: Geometric sketch of the organelle in the spore: r1, θ1,
r2, θ2 are the spherical coordinates relatively to the centers of
the cell and organelle correspondingly; x is a point in liquid
cytosol medium; ρ and z are the cylindrical coordinates; xo
is the distance between the particles centers; Rc and Ro are
the radiuses of the spore and organelle correspondingly.

As the spore with organelle are spherical and the
cytoplasm is homogeneous, we have a system, which
is symmetrical relatively to the axis (axisymmetric
movement). In such a case for the solving of Stokes
equations (3) for the flow field, Keh and Lee [35]
proposed to construct a general solution using two
spherical coordinate systems based on the centers of
both the particle and cavity. Because of their axisym-
metric nature such solutions are independent from the
angle ϕ (That is why the angle ϕ is not presented
on the Fig. 3). On the other hand we are interested
to obtaining the components of the spatial distribution
of the fluid velocities and pressures along the axis
and perpendicularly to it. Thus we can express as the
solution of equation ∇ · ν = 0 from (1) or (3) with
the corresponding components of the cytoplasmic fluid
velocities in terms of the cylindrical coordinates ρ and
z (as it was made by Keh and Lee [35]):

νρ =

∞∑
n=1

anA
ρ
n(r1, θ1) + bnB

ρ
n(r1, θ1)

+ cnC
ρ
n(r2, θ2) + dnD

ρ
n(r2, θ2), (10)

νz =

∞∑
n=1

anA
z
n(r1, θ1) + bnB

z
n(r1, θ1)

+ cnC
z
n(r2, θ2) + dnD

z
n(r2, θ2), (11)

where r1, θ1, r2, θ2 are the spherical coordinates
relative to the centers of the cell and organelle corre-
spondingly; an, bn, cn, dn are coefficients independent
from the coordinates; we define:

Aρn(r, θ) ≡ −r−2−n(n+ 2)G
−1/2
n+2 (cos θ) csc θ, (12a)

Bρn(r, θ) ≡ −r−n(n+ 2)
(
G
−1/2
n+2 (cos θ) csc θ

−2G
−1/2
n+1 (cos θ) cot θ

)
,
(12b)

Cρn(r, θ) ≡ −rn−1
(

(n+ 2)G
−1/2
n+2 (cos θ) csc θ

−(2n+ 1)G
−1/2
n+1 (cos θ) cot θ

)
,

(12c)

Dρ
n(r, θ) ≡ −rn+1

(
(n+ 2)G

−1/2
n+2 (cos θ) csc θ

−(2n+ 3)G
−1/2
n+1 (cos θ) cot θ

)
,

(12d)

and

Azn(r, θ) ≡ −r−2−nPn+1(cos θ), (13a)

Bzn(r, θ) ≡ −r−n
(
Pn+1(cos θ)

+2G
−1/2
n+1 (cos θ)

)
, (13b)

Czn(r, θ) ≡ −rn−1
(
Pn+1(cos θ)

+(2n+ 1)G
−1/2
n+1 (cos θ)

)
, (13c)

Dz
n(r, θ) ≡ −rn+1

(
Pn+1(cos θ)

+(2n+ 3)G
−1/2
n+1 (cos θ)

)
, (13d)

where G−1/2
n and Pn are the Gegenbauer and Legendre

polynomials of order n respectively. As the particles are
homogeneous further we will consider their velocities
and the forces acting on them as scalars, which all are
the projections on the axis z (Fig. 3) or on other axes
bounded with it.

Let us consider the case, when the centers of the
particles coincide (xo = 0). Thus we have r1 = r2 = r
and θ1 = θ2 = θ in formulas (10) and (11). According
to Remark 1 and considering for sake of simplicity
that the inner and outer radiuses of the cell equal one
another, our margin conditions are:

νρ(Rc, θ) = νρ(Ro, θ) = 0,

νz(Rc, θ) = uc, νz(Ro, θ) = uoc,
(14)

for any possible θ. To solve this system, it is enough
to set only the four coefficients with n = 1. The other
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ones equal zero. Thus according to (10)–(14) we get:

a1 =
(1− λ3)R3

o

2G
uoc, (15a)

b1 = −3(1− λ5)Ro
2G

uoc, (15b)

c1 = − (4λ5 + 5λ2 − 9)λ

4G
uoc − uc, (15c)

d1 = −3(1− λ2 )λR−2
c

4G
uoc, (15d)

where we define:

