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Abstract: Massive and excessive use of nitrogen fertil-
izers and sustained irrigation have been widely practiced
in recent years. This strategy leads to a large transfer
of nitrates to groundwater, leading to a major envi-
ronmental problem of nitrate contamination in water,
intended for drinking water consumption. One of the
most effective solutions is the degradation of nitrites and
nitrates, into gaseous nitrogen, using the heterotrophic
bacteria during the denitrification process. In this paper,
we present and study a mathematical model of the
biodenitrification process taking into account the fixed
and mobile bacteria. This process is modeled by a system
of ordinary differential equations and requires the success
of bacteria to colonize the reactor. We study the existence
and the asymptotic behaviour of the solution. We show the
existence of a value of the injected carbon concentration
from which we ensure the success of the biodenitrification
process and we propose a heuristic algorithm which serves
to control the biodenitrification process over time. Finally,
we present some numerical simulations in to support the
theoretical results.

Keywords: Bioprocesses, Biodenitrification, Ordinary
differential equations, Asymptotic behavior

I. INTRODUCTION

Food safety and environmental protection are two
key issues in nowadays societies. Due to a remark-
able increase of the world population and in order to
increase the yield of agricultural production, massive
and excessive use of nitrogen fertilizers and sustained

irrigation have been widely practised in recent years.
This strategy leads to a large transfer of nitrates to
groundwater, leading to a major environmental problem
of nitrate contamination in water, intended for drinking
water consumption. However, the natural environment
can offer a possibility of remediation. One of the
most effective solutions is the degradation of nitrites
and nitrates, into gaseous nitrogen, is the use of het-
erotrophic bacteria during the denitrification process.
This process is characterized by the fact that when the
oxygen concentration is negligible, it will be replaced
by oxidized nitrogen (NO2 and/or NO3) which is the
best electron acceptor after oxygen so the biodenitrifica-
tion process can be described as a respiratory process
in which denitrifying bacteria use nitrates instead of
oxygen as an acceptor of electrons [1–3]. It generally
takes place under conditions, called anoxic, intended
to provide energy for cell activity and the synthesis of
new cells [4–6]. Successful biodenitrification process
requires that the nitrate should be considered in the
modeling as a limiting compound [7].

In [8], the authors studied the dynamics of potassium
in the rhizosphere of the wheat root in the presence and
in the absence of a biophysical source and they showed
that the presence of bio-fertilizer leads to significant
changes in potassium concentration in the rhizosphere
of the wheat root. In [9], the authors proposed a
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mathematical model to study the effect of water flux on
nitrate dynamics in the rhizosphere of a single maize
root taking into account important mechanisms such as
diffusion and mass flux of solutes in the rhizosphere.

Charpentier et al. [10] modeled the Trichloroethylene
(TCE) biodegradation process where they considered
two types of bacteria, the first one degrades the contam-
inant while the second forms a biobarrier to prevent the
contamination from infiltration into groundwater. They
gave four spatialized models according to the consump-
tion of the nutrient by the two types of bacteria. In [11]
Charpentier et al. gave numerical simulations of several
types of collaboration of two types of bacteria to control
pollutants.

Recent theoretical and experimental studies on bio-
films [12–14] confirm that the growth of bacteria on
the walls can be a serious problem for bioreactors
and fermenters and have fundamental implications for
natural environments. But in biodegradation processes,
colonization of the reactor by bacteria can be useful
for the results obtained. Freter et al. [15,16] confirmed
that adherent bacteria play an important role in the
observed stability of the microflora of the mammalian
large intestine to colonization by invading organisms.

Chatelier [17] conducted an experimental study for
the assembly of an in situ biological denitrification unit,
taking advantage of this self-purifying potential of the
natural environment. By using an experimental device,
he evaluated the effect of the formation of the biofilm
on the surface of the aquifer, on the hydrodynamic
properties of the initial medium. It also conjectured
on the type of carbonaceous substrate to be used to
ensure high denitrification yields. For biodegradation
processes, adherent bacteria also play an important role
for the evolution of bacteria in the reactor because free
bacteria can be influenced by the flow rate.

As a generalization of Freter’s model, we find in
[18–22] different models of bacterial attachment to
walls, in the context of competition for the same
substrate and a limited colonization site. F. Chevron [2],
during the experiments, has confirmed the existence
of free bacteria in the reactors which accelerated the
biodenitrification. M. Ballyk et al. [18] analyzed the
case of a single strain of bacteria for the general model
given by Ballyk et al. [19] they have shown that there
are two possible steady state regimes, the first is the
total leaching of bacteria from the reactor(washout)
and the second is the successful colonization of the
reactor by the bacterial strain. They have shown that
one of these regimes is stable under conditions related
to system parameters.

