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Abstract: In the present work, we consider a mathe-
matical model of multiple sclerosis, extending a model,
known in the literature, so that it can account for the
process of remyelination. Our model comprises of a
reaction–diffusion–chemotaxis system of partial differen-
tial equations with a time delay. As a first approxima-
tion, we consider the model under the assumption of
radial symmetry, which is consistent, e.g., with Baló’s
concentric disease. We conduct numerical experiments in
order to study the effect of the remyelination strength
on the disease progression. Furthermore, we show that
the modified model has greatly enriched dynamics, which
is capable of describing qualitatively different types of
multiple sclerosis (according to classical classifications
of the disease progression) as well as giving a better
agreement with experimental data.
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I. INTRODUCTION

The central nervous system (CNS) consists of the
brain and spinal cord, which are responsible for
processing and coordinating the flow of information
through an organism’s body. Neurons are the primary
cells of the CNS, and they consist of three main
parts: the cell body, dendrites, and axons. Myelin is
a fatty substance that surrounds and insulates axons,
allowing for faster transmission of signals as well as

providing structural support for the axons. A schematic
representation of a myelinated nerve cell is given in
Fig. 1.

Multiple sclerosis (MS) is a disease of the CNS that
disrupts the flow of information within the brain, and
between the brain and body. It involves an immune-
mediated process in which an abnormal response of
the body’s immune system is directed against the
CNS [1]. In individuals with MS, the immune system
causes inflammation that damages myelin as well as
the nerve fibers themselves, and the specialized cells
(oligodendrocytes) that produce myelin. When myelin
or nerve fibers are damaged or destroyed in MS, mes-
sages within the CNS are altered or stopped completely.
The damaged areas develop scar tissue which gives the
disease its name—multiple areas of scarring or multiple
sclerosis. Some of the most common symptoms in
patients experiencing multiple sclerosis include, but are
not limited to, vision impairment, mobility problems,
numbness and tingling, muscle spasms, stiffness and
weakness, bladder and bowel problems, speech and
swallowing difficulties [3].

The cause of MS is not known, but it is believed
to involve genetic susceptibility, abnormalities in the
immune system and environmental factors that com-
bine to trigger the disease [4]. Diagnosing MS can
also become complicated due to the variations in the
temporal development of the disease—some patients
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Fig. 1: Scheme of a myelinated neuron [2].

experience immediate acute effects, while others de-
velop the symptoms insidiously over extended periods
of time. Furthermore, while there exists no known
cure for MS, disease-modifying therapies, such as im-
mune activity modulation or suppression have been
implemented in order to alleviate the symptoms and
treat acute attacks [5]. However, one should note that
such treatments remain in their experimental stage and
could in some situation prove to hide certain significant
risks [6].

Mathematical modelling could, thus, be very use-
ful for shedding new light on various aspects of the
disease, simulating different hypotheses, etc. Unfortu-
nately, besides purely empirical/statistical studies, it is
very hard to find many papers, dealing with the topic
of mathematical modelling of MS. The works [7–9]
are among the few, which try to give a (very basic)
mathematical description of the underlying mechanisms
of MS progression. Those works consider models, de-
scribed in terms of ODE systems, of the time evolution
of most broadly defined cell populations, thought to
be important for the disease progression. The other
possible view concerns the spatio-temporal dynamics
of the lesions generation. To the best of the authors’
knowledge, the main works in this direction comprise
of the work of Lombardo et al. [10], which steps on
the works [11, 12].

In the present work, we are interested in the
description of the spatio–temporal dynamics regard-
ing most key cells involved in MS pathogenesis—
oligodendrocytes, macrophages and cytokines. We,
thus, step on the model, proposed in [10], and modify
it, in order to enrich its dynamics (by accounting for a
very important aspect, missing in the original model—
remyelination) such that more realistic scenarios for a
disease course can be simulated in a broader range of
MS types.

The original model from [10] incorporates the pro-

cess of demyelination, a crucial component of the
disease progression in all MS cases. Based on the
types of demyelination and the targets affected by it,
four different patterns of lesions have been proposed
[13]. In this work the accent falls on modelling the
progression of the third type of lesions—cases in which
the oligodendrocytes are the primary “victims”, whereas
in type II cases, for example, the main target of the
inflammatory response is the myelin. The third type
patterns also can be regarded as being formed in the ini-
tial stages of disease cases (or to the “pre-demyelinatig”
phase) in the scenario of intraindividual homogeneity.

Let us first summarize the main agents, known to be
connected with the disease, which are of interest for the
present work:

• Oligodendrocytes—myelin producing cells which
are destroyed by the macrophages;

• Macrophages—a type of white blood cells re-
sponsible for the destruction of the oligodendro-
cytes in MS cases;

• Cytokines—signaling proteins, the presence of
which attracts macrophages. They are produced by
both macrophages and destroyed oligodendrocytes.

For type III lesions, macrophages and activated mi-
croglia are known to trigger the inflammatory process
by producing pro-inflammatory cytokines. Thus, the
model in [10] considers the time evolution of those
species along with the destroyed oligodendrocytes,
since significant oligodendrocyte apoptosis has been
observed in this type of lesions.

As noted, we step on the aforementioned model
and modify it by adding a remyelination term. It is
very important for a variety of cases in some of the
main types of MS, as we further explain. As a first
approximation, in order to study the dynamics of the
extended model, we consider the assumption of radial
symmetry. In particular, we explore the possibilities of
applying the model to a particularly aggressive demyeli-
nating disease called Baló’s concentric disease (BCD),
which is often considered to be a variant of multiple
sclerosis [14]. Baló’s disease is most notably charac-
terized by concentric alternating rings of CNS lesions
(demyleinated areas) and myelinated white matter [15].
This makes it convenient to simplify the model by as-
suming radial symmetry, since demyelination levels ap-
pear nearly identical at any fixed distance from a given
center. This process of ring formation has been studied
to occur in a wave-like fashion starting outward from
a focal point [14]. Conclusive information regarding
the pathogenesis of such a disease progression remains
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elusive, however the rings of relatively unharmed white
matter have sometimes been hypothesized to be the
result of remyelinating processes [16].