G ≡ 1− 9

4
λ+

5

2
λ3 − 9

4
λ5 + λ6, λ ≡ Ro

Rc
. (15e)

According to Newton’s 3rd law the locomotion force
acting on the cell Mc is opposite to the locomotion
force acting on the organelle Mo and equals the or-
ganelle drag force FDo:

Mc = −Mo = FDo. (16)

The difference between the locomotion force and the
hydrodynamic force acting on the inner walls of the
cell caused by the organelle movement FDh should be
equilibrated by the cell drag force FDc (Fig. 1a):

FDc = Mc − FDh = FDo − FDh. (17)

In the case when the viscosity of the outer fluid
equals zero (ηw = 0) the cell drag force FDc equals
inner friction force, which according to the Stokes equa-
tions (3) is proportional to cytosol viscosity ηc, the cell
radius Rc and the cell velocity uc. In the case ηc = 0
according to Stokes law, we have FDc = −6πucRcηw.
Thus we get:

FDc = −6πucRc(ηw + ϑηc), 0 < ϑ = const. (18)

Therefore taking into account (17) we have:

6πucRc(ηw + ϑηc) = FDo − FDh. (19)

In the general case when the particles centers don’t
coincide, the summary hydrodynamic force acting on a
sphere in the cytosol depending on its radius F (r) is
determined by the formulas (3), (4), (10)–(14) can be
expressed by the polynomial with infinite array of the
coefficients a1, . . . an, b1, . . . bn, c1, . . . cn, d1, . . . dn.
In the case when the particles centers coincide, accord-
ing to these equations, F (r) can be expressed analyti-
cally by the polynomial with only the four coefficients
a1, b1, c1, d1 determined by formulas (15a)–(15d):

F (r) = −6πηc

(
Rouoc + 2a1r

−2

+
3

2
b1 + c1r +

1

3
d1r

3

)
. (20a)

For r = Ro it equals the drag force FDo and we have:

F (Ro) = FDo = −6πηcRo

(
1− λ5

G
uoc − uc

)
.

(20b)

When r = Rc it equals FDh and we get:

F (Rc) = FDh = −6πηc

(
Rouoc

+
1− λ5

G
Rouoc −Rcuc

)
. (20c)

Therefore in the case when the cell and organelle
centers coincide according to (7), (19), (20b) and (20c)
we have:

Ξ0(λ, ξ) =
λ

ξ + 1 + ϑ− λ
, ξ ≡ ηw

ηc
. (21a)

In the case when ξ → 0 and λ → 1 according to
the laws of mass and momentum conservation we have
Ξ0 → 1. Taking it into account and according to (21a),
we determine that ϑ = 1 and thus we have:

Ξ0(λ, ξ) =
λ

ξ + 2− λ
. (21b)

Since 0 ≤ ξ ≤ 1 and 0 < λ < 1, the function Ξ0(λ, ξ)
weakly increases with the decreasing of ξ → 0, but
strongly decreases with the decreasing of λ→ 0.

D. Some important approximations

As mentioned, in confined systems friction of a
spherical particle is anisotropic [34], excluding the cen-
ter of a symmetric spherical cavity. Generally, the drag
force for axisymmetrical movement in immobile cavity
cannot be expressed analytically, as consequence of the
infinite array of the coefficients a1, . . . an, b1, . . . bn,
c1, . . . cn, d1, . . . dn. According to [35] the drag force
can be approximated as:

FDo(uoc, xo) ∼ FDo(uoc, 0) (22a)

within wide diapason of λ under the condition:

|xo|
Rc −Ro

<
1

2
. (22b)

As shown by Villa et al. [34], the viscous drag of the
spherical particle moving parallel to infinite non-slip
plane is always lower than of the corresponding particle
moving perpendicular, taken at the same distance from
the plane. It allows us to state that within the same
interval (22b) an approximation (22a) is also valid
for the organelle movement in different directions (for
example the axisymmetrical Fig. 1a and orbital Fig. 1b
movements). All these cases we can interpret as the
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organelle movement parallel to the axis z in Fig. 3,
but on certain distance from the axis z. Analogically,
let the same be valid not only for immobile cavity, but
also for a free cell in unbound water. Similarly, we can
assume that under the condition (22b), the following
approximations are valid for our model spore:

FDo(uoc, xo, L) ∼ FDo(uoc, 0, 0), (22c)
FDh(uo, xo, L) ∼ FDh(uo, 0, 0), (22d)
FDc(uc, xo, L) ∼ FDc(uc, 0, 0), (22e)

where L is the distance between the axis z and the
axis along which the organelle moves, so that (22b)
becomes: √

x2
o + L2

Rc −Ro
<

1

2
. (22f)

Now let us consider the case when the organelle is
outside the region (22f).