In [7], the authors presented a model of the bio-
denitrification process taking into account the limita-
tion of the kinetics by both the carbon source and
the oxidized nitrogen, without studying the asymptotic
behavior. This model concerns a single type of bacteria
growing on nitrate, which splits into adherent bacteria
or free bacteria in the liquid. The main objective of
the present paper is to presenet a mathematical model
of the biodenitrification process, taking into account
both the fixed and mobile bacteria, and to give deeper
insights and predictions on the evolution of bacteria and
substrates involved, and consequently their exploitation
in heuristic and/or optimal control algorithms.

The paper is organized as follows. In the next section,
model and assumptions are presented and discussed.
Then, the dynamics are mathematically analyzed in the
following section. In particular, we show that there
exists a value of the injected carbon concentration
from which we ensure the success of the biodenitri-
fication process. Finally, we perform some numerical
simulations in agreement with the theoretical results
and we propose a heuristic algorithm to control the
biodenitrification process.

II. MATHEMATICAL MODEL

In order to describe the mathematical model that gov-
erns the water biodenitrification process, we consider
that the reactor contains nitrified water, denitrifying
bacteria and nutrients. The bacteria in the reactor are
divided into two categories: a first type which adhere
to the walls of the reactor with a maximum value
denoted by ω∞, forming a biofilm, denoted by bf , and
a second type which remain mobile and free floating,
called planktonic cells and denoted by bm.

The evolution of each type of bacteria is given by
the following equation (see [23])

dbi(t)

dt
=

(
µi(S)−Ki

)
bi(t), for i = m, f, (1)

where bi(t) and S(t) represent respectively the concen-
trations of bacteria and substrate at time t. Symbols Ki

and µi are successively the loss coefficient (mortality,
change of category, ...) and the specific growth rate
which will be described later.

These denitrifying bacteria react with the contami-
nant nitrate, considered as an electron acceptor, its con-
centration will be denoted by SN . Moreover, bacteria
also need carbon for its growth, its concentration will
be denoted by S. The input substrate concentrations
of S and SN are respectively Sin and Sin

N , and we
consider that denitrified water is extracted at the outlet
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of the reactor. Based on the fundamental relations of
biological kinetic (that are the growth rate of bacteria
and the use rate of the substrate), the evolution of the
concentrations S and SN , is governed respectively by
the following equations [23]:

dS(t)

dt
= (Sin − S(t))dS

− 1

Ym
bmµm(·)− 1

Yf
γ−1bfµf (·), (2)

dSN (t)

dt
= (Sin

N − SN (t))dSN

− R

Ym
bmµm(·)− R

Yf
γ−1bfµf (·), (3)

where Ym and Yf are successively the yield coefficient
of mobile bacteria and adherent bacteria. Parameters
R, dS and dSN

represent respectively the degradation
rate of nitrates, the substrate dilution rate and the
nitrate dilution rate. Symbol γ represents the conversion
coefficient from volume density to areal density. It can
be considered as the ratio between the surface and
the perimeter of a section of the domain in the flow
direction [18].

Generally, the evolution of the bacteria bf and bm
depend on each other. In what follows, we describe and
introduce this interdependence.
• Case f . We take firstly the equation (1) governing

the fixed bacteria i.e. i = f , and we consider that the
loss coefficient Kf is the sum of both the mortality
rate, denoted kf , and the term corresponding to
the detachment rate of these bacteria from surfaces,
denoted by β, then we have

Kf = kf + β. (4)

In agreement with [15] and [16], only a proportion
of the daughter cells of the fixed bacteria find place
on the surface of the reactor, the rest of cells will be
evacuated into the liquid.
Let us consider the variable b̄f defined by

b̄f (t) :=
bf (t)

ω∞
. (5)

The first proportion of daughter cells is a function of
b̄f (see [15]), denoted by G(b̄f ). In what follows we
use the Freter’s formula (see [16]), given by

G(X) =
1−X

a+ 1−X
, (6)

where a is a very small constant. Therefore, the
growth rate of the fixed bacteria in the evolution
equation (1) will be multiplied by the proportion

G(b̄f ). Taking into account these improvements,
from (1)-(6)-(4) we get

dbf (t)

dt
=

(
µf (·)G(b̄f )− kf − β

)
bf (t). (7)

In addition, a portion of planktonic bacteria can be
attached to surfaces with a rate α. Therefore, the term
αbm will be added to the equation (7) as source term.
We consider (1 − b̄f ) as the availability of the
adhesion surface and we introduce γ the conversion
coefficient of the volume density into a surface den-
sity. Taking into account these progress, the equation
(7) becomes

dbf (t)

dt
=

(
µf (·)G(b̄f (t))− kf − β

)
bf (t)

+ α
(
1− b̄f (t)

)
γbm(t). (8)

• Case m. Moving to the mobile bacteria, similarly
to the previous case, we consider that the loss coeffi-
cient Km is the sum of both the mortality coefficient,
denoted by km, the dilution coefficient denoted by
d and the attachment coefficient of mobile bacteria
denoted by α i.e. Km = km + α+ d. The evolution
equation (1) of bm becomes

dbm(t)

dt
=

(
µm(·)− km − α− d

)
bm(t).

In addition, the following modelling improvements
will be introduced to this equation. The source term
corresponding to the surface concentration of the
detached fixed bacteria, multiplied by the conver-
sion coefficient, will be considered and denoted by
γ−1βbf . The concentration of bacteria which do not
find a location to attach themselves will be taken into
account and denoted by the term: bf (t)γ−1µf (·)(1−
G(b̄f (t))). We obtain

dbm(t)

dt
=

(
µm(·)− km − α− d

)
bm(t) (9)

+ γ−1bf (t)

(
µf (·)(1−G(b̄f (t))) + β

)
.

Finally, from the equations (8), (9), (2) and (3)
we obtain the following system (10) describing the
evolution of the quantities (bf , bm, S, SN ) of the
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biodenitrification model:

dbf (t)

dt
=

(
µf (·)G(b̄f (t))− kf − β

)
bf (t)

+ αγ(1− b̄f (t))bm(t),

dbm(t)

dt
=

(
µm(·)− km − d− α(1− b̄f (t))

)
bm(t)

+

(
µf (·)(1−G(b̄f (t))) + β

)
γ−1bf (t),

dS(t)

dt
= (Sin − S(t))dS −

(
µm(·)
Ym

)
bm(t)

−
(
µf (·)
Yf

γ−1

)
bf (t),

dSN (t)

dt
= (Sin

N − SN (t))dSN
−
(
Rµm(·)
Ym

)
bm(t)

−
(
Rµf (·)
Yf

γ−1

)
bf (t).

(10)
At time t = 0, we assume that the reactor contains ni-
trified water with an initial density S0

N , mobile bacteria
with an initial density b0m, fixed bacteria with an initial
density b0f and substrate with an initial density S0:

bf (0) = b0f ,

bm(0) = b0m,

S(0) = S0,

SN (0) = S0
N .

(11)

It is natural to assume that the initial quantities of
the variables are positive

b0f > 0, b0m > 0, S > 0, SN > 0.

In what follows, we will study the existence, char-
acteristics, asymptotic behaviour of the solution and
stability of the steady states for the non-spatialized
system (10), where we assume that the concentrations
are uniformly distributed over the whole domain, given
by [7] for the purpose of generalizing the results to the
spacialized problem.

In order to simplify the presentation of the system,
we consider the following notations

bf = c1, bm = c2, S = c3, SN = c4,

and

C = (c1, c2, c3, c4).

The system (10) becomes:

dc1(t)

dt
= F1(t,C(t)),

dc2(t)

dt
= F2(t,C(t)),

dc3(t)

dt
= F3(t,C(t)),

dc4(t)

dt
= F4(t,C(t)),

(12)

where

F1(t,C) =

(
µf (c3, c4)G

( c1
ω∞

)
− kf − β

)
c1

+ αγ
(

1− c1
ω∞

)
c2,

F2(t,C) =

(
µm(c3, c4)− km − d− α

(
1− c1

ω∞

))
c2

+

(
µf (c3, c4)

(
1−G

( c1
ω∞

))
+ β

)
γ−1c1,

F3(t,C) = (cin3 − c3)dS −
(
µm(c3, c4)

Ym

)
c2

−
(
µf (c3, c4)

Yf
γ−1

)
c1,

F4(t,C) = (cin4 − c4)dSN
−
(
Rµm(c3, c4)

Ym

)
c2

−
(
Rµf (c3, c4)

Yf
γ−1

)
c1, (13)

where we have omitted (t) for readability, and
c1(0) = c01 > 0,

c2(0) = c02 > 0,

c3(0) = c03 > 0,

c4(0) = c04 > 0.

(14)

As we have mentioned before, µf and µm represent
the growth function of adherent and free bacteria,
respectively, and can obey the multiplicative formula
(see [7])

µi(c3, c4) = µi
max

(
c3

c3 +Ki
1

)(
c4

c4 +Ki
2

)
, i = f,m,

(15)
where the indices i = m and i = f designate respec-
tively free and adherent bacteria, µi

max is maximum
growth rate. The constants Ki

j , for i = m, f and
j = 1, 2, (“j = 1” relates to consumption of nutrient
and “j = 2” relates to consumption of nitrates) are in
fact the Monod’s law constants, also called the half-
saturation constants. See the profile of µi in Figure 1,
for example for µi

max = 0.7, Ki
1 = 60 and Ki

2 = 50.
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Fig. 1: Graphs of multiplicative function µi, i = f,m with
µi
max = 0.7, Ki

1 = 60 and Ki
2 = 50.

According to [7], the functions G and µi(·, ·) satisfy
the following properties – Hypothesis H1 and H2:
H1) The specific growth rate function of bacteria

µi(x, y), for i = f,m, satisfies

µi ∈ C1, µi(0, y) = µi(x, 0) = 0.

H2) The function G is bounded such that

G ∈ C1, 0 < G(0) ≤ 1, G(1) = 0.