Let us define χ(xo, L) ≡ FDo(0,0)
FDo(xo,L) . As the hydro-

dynamic force FDh is the cause of the organelle drag
force dissipation throughout the cell, we can generally
assume that χ(xo, L) ∼ FDh(0,0)

FDh(xo,L) . Let us use formulas
(20b) and (20c) as an approximation, right hand sides
of which are multiplied by χ−1 and also formula (19).

Now let us determine according to the laws of mass
and momentum conservation as after (21a) that χϑ = 1.
Thus we can approximate the velocity relation in such
way:

Ξ(xo, L) ∼ λ

χ(xo, L)ξ + 2− λ
. (23a)

Let an approximation (23a) be valid for the axisymmet-
rical movement Ξa = Ξ(xo, 0), χa = χ(xo, 0), as well
as for the orbital one Ξor = Ξ(0, L), χor = χ(0, L).
The aim of our study is only to evaluate the order
of the cell swimming velocity. According to formulas
(8), (23a), and also to the numerical data shown in
[35], the net motion of the cell during axisymmetrical
movement of the organelle with the margin points
equaling xo1 = −xo2 = − 1

2∆xo can be approximated
as:

∆xc ≈ −
λ

χaiξ + 2− λ
∆xo,

χai ≡ 1− 1

3

(
|∆xo|
Rc −Ro

)5

. (23b)

For the sake of simplicity, sometimes further we will
consider the organelle movement satisfying condition
(22f), so that according to (23b) and [34] the velocity
relation Ξ remains constant and is independent from the
movement direction. Therefore, in that case according

to (8) the net motion of the spore cell ∆xc during the
net motion of the organelle ∆xo approaches:

∆xc ≈ −Ξ0 ·∆xo. (23c)

E. The case of the organelle orbital movement

In the absence of rotational motion of the particle
according to (5), (8) and (23c), under the condition
(22f) the average speed of the spore swimming always
equals zero. Now let us consider the organelle orbital
movement. It causes the spore rotational motion and
thus the bias of the inertial coordinate system for the
organelle, so that equations (8) are invalid. Therefore,
in the case when the forward motion of the organelle
is axisymmetric, while the backward motion is orbital,
the average speed of the spore swimming should be
calculated only according to formula (9).

We already found ∆xc from (23b) and (23c). Now
we are interested in finding the radius of curvature Rcur
and the angle deviation Ψ of the spore trajectory from
the start position. The radius of curvature of the cell
trajectory during the organelle orbital movement Rcur
can be written as:

Rcur =

∣∣∣∣ uc
Ωoc + Ωc

∣∣∣∣ , (24a)

where Ωoc is the angle velocity of the organelle orbital
movement relative to the spore cell, Ωc is the angle
velocity of the cell. The angle deviation Ψ of the spore
trajectory from the start position can be found as:

Ψ =

∫ tb

0

(Ωoc + Ωc)dt. (24b)

Also, Ωoc is determined as:

Ωoc =
2uoc
∆xo

≈ − 2uc
Ξor∆xo

. (25a)

If Ωc = 0 and taking into account that during the orbital
movement χor and Ξor are constant, then according to
(23a), (24a), (25a), we have 2Rcur = Ξor|∆xo| and
Ψ = π. But in real systems, due to the organelle orbital
movement, there appears viscous torque TDc causing
rotation movement of the cell, so that we always have:

Ξor|∆xo| < 2Rcur, −1 <
Ωc
Ωoc

< 0. (25b)

This fits Fig. 2b. Let us try to find Ωc. Using analogical
arguments as for formula (19) (see Fig. 1b) we can
express the cell viscous torque as:

TDc = −8π(ηw + ϑ̃ηc)ΩcR
3
c ,
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where ϑ̃ > 0 is analogical to ϑ for formula (19); the
organelle drag torque:

TDo ≡
1

2
FDo∆xo,

which appears due to the organelle binding with
cytoskeletal structures; and the hydrodynamic force
torque:

TDh ≡
∫
S1

r1 × (σ · n)dS1, (25c)

where integrating is done with respect to the cell inner
surface. Thus Ωc can be written as:

Ωc =
1
2FDo∆xo − TDh
8π(ηw + ϑ̃ηc)R3

c

. (25d)

According to formulas (10)–(14) it is not possi-
ble to express analytically TDh by using equations
∇p = η∇2ν from (3), σ ≡ −p · δ + τ from (1) and
formula (25c). Numerical data of computer calculation
of the hydrodynamic torque appearing during the orbital
movement of the particle in a cavity is also absent.