III. ASYMPTOTIC BEHAVIOUR STUDY

Definition 1. The function F such that

F := (F1,F2, ..,Fp) ∈ C1(R+ × Rp,Rp)

with p ∈ N∗ is quasi-positive if

Fi(t, y) ≥ 0 whenever (t, y) ∈ (0,+∞)× Rp
+

is such that yi = 0, where y = (yi)1≤i≤p.

Proposition 1. Under Hypothesis H1 and H2 the
system (12) admits a nonnegative maximal solution.

Proof: Under Hypothesis H1 and H2 we have
µi ∈ C1 for i = m, f and G ∈ C1 then the functions
Fi are in C1 for i = 1, 2, 3, 4 and so Lipschitz.
Therefore, according to the Cauchy-Lipschitz theorem,
the system (12) admits a maximal solution. In addition,
the function F = (F1, F2, F3, F4) is quasi-positive
(i.e for ci = 0 for cj ≥ 0, j = 1, 2, 3, 4 we have
Fi(c1, c2, c3, c4) ≥ 0) and consequently the solutions
are nonnegative (see [24], page 3).

Proposition 2. Let (c1, c2, c3, c4) be the solution of
(13), where c0i ≤ cini for i = 3, 4. We consider the
following quantities

M1 = max

(
µf (cin3 , c

in
4 )− kf ;

µm(cin3 , c
in
4 )− km − d

)
,

M2 = min

(
µf (c3, c4)− kf ;µm(c3, c4)− km − d

)
.

Thus,
• if M1 ≤ 0, then γ−1c1(t) + c2(t) ≤ γ−1c01 + c02,
• if M2 ≥ 0, then γ−1c1(t) + c2(t) ≥ γ−1c01 + c02.

Proof: Multiplying the first equation of the system
(13) by γ−1 and then making the sum of the first and
the second equation of the system (13), we get

d(γ−1c1 + c2)

dt
= γ−1

(
µf (c3, c4)− kf

)
c1

+

(
µm(c3, c4)− km − d

)
c2.

Or the functions µf and µm are increasing, for each
variable, so

M2

(
γ−1c1+c2

)
≤ d(γ−1c1 + c2)

dt
≤M1

(
γ−1c1+c2

)
.

If M1 ≤ 0 then the function (γ−1c1 + c2)(t) decrease,
from where

∀t ≥ t0, (γ−1c1 + c2)(t) ≤ γ−1c01 + c02.

If M2 ≥ 0 then the function (γ−1c1 + c2)(t) increase,
from where

∀t ≥ t0, (γ−1c1 + c2)(t) ≥ γ−1c01 + c02.

Remark 1.
• The first point of Proposition 2 confirms that the

concentration of bacteria will be lower than the initial
data and therefore the bacteria will die out and the
biodenitrification process will be unsuccessful.

• The second point of Proposition 2 confirms that the
concentration of bacteria will be greater than the ini-
tial data, and consequently the bacteria will succeed
in colonizing the reactor and the biodenitrification
process will be successful.

Corollary 1. Let (c1, c2, c3, c4) be the solution of (13).
Under the Hypothesis H1 and H2, for i = 3 or 4, we
get

ci(t) ≤ cini ∀t > 0.
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Proof: Thanks to Proposition 1, for i = 1 or 2 we
have ci ≥ 0 then

dc3
dt
≤ (cin3 − c3)dS ,

dc4
dt
≤ (cin4 − c4)dSN

,

which implies
d(c3 − cin3 )

dt
≤ −(c3 − cin3 )dS ,

d(c4 − cin4 )

dt
≤ −(c4 − cin4 )dSN

,

equivalent to
d(c3 − cin3 )

dt
≤ (c3 − cin3 )(−dS),

d(c4 − cin4 )

dt
≤ (c4 − cin4 )(−dSN

).

By using the Gronwall’s lemma [25, Proposition 1.4],
[26, Lemma 1], we get{

c3 − cin3 ≤ (c03 − cin3 ) exp(−dSt),
c4 − cin4 ≤ (c04 − cin4 ) exp(−dSN

t),

and by the fact that c03 ≤ cin3 and c04 ≤ cin4 we obtain{
c3 − cin3 ≤ 0,

c4 − cin4 ≤ 0.

Finally we get {
c3 ≤ cin3 ,
c4 ≤ cin4 .

Proposition 3. There exists a value c∗3 such that for any
cin3 verifying the inequality cin3 < c∗3 we get M1 < 0,
where

c∗3 = min

(
(Kf

2 + cin4 )kf (Kf
1 + µf

max)

cin4 µ
f
max

; (16)

(Km
2 + cin4 )(km + d)(Km

1 + µm
max)

cin4 µ
m
max

)
.