Because the hydrodynamic force FDh is a conse-
quence of the drag force dissipation throughout the cell,
the relation

1
2FDh∆xo

TDh
may be considerably bigger than

1. If λ ≥ 1
2 according to the definition of G and λ

from formula (15e) we have 1−λ5

G � 1. According to
it and to formulas (20b), (20c), (25a), (25c) and to the
written after formula (22f), in the case when ξ < 1, the
relation

∣∣∣ Ωc

Ωoc

∣∣∣ may be not very small, and Ξor|∆xo|
considerably differs from Rcur.

Let us try to make an analytical approximation of
Rcur at once without using the expression for Ωc.
When the spore is in vacuum ηw = 0, Newton’s 3rd
law guarantees that U = 0. If λ → 0, then we have
Rcur = 0. When ξ → 0 and λ → 1 according to
the laws of mass and momentum conservation we get
Rcur → 1

2 |∆xo| and Ψ → π. Taking these conditions
into account and also (9), (23b), we find approximations
for Rcur and Ψ as:

Rcur ∼
1

2
Ξorb|∆xo|, (26a)

Ψ ∼ Ξor
Ξorb

π ∼ κχorξ + 2− λ
χorξ + 2− λ

π, (26b)

where we define Ξorb analogically to (23a):

Ξorb ≡
λ

κχorξ + 2− λ
(26c)

and 0 < κ ≤ 1 is a decreasing function of |∆xo|.
Let us consider the organelle orbital movement close

to the cell wall, when |∆xo|
Rc−Ro

∼ 1. According to the

numerical data shown in [34], and taking into account
(26a), (26c), and also that the value of the organelle
orbital movement drag force is more higher than of
the free particle near plane wall, formula (26a) can be
rewritten as:

Rcur ≈
1

2

λ

2− λ
|∆xo|. (27)

For its axisymmetrical movement under analogical con-
ditions according to (23b) we get:

∆xc ≈ −
λ

2
3ξ + 2− λ

∆xo. (28)

Applying (26b), (27), (28) to (9) we obtain:

U ≈ ωλ∆xof

(
(2− λ)−1 −

(2

3
ξ + 2− λ

)−1
)
.

(29a)

In the case when the average modules of the organelle
velocities uavm = ω∆xo on both stages of the os-
cillation cycle equal each other, formula (29a) can be
rewritten:

U ≈ Y · uavm, (29b)

Y ≡ λ
(

(2− λ)−1 −
(1

2
ξ + 2− λ

)−1
)(1

2
π + 1

)−1

,

The size relation between red algae rhodoplasts and the
cells λ is relatively high and may exceed 0.5 [36]. Let
us have 0.4 ≤ λ ≤ 0.7 for our model spore. It was
also established that viscosity ratio between water and
the cytosol of green alga Chara coralline was about
0.8 [37], while for red blood cells such a ratio didn’t
exceed 0.2 [38]: let 0.2 ≤ ξ ≤ 0.8.

Like Ξo(λ, ξ), the function Y (λ, ξ) on the mentioned
interval, 0.4 ≤ λ ≤ 0.7, 0.2 ≤ ξ ≤ 0.8, strongly de-
creases with the decreasing of λ, but weakly decreases
with the decreasing of ξ: 0.01 ≤ Y ≤ 0.1. It means
that the advantage in swimming speed first of all have
the cells with bigger organelles under fixed cell size.

The cells with lower cytosol viscosity also have
some advantage. Intracellular velocities of organelles
investigated reached 10−5 m · s−1 [12, 25]. Thus, in
the case when the cytoplasm has Newtonian properties,
the model may satisfy experimental data. Amplitude of
such organelles oscillations |∆xo| plays the key role:
our data for Y were calculated in the case of maximal
possible amplitude |∆xo|

Rc−Ro
∼ 1. In the case of smaller

amplitude, according to formula (26a) and taking into
account the data shown in [34], [35], Y may be lower.

From this section also follows that the spores with
Newtonian cytosol don’t swim in a straight line.
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IV. CYTOSOL AS A VISCOELASTIC MAXWELL FLUID

The simplest way of describing a viscoelastic fluid
is with the Maxwell model, which can be written as:

τ + l · ∂
∂t
τ = η

(
∇ν + (∇ν)T

)
= η · γ′, (30)

where l is the relaxation time, η is the constant zero
viscosity [17]. Substituting equation (30) for the viscous
stress tensor into the general momentum conservation
equation for an incompressible fluid at low Reynolds
numbers (1) we obtain:

∇p = η∇2ν− l · ∂
∂t
τ, ∇ · ν = 0. (31)

According to (4), (30) and (31), the expressions for
FDcm(uc), FDom(uc, uoc), FDhm(uc, uoc), TDcm(uc)
for the Maxwell cytosol can be written by the ex-
pressions (18), (20b), (20c), (24a) for corresponding
quantities for the Newtonian cytosol:

FDcm(uc) = FDc(uc)− l · FDc(u̇c), (32a)
FDom(uc, uoc) = FDo(uc, uoc)− l · FDo(u̇c, u̇oc),

(32b)
FDhm(uc, uoc) = FDh(uc, uoc)− l · FDh(u̇c, u̇oc),

(32c)
TDcm(uc) = TDc(uc)− l · TDc(u̇c), (32d)

TDhm(uc, uoc) = TDh(uc, uoc)− l · TDh(u̇c, u̇oc),
(32e)

where u̇c ≡ duc

dt , u̇oc ≡ duoc

dt and we set ηw = 0 for
the expressions of the functions FDc(u̇c) and TDc(u̇c).

According to (3), (4) and (31) all functions in (32a)–
(32e) are linear relatively to uc and uoc on the whole
interval of |∆xo|

Rc−Ro
and i. Thus according to (17), (18),

(32c) equation (7) transforms into:

uc = −Ξuoc + fu(u̇c, u̇oc), (33)

where fu(u̇c, u̇oc) is a linear unambiguous function of
u̇c, u̇oc with fu(0, 0) = 0. Integrating (33) according
to (7) we get:

∆xcfm + ∆xcbm = ∆xcf + ∆xcb

+ fu
(
uc
∣∣tf+tb

0
, uoc

∣∣tf+tb

0

)
, (34a)

∆xcfm = ∆xcf + fu
(
uc
∣∣tf
0
, uoc

∣∣tf
0

)
, (34b)

where ∆xcfm, ∆xcbm are the net motions of the cell
during direct and reversal movements of the organelle
in viscoelastic cytoplasm, while ∆xcf , ∆xcb are the
net motions in analogical conditions, but in Newtonian

cytoplasm.1 As the organelle movement in our model
is periodical, then we always have uc|tf+tb = uc|0
and uoc|tf+tb = uoc|0.2 Thus the third term on the
right hand side of (34a) equals zero. It means that in
the case of the organelle axisymmetrical oscillations in
viscoelastic cytoplasm the cell is immotile.

According to (25a), (25d), (32a)–(32e) and taking
into account the written before formula (32e), we can
write:

Ωocm + Ωcm = Ωoc + Ωc + fΩ(u̇c, u̇oc), (35a)

where fΩ(u̇c, u̇oc), analogically to fu, is a linear un-
ambiguous function of u̇c, u̇oc with fΩ(0, 0) = 0.
According to (35a) formula (24a) for the radius of
curvature of the cell trajectory with the Maxwell cytosol
Rcurm can be rewritten as:

Rcurm =

∣∣∣∣ uc
Ωc + Ωoc + fΩ(u̇c, u̇oc)

∣∣∣∣ , (35b)

where Φ > 0 is a constant. Therefore in the case when
the forward motion of the organelle is axisymmetric,
while the backward motion is orbital, the trajectory of
the cell will be similar with that showed on Fig. 2b with
an only difference – the arcs of the cell trajectories dur-
ing the organelle orbital motion will be more flattered
or convex depending on the stage of the motion. Thus
for the main swimming velocity Um in the Maxwell
fluid, formula (9) can be written as:

Um =
1

2
ω · (∆xcfm −Rendcurm −Rbegcurm)(1− cos Ψm),

(36a)

where Ψm is the angle deviation of the spore trajectory
with the Maxwell cytosol from the start position during
orbital movement of the organelle, Rbegcurm and Rendcurm

are the beginning and the end radiuses of curvature of
the cell trajectory, correspondingly. According to (35a)
and analogically with (34b) we can write:

Ψm = Ψ + fΩ(uc|tf − uc|0, uoc|tf − uoc|0). (36b)

It is natural to consider that at the beginning and the
end of each motion stage uoc = u̇oc = 0 and thus
uc = u̇c = 0. According to (34b), (35b) and (36b), we
have ∆xcfm ≈ ∆xcf , Rendcurm = Rbegcurm = Rcur and
Ψm = Ψ. According to (36a) the average swimming
speed of the model spores with the Maxwell cytosol is
close to that of the Newtonian one Um ∼ U and can
be evaluated according to formulas (29a) and (29b).

1Notation uc|
tf+tb
0 means that the vector uc is evaluated at tf +tb

and from that value is subtracted the same vector evaluated at zero.
2Notation uc|tf+tb means that the vector is evaluated at tf + tb.
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So as for the Newtonian cytoplasm, for the Maxwell
one the model cell swimming velocities may satisfy
experimental data.

V. CYTOSOL AS A SHEAR THINNING FLUID

The shear thinning fluid differs from Newtonian one
in the way that its apparent viscosity decreases with
increasing of the shear rate. The most of the time-
independent, non-Newtonian biological fluids reported
including cytoplasm of certain cells have shear thinning
properties. Most of them demonstrate power law depen-
dence with the power law index n < 1 [16,17,20,39]:

τ = k · γ̇n, (37)

where γ̇ is shear rate, k is the consistency index, which
equals the fluid viscosity when its shear rate is 1 s−1.
According to (2) and (37):

η = k · γ̇n−1. (38)

Taking into account that the particles radiuses are of the
same order, for such a fluid we can assume that shear
rate is independent from coordinates and in each point
equals the mean shear rate:

γ̃ ≡ |uoc|
Rc −Ro

. (39)

Then the cytosol viscosity ηc according to (38) and (39)
has such a form:

ηc = k · γ̃n−1. (40)

According to (40) ηc is independent from coordinates.
Therefore, for our model shear thinning cytosol formu-
las (1)–(23c) are also valid.

When n 6= 1, then according to (21a), (21b), (40)
the velocities ratio Ξ depends on uoc. If the time
dependence of the forward and backward velocities
of the organelle differ with one another according to
(5), (8), (21a), (21b), (39) and (40) the cell has an
opportunity to swim: it may be the case when Us 6= 0.

Let the organelle velocities of the forward and back-
ward movements uof , uob and thus the mean shear rates
γ̃f , γ̃b be as unambiguous functions of coordinates xo
of the organelle. Let also the amplitude of the organelle
oscillations satisfy the condition (22b). Then to avoid
complicated integration of equation (7) and taking into
account (23a)–(23c), the net displacement of the cell
can be written in a simplified form:

∆xcfs = − λ

〈ξf 〉+ 2− λ
∆xof ,

∆xcbs = − λ

〈ξb〉+ 2− λ
∆xob,

(41)

where

〈ξf 〉 ≡
ηw

k〈γ̃f 〉n−1
, 〈ξb〉 ≡

ηw
k〈γ̃b〉n−1

,

and 〈γ̃f 〉, 〈γ̃b〉 are averaged mean shear rates of cytosol
during the forward and backward movements of the
organelle. We can assert that:

〈γ̃f 〉 = γ̃(x̃of1) = γ̃(x̃of2),

〈γ̃b〉 = γ̃(x̃ob1) = γ̃(x̃ob2),
(42)

where x̃of1 , x̃of2 , x̃ob1 , x̃ob2 are coordinates of the
organelle satisfying conditions:

R2 −R1 < x̃of1 < 0 < x̃of2 < R1 −R2,

R2 −R1 < x̃ob1 < 0 < x̃ob2 < R1 −R2.