Proof: The conditions for that M1 < 0 are

µf (cin3 , c
in
4 )− kf < 0, (17)

and
µm(cin3 , c

in
4 )− km − d < 0. (18)

According to (15), the first condition (17) implies

µf
max

cin3

Kf
1 + cin3

× cin4

Kf
2 + cin4

− kf < 0

⇔ cin3

Kf
1 + µf

max

<
(Kf

2 + cin4 )kf

cin4 µ
f
max

⇔ cin3 <
(Kf

2 + cin4 )kf (Kf
1 + µf

max)

cin4 µ
f
max

. (19)

The second condition (18) implies

µm
max

cin3
Km

1 + cin3
× cin4
Km

2 + cin4
− km − d < 0

⇔ cin3
Km

1 + µm
max

<
(Km

2 + cin4 )(km + d)

cin4 µ
m
max

⇔ cin3 <
(Km

2 + cin4 )(km + d)(Km
1 + µm

max)

cin4 µ
m
max

.

(20)

From (19) and (20), we obtain

cin3 < min

(
(Kf

2 + cin4 )kf (Kf
1 + µf

max)

cin4 µ
f
max

;

(Km
2 + cin4 )(km + d)(Km

1 + µm
max)

cin4 µ
m
max

)
= c∗3.

Proposition 4. Let (c1, c2, c3, c4) be the solution of
(13). The following properties hold true:
• If M1 < 0, then

lim
t→∞

(γ−1c1(t) + c2(t)) = 0,

• If M2 > 0, then

lim
t→∞

(γ−1c1(t) + c2(t)) = c∗ > γ−1c01 + c02,

• lim
t→∞

c3(t) ≤ cin3 ,
• lim

t→∞
c4(t) ≤ cin4 .

Proof: By multiplying the first equation of (12) by
γ−1 and making the sum of the first and the second
equation of the system (12), we get

d(γ−1c1 + c2)

dt
= γ−1

(
µf (c3, c4)− kf

)
c1

+

(
µm(c3, c4)− km − d

)
c2,

which implies

M2

(
γ−1c1+c2

)
≤ d(γ−1c1 + c2)

dt
≤M1

(
γ−1c1+c2

)
.
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By using the Gronwall’s lemma [26, Lemma 1], we
have

0 ≤ (γ−1c1 + c2) ≤ (γ−1c01 + c02)eM1t,

since M1 < 0 and for t→∞ then we obtain the result.
For the adherent bacteria and from (5), we have

c1 ≤ ω∞. For the free bacteria and according to
the growth function proprieties there exists a maximal
concentration cmax

2 such that c2 ≤ cmax
2 , which gives

γ−1c1(t) + c2(t) ≤ γ−1ω∞ + cmax
2 .

Or M2 > 0, then the concentration (γ−1c1 + c2) is
increasing, respecting time, and bounded. Then there
exists a value c∗ such that

lim
t→∞

(γ−1c1(t) + c2(t)) = c∗ > γ−1c01 + c02.

According to Proposition 1, we have ci ≥ 0, i = 1, 2,
then 

dc3
dt
≤ (cin3 − c3)dS ,

dc4
dt
≤ (cin4 − c4)dSN

,

which implies
d(c3 − cin3 )

dt
≤ −(c3 − cin3 )dS ,

d(c4 − cin4 )

dt
≤ −(c4 − cin4 )dSN

,

equivalent to
d(c3 − cin3 )

dt
≤ (c3 − cin3 )(−dS),

d(c4 − cin4 )

dt
≤ (c4 − cin4 )(−dSN

).

Using the Gronwall’s lemma [26, Lemma 1], we get{
c3 − cin3 ≤ (c03 − cin3 ) exp(−dSt),
c4 − cin4 ≤ (c04 − cin4 ) exp(−dSN

t),

which implies{
c3 ≤ (c03 − cin3 ) exp(−dSt) + cin3 ,

c4 ≤ (c04 − cin4 ) exp(−dSN
t) + cin4 .

Finally we obtain lim
t→+∞

c3 ≤ cin3 and lim
t→+∞

c4 ≤ cin4 .

In what follows, we study the existence and stability
of the steady state. By combining the first and the

second equation of (12) in a single equation, the system
(12) can be writing in the following form

d

dt
(γ−1c1 + c2) = γ−1

(
µf (c3, c4)− kf

)
c1

+

(
µm(c3, c4)− km − d

)
c2,

d(c3)

dt
= (cin3 − c3)dS −

(
µm(c3, c4)

Ym

)
c2

−
(
µf (c3, c4)

Yf
γ−1

)
c1,

d(c4)

dt
= (cin4 − c4)dSN

−
(
Rµm(c3, c4)

Ym

)
c2

−
(
Rµf (c3, c4)

Yf
γ−1

)
c1.

(21)
Define new variables c̃, µ(c3, c4), K. We make a change
of variable

c̃ = γ−1c1 + c2,

µ(c3, c4)c̃ = µf (c3, c4)γ−1c1 + µm(c3, c4)c2,

Kc̃ = kfγ
−1c1 + (km + d)c2,

µ(c3, c4)

Y
c̃ =

(
µm(c3, c4)

Ym

)
c2 +

(
µf (c3, c4)

Yf
γ−1

)
c1.

The system (21) then can be written as follows with
three variables

dc̃

dt
= (µ(c3, c4)−K)c̃,

dc3
dt

= (cin3 − c3)dS −
µ(c3, c4)

Y
c̃,

dc4
dt

= (cin4 − c4)dSN
− Rµ(c3, c4)

Y
c̃.

(22)

The steady states, denoted by (c̃?, c?3, c
?
4), of the system

(22) verify
0 = (µ(c?3, c

?
4)−K)c̃?,

0 = (cin3 − c?3)dS −
µ(c?3, c

?
4)

Y
c̃?,

0 = (cin4 − c?4)dSN
− Rµ(c?3, c

?
4)

Y
c̃?.

(23)

We remark that the first steady state is the washout
steady state and is (0, cin3 , c

in
4 ). In addition, the other

steady states satisfy
0 = (cin3 − c?3)dS −

K

Y
c̃?,

0 = (cin4 − c?4)dSN
− RK

Y
c̃?,

(24)
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which implies
0 = (cin3 − c?3)dS −

K

Y
c̃?,

c?4 =
cin4 dSN

−RdS(cin3 − c?3)

dSN

,
(25)

hence 
c̃? =

Y dS(cin3 − c?3)

K
,

c?4 =
cin4 dSN

−RdS(cin3 − c?3)

dSN

.

(26)

From the system (25), we remark that the system (23)
admits an infinity of steady states. The linearization of
the system (23) near the washout steady state is given
using the following Jacobian matrix:

A =


µf (cin3 , c

in
4 )−K 0 0

−µf (cin3 , c
in
4 )

Y
−dS 0

−µf (cin3 , c
in
4 )

Y
0 −dSN

 .

Proposition 5. The following properties hold true:
• If M1 + M2 < 0, then the washout steady state is

stable.
• If M1 +M2 > 0, the washout steady state is unstable

and there is another state of equilibrium (ċ1, ċ2, ċ3)
such that ċ1 ≥ γ−1c01 + c02 and it is stable.

Proof:
• The condition M1 + M2 < 0 gives µf (cin3 , c

in
4 ) −

K < 0 and then the matrix A has three negative
eigenvalues and therefore the washout steady state is
stable.

• The condition M1 + M2 > 0 gives µf (cin3 , c
in
4 ) −

K > 0 and then the matrix A admits a non negative
eigenvalue and therefore the washout steady state is
unstable. Using the Proposition 2 and the fact that
the system (23) admits a solution then we obtain the
result.

Remark 2. Another particular case can be obtained
when M1 +M2 = 0, which gives µf (cin3 , c

in
4 )−K =

0 and then the matrix A admits 0 as an eigenvalue.
Therefore, it is necessary to use another method for
discussing this special case, such as the strategy carried
out in [14].

bf (t = 0) bm(t = 0) SN (t = 0) Sin
N

10 10 100 100

Table I: Initial conditions in (mg/l).

Parameters Values Parameters Values
d 0.1cm2/h µf

max 0.7h−1

dSN 0.1cm2/h Ym 0.5
dS 0.1cm2/h Yf 0.5
a 0.1 β 0.2h−1

α 0.2h−1 T 60 days
w∞ 60g/cm2 R 1.2

γ 0.8ml/cm2 Kf
1 60 mg carbon/l

km 0.005h−1 Km
1 60 mg carbon/l

kf 0.005h−1 Km
2 50 mg NO−3 /l

µm
max 0.7h−1 Kf

2 50 mg NO−3 /l

Table II: Parameters.

Fig. 2: Evolution of c1, c2, c3 and c4 with cin3 = 104 ≥ c∗3.

Fig. 3: Evolution of c̃, c3 and c4 with cin3 = 104 ≥ c∗3.
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IV. NUMERICAL RESULTS

In this section we present some numerical results
about the success of the biodenitrification process in
agreement with the theoretical results the problem (12).
The different parameters used are given in Table II and
come from [7]. From the same reference, we take the
initial conditions of the system as indicated in Table I.

In the theoretical study, we showed the existence of
a value c∗3 of the injected carbon concentration from
which we ensure the success of the biodenitrification
process and the stability of the steady states. To verify
that numerically, we perform two numerical experi-
ences. Before that we start to compute the value of c∗3.
For example, with the parameter values given in the Ta-
ble II and according to (16), we get c∗3 = 0.6504mg/l.

In the first test, we take a value of the amount of
carbon injected cin3 such that cin3 ≥ c∗3. For example
with cin3 = c3(0) = 104mg/l, we get Figures 2, 3 and 4
(evolution/behaviour of bacteria and substrates). Figure
2 shows the evolution of c1, c2, c3 and c4. Figure 3
shows the evolution of c̃, c3 and c4 and then the stability
of the system in agreement with Proposition 5. Figure 4
shows the evolution (γ−1)c1 +c2 and (γ−1)c01 +c02. We
remark in this figure that for cin3 ≥ c∗3, bacteria evolve in
the reactor and then the success of the biodenitrification
process which is consistent with the results obtained in
the Proposition 2 and the Corollary 1. We also observe
that from a certain time the four components stagnate
which means that we obtain a stable steady state as is
confirmed in the Propositions 4 and 5.