Let us assume that:

x̃of1 ≈ x̃ob1 , x̃of2 ≈ x̃ob2 . (43)

Let ζ ≡ uof

uob
be a constant for all possible xo. Thus

taking it into account, and also (42), (43), we can write:

ζ ≈ 〈γ̃f 〉
〈γ̃b〉

. (44)

Therefore, according to (5), (41), (44), and the ap-
proximation Us ≈ Ys · uesv in (29b), where uesv
plays the role of an experimentally stated organelle
velocity in one direction (in contrary to the assuming
of the equality of the forward and backward organelle
velocities for formula (29b)):

Ys ≈ λ ·
(
(ξ̃ + 2− λ)−1 − (ξ̃ζn−1 + 2− λ)−1

)
, (45)

where ξ̃ is an experimentally stated value of ξ. Like
for the Newtonian or Maxwell cytosol, the average
swimming speed of the model spore with shear rate
cytosol Us strongly increases with the increasing of λ
(it means that the advantage in the swimming have
the cells with bigger organelles). As the Newtonian
U or Maxwell Um cytosol, the shear rate cytosol Us
weakly increases with the increasing of ξ̃ on the interval
0.2 ≤ ξ̃ ≤ 0.8, 0.4 ≤ λ ≤ 0.7 (the advantage
in the swimming have the cells with lesser viscous
cytosol with lower consistency index k). It also weakly
increases with the decreasing of n (for n < 1) and ζ.

Therefore, the advantage have the cells with lower
power-law index n (higher expressed cytosol shear
thinning properties) and higher expressed organelle
oscillation asymmetry ζ. The relation of stall forces
(which are close to maximal forces created by both
motor proteins, that is ζ) of dynein and kinesin in
different investigations falls between 0.14 – 0.38 [40]:
0.14 ≤ ζ ≤ 0.38.
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Let our model cytosol exhibit shear-thinning proper-
ties with n within the range from 0.35, as it was shown
for cytoplasm of Entamoeba histolytica [39], to 0.5, as
was shown for human neutrophils [20]: 0.35 ≤ n ≤ 0.5.
In such a situation 0.023 ≤ Ys ≤ 0.164. These results
also satisfy experimental data.

VI. DISCUSSION

The three variants of considered hydrodynamic pe-
culiarities of the cytosol – Newtonian, Maxwell, shear
thinning – completely satisfy the framework of in-
vestigated swimming speeds of red algae spores from
10−7 to 10−6 m · s−1 [1]. The possible swimming
speed diapason of the model spores with shear thinning
cytoplasm is slightly shifted up compared to Newto-
nian or Maxwell cytosol, as seen from the compari-
son of the corresponding sections. As was shown by
the mentioned authors, such red algae taxa as Ery-
throtrichia carnea and Rhodochaete parvula move non-
directionally. It completely satisfies our model spores
with Newtonian or Maxwell cytosol, which trajectory
is not a straight line. As it was shown, the fast spores
move directionally [1]. In the framework of our model,
it means that they have shear thinning cytosol and
their organelles move axisymmetrically with different
velocities forward and backward. In that case, the red
algae species with the fast spores should have values of
the relation between the organelle and cell sizes λ no
less than 0.5 and the main cytoplasm viscosity close to
water viscosity ξ̃ ∼ 0.8, or a low ratio of the forward
and backward velocities of the organelles ζ < 0.2.
While the cells, which swim slower, may have smaller
organelles, they have higher main cytoplasm viscosity
or higher ζ.

Contrary to the Newtonian and Maxwell cytosol,
swimming velocity of the cells with shear thinning
cytosol does not depend on the amplitude of the or-
ganelle oscillations. It means that in the latter case the
organelles may move on small distances, while in both
previous ones to reach the appropriate cell speed the
organelles should move throughout the whole cell.

In order for our model cells to swim, the momentum
of the organelle (generated by the molecular motors)
needs to be asymmetrically transmitted to the external
viscous fluid. Thus, when the spore is in vacuum, New-
ton’s 3rd law guarantees that movement of the organelle
around inside the cell can not produce propulsion, no
matter what the rheological properties of the cytosol
are. Formulas (29b) and (45) confirm the already men-
tioned above: we have ξ = ξ̃ = 0, Y = Ym = Ys = 0,
U = Um = Us = 0.

So, we can conclude that, though do not studied yet,
the organelle asymmetrical oscillations may serve as a
possible means for red algae cell swimming. This model
may inspire new researches in this field.

VII. CONCLUSIONS

1) Red algae spores may swim thanks to oscillations
of their organelles.

2) The spores with Newtonian or Maxwell cytosol
may swim only if the forward and backward
organelle movements have different trajectories.
The spores with shear thinning cytosol may swim
also in the case when the organelles oscillate
axisymmetrically, but with different velocities
forward and backward. Such spores may swim
in a straight line.

3) The swimming of the model spores completely
satisfy experimental data.
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