In the second test, we take a value of the amount of
carbon injected cin3 such that cin3 ≤ c∗3. For example
with cin3 = c3(0) = 0.5mg/l, Figure 5 shows the
evolution of c1, c2, c3, c4 and c̃, and then the stability
of the system in agreement with Proposition 5. Figure 6
shows the evolution of (γ−1)c1 + c2 and (γ−1)c01 + c02.
We remark in this figure that for cin3 ≤ c∗3, bacteria
disappear from the reactor and then the biodenitrifica-
tion process fails which is consistent with the results
obtained in the Proposition 2 and the Corollary 1, we
note that in this case we have M1 = −0.0011, the value
given in the Proposition 2.

We also observe that from a certain time bacteria con-
centration decreases towards 0 and the concentrations
of carbon and nitrates, respectively, increase towards
cin3 and cin4 , which means that (0, 0, cin3 , c

in
4 ) is a stable

steady state as confirmed in the Propositions 4 and 5.

A. Numerical algorithm for solving the system

The functions of the second members of system (12)
are given in the general form, by writing them as

Fig. 4: Graphs of bacteria rate [(γ−1)c1 + c2] and initial
bacteria rate [(γ−1)c01 + c02] with cin3 = 104 ≥ c∗3.

a function of t and of the unknown vector C(t) =
(c1(t), c2(t), c3(t), c4(t)). However, in our case, the
system can be written as an autonomous system, i.e.
Fi are only functions of C(t).

The numerical scheme for solving the problem (12)
has been implemented in Python computational soft-
ware through the fourth-order Runge-Kutta method (see
Algorithm 1). It is an efficient method for solving
problems of ordinary differential equations with initial
values and it guarantees a stable computing time [27].

Algorithm 1 Numerical algorithm based on RK4 for
solving the problem.

1: Initialisation: t0 (initial time),
2: tf (final time),
3: ∆t (the step size),
4: C← C(t0) (initial conditions).
5: define Fi(C), i = 1, 2, 3, 4
6: N ←− tf−t0

∆t + 1
7: t← t0
8: for k ← 1 to N do
9: Ki

1 ← ∆t Fi (C(t)), i = 1, 2, 3, 4

10: Ki
2 ← ∆t Fi

(
C(t) +

∆t

2
Ki

1

)
, i = 1, 2, 3, 4

11: Ki
3 ← ∆t F

(
C(t) +

∆tKi
2

2

)
, i = 1, 2, 3, 4

12: Ki
4 ← ∆t Fi

(
C(t) + ∆tKi

3

)
, i = 1, 2, 3, 4

13: ci(t)← ci(t) +
1

6
(Ki

1 + 2 Ki
2 + 2 Ki

3 +Ki
4),

i = 1, 2, 3, 4
14: Registration.
15: t← t+ ∆t
16: end for
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B. Heuristic algorithm for improving the process

In the theoretical study of the problem as well as in
the previous numerical tests, we showed the existence
of a specific value of the injected carbon concentration
from which we ensure the success of the biodenitri-
fication process. In this part of numerical results, we
propose a heuristic algorithm, based on previous results,
to improve and control the biodenitrification process
over time.

In what follow, we will present and compare 2
different schemes, to manage a total available quantity
of c3, to improve the process (one of them using our
proposed heuristic algorithm Algorithm 2). We recall
that c3 is the nutrient that helps bacteria c2 to increase,
and thus the consumption of nitrates c4 (contamination).

In both schemes, as already shown, we consider
the correct given path that gives the success of the
biodenitrification process, i.e. cin3 ≥ c?3, but in the
heuristic algorithm scheme we make several injections
of ci3 until the disappearance of the total available
quantity of c3 to manage, or until the elimination
of c4 (i.e. contamination). Improving biodenitrification
involves reducing c4 as much as possible. As we have
shown, this is related to the value of c3 available in
the biodegradable medium. We assume that the total
available quantity to manage is denoted by ctotal3 :=
c3(0) + cin3 +

∑
i c

added,i
3 , where cadded,i3 , i = 1, 2, ..

are the quantities that will be added during different
injections over time. In this experiment, we consider
for example that kf = 0.05 and cin4 = 50 in order to
have another value of c?3 larger than the one we obtained
previously. So in this case, we get c?3 = 8.6714 (see line
6 in Algorithm 2). In addition, we assume for example
that ctotal3 = 21.025.

As we have shown, cin3 must be greater than c?3 and
c
(t0)
3 . Therefore, we start our heuristic algorithm by

choosing cin3 = c?3 (see line 8 in Algorithm 2). Then,
we solve the system until the equilibrium or when c4
begins to grow. The stopping time of this resolution
is denoted t? (see line 10 in Algorithm 2). At this
moment, we inject a quantity, denoted cadded,13 such that
we obtain c3(t1) + cin3 = 2c? (see line 13 in Algorithm
2). The same step will be done until the consumption
of the total available quantity of c3 to manage (or when
c4 = 0).

Figures 7 and 8 show the evolution of c4 in the two
schemes respectively, i.e without the use of the heuristic
algorithm (scheme 1) and with the use of the heuristic
algorithm (scheme 2), with the same total available
quantity ctotal3 .

Algorithm 2 Heuristic algorithm for improving the
process.

1: Input Parameters.
2: Initialisation: t0 = 0 (initial time),
3: c1(0), c2(0), c3(0), c4(0),
4: ctotal3 , cin4 ,
5: ctotal3 := c3(0) + cin3 +

∑
i

cadded,i3

// ctotal3 is the total quantity available to manage.
6: Calculate c?3 by using (16) and cin4 .
7: // We suppose that at t0: c3(0) > c?3
8: cin3 ←− c3(0) // or cin3 ←− c?3 if c3(0) = c?3
9: ti ←− t0

10: (#) : Solve the System (10) on [ti, t
?], were t? is

the first moment to achieve equilibrium or when c4
begins to grow.

11: t1 ←− t?
12: cadded,13 ←− c?3 − c3(t1)
13: c3(t1)←− c3(t1) + cadded,13

14: ti ←− t1
15: do (#).
16: t2 ←− t?
17: cadded,23 ←− c?3 − c3(t2)
18: c3(t2)←− c3(t2) + cadded,23

19: ti ←− t2
20: do (#).

21:
...

22: until the consumption of the total quantity available
of c3 to manage (or when c4 = 0).

For scheme 1 the resolution was made on [0, 100] and
thus Figure 7 shows the evolution of c4 on [0, 100],
devised over two intervals in order to subsequently
show the compared curves.

However, with the heuristic algorithm 2, 3 steps were
performed to manage the total available quantity ctotal3

(see Figure 8).
The first resolution was performed on [t0 = 0, t1 =

39.9], and the quantity cadded,13 = 2.6212 was in-
jected (and at t1: c4(t1) = 47.7757). The second
resolution was performed on [t1, t2 = 44.4], and the
quantity cadded,23 = 0.7933 was injected (and at t2:
c4(t2) = 47.6265). The third resolution was performed
on [t2, t3 = 45.8], and the quantity cadded,33 = 0.2677
was injected (and at t3: c4(t3) = 47.6137).

At instant t3 all the quantity ctotal3 is consumed:
c3(0) = 8.6714, cin3 = 8.6714, cadded,13 = 2.6212,
cadded,23 = 0.7933, cadded,33 = 0.2677 , and ctotal3 :=
c3(0) + cin3 +

∑
i c

added,i
3 = 21.025.
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Fig. 5: Evolution of c1, c2, c3, c̃ and c4 with cin3 = 0.5 < c∗3.

Fig. 6: Graphs of bacteria rate [(γ−1)c1 + c2] and initial
bacteria rate [(γ−1)c01 + c02] with cin3 = 0.5 < c∗3.

In terms of comparison: with scheme 1, we obtained
at t = 45.8 = t3: c4(t3) = 47.8190 =: v1, and
then it increases to the value 49.5331 at t =100 (see
Figure 7). However with the use of Algorithm 2, we
obtained c4(t3) = 47.6137 = v2 < v1 and we can also
follow our process of decreasing c4 if the total quantity
available ctotal3 to manage is greater. Moreover, with
scheme 2, at time t3, we have a quantity c2 greater than
that obtained in scheme 1: c2(t3) = 1.0528 “scheme 1”
Vs c2(t3) = 1.1248 “scheme 2” (c2 is the bacteria that
helps to reduce nitrates c4).

V. CONCLUSION

In this work we have developed a mathematical
model dedicated to the biodenitrification process, taking
into account the fixed and mobile bacteria. We studied
asymptotic behaviour and provided some information
for the solution of the problem. The numerical simula-
tions in agreement with the theoretical results show the
existence of a value of the injected carbon concentration
from which we ensure the success of the biodenitrifi-
cation process.

Fig. 7: Evolution of c4 with scheme 1 by solving directly the
system on [0,100] (i.e without using the heuristic algorithm).
In this plot: c4(t3) = 47.8190 and c4(100) = 49.5331

Fig. 8: Evolution of c4 by using our proposed heuristic algo-
rithm Algorithm 2 (i.e scheme 2). Step 1 is on [t0, t1], Step 2
is on [t1, t2], Step 3 is on [t2, t3], and at t3: c4(t3) = 47.6137.

This study also allowed us to provide a heuristic
algorithm in order to improve the situation of biodegra-
dation by minimizing as much as possible the nitrate
(contaminant) over time in the environment and then
improving the biodenitrification process.

As a perspective, taking into account the obtained
results, the model can be treated in a complete study of
optimal control for choosing optimally the proportion of
splitting and the corresponding re-introduction time(s)
to obtain the best performances. This could be the
matter of a future work.

Moreover, the introduction of spatial heterogeneity
in the model, in terms of a system of reaction diffusion
“partial differential equations” instead of a system of
“ordinary differential equations” would be a reasonable
extension of the present work, taking into consideration
that spatial heterogeneity is usually observed in real
problem.
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