The present work is structured as follows. Section II
deals with the mathematical formulation of the consid-
ered model. In particular, we first formulate the orig-
inal model from [10], which comprises of a reaction–
diffusion–chemotaxis system of 3 PDEs and summarize
its basic underlying assumptions. Then, we go on to
extend the model by including a remyelination term
with a time-delay and formulate the newly obtained
model in terms of a partial delay differential equation
system in operator form. Finally, a 1D coordinate form
of the model is derived in polar coordinates under
the assumption of radial symmetry. In Section III, we
construct an explicit finite difference approximation of
the radially-symmetric model, which is further used in
section IV to study the effect of the modification we
make to the model. To that end, the model solutions
are studied, while varying the rate of remyelination in
subsection IV-A and the time delay in subsection IV-B.
Subsection IV-C emphasizes the enriched dynamics of
the model in terms of more types of MS, which can
be accounted for and subsection IV-D shows the better
descriptive capabilities in terms of a comparison with
an MRI scan. Section V summarizes the main findings
and outlines some directions for further development of
the subject.

II. MATHEMATICAL FORMULATION

The original model, proposed in [10], consists of
three partial differential equations, describing the spa-
tio–temporal dynamics of the following three species:

• m(X,t)—density of activated macrophages;
• c(X,t)—concentration of chemoattractants (cyto-

kines);
• d(X,t)—density of the destroyed oligodendrocytes,

where (X,t)∈ Ω × R+, Ω is a bounded region of Rn,
n = 1, 2. X and t signify the respective position in
space and moment in time.

The basic assumptions that underlie the model are as
follows:

• For the evolution of the macrophages: their flux is
caused by random movement as well as directed
movement (called chemotaxis) in the direction of
cytokines; the natural growth of the population
of macrophages is logistic; a Monod-type model
[17] that models the prevention of overcrowding
is considered.

• For the cytokines: their flux is caused only by ran-
dom motion; their production depends on both de-
stroyed oligodendrocytes and macrophages; their
natural decay is proportional to their concentration;
the evolution of cytokines may be considered to be
on a different time scale than the other two, i.e.,
compared to the other two considered populations,
cytokine concentration evolves more quickly.

• For the destroyed oligodendrocytes: they are static;
their destruction is caused by coming in contact
with macrophages; the damage that macrophages
cause is modelled by an increasing function with
saturation for high values of the macrophages’
density.

After a proper nondimensionalization, as done in [10],
the model takes the form

∂m

∂t
= ∆m+m(1−m)−∇ · (χ(m)∇c),

∂c

∂t
=

1

τ
(ε∆c+ δd+ βm− c),

∂d

∂t
= rF (m)m(1− d),

(1)

where

χ(m) = χ∞
m

1 +m
, F (m) =

m

1 +m
, (2)

and χ∞ is the chemoattraction coefficient, τ is a time-
scaling parameter for the cytokine-related processes,
ε is the cytokine diffusion coefficient, β is the rate
of cytokine production by macrophages, δ is the rate
of cytokine production by oligodendrocytes, and r is
the intensity, with which the macrophages damage the
oligodendrocytes. All the mentioned parameters are
positive constants.

This model was discussed extensively in [10] and
[18], here we shall highlight some of the most important
results obtained in these works. The system (1) has
two uniform steady states: the disease-free equilibrium
P0 = (0, 0, 0) and the non-trivial point P ∗ = (1, β +
δ, 1). The disease-free equilibrium is always unstable
and it can be shown that in order for Turing instability
to be possible (i.e. to allow the possibility of pattern
formation) the inequality χ∞ > χc must be satisfied,
where

χc =
2(
√
ε+ 1)2

β
.

Upon extensive search in specialized literature and
estimation of the unavailable parameters, the intervals
for the parameters in the nondimensional form of the
model (1), proposed by the authors of [10], are pre-
sented in Table I.
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Parameter Description Values
χ∞ chemoattraction 4-55
τ Time scale of cytokine dynamics 0.001–1
ε Cytokine diffusion 0.5–1.5
β Cytokine production rate per macrophage 0.2–1
δ Cytokine production rate per oligodendrocyte 0–1
r Damaging intensity 0.01–6

Table I: Estimated possible intervals for the nondimensional version of the model [10].

Upon inspection of the model, proposed above, it can
easily be deduced that the third equation implies a time
derivative of the destroyed oligodendrocyte function
that is (for appropriate initial conditions) non-negative
at all times. This, in turn, guarantees that the function
d(t) is monotonously increasing. Such a scenario proves
to be too unrealistic in many cases, however, since
remyelination is regularly examined to be a concomitant
process with multiple sclerosis in many patients [19].
Hence, this renders the model in its current form
unsuitable for those cases and we now modify the
model, in order to account for remyelination.

Remyelination in MS patients is known to some-
times begin taking place several weeks after lesion
genesis [20], which indicates a certain delay between
pathological effects and CNS reaction. One factor
that could explain such a delay is the theory that
Oligodendrocyte progenitor cells (OPCs) are mainly
responsible for the generation of new myelin [21].
OPCs are a group of slowly dividing non-neuronal cells
which, after reaching maturity, are hypothesized to lose
their division capabilities and become fully functioning
oligodendrocytes creating new myelin. This scenario
would explain the delay in the remyelinating processes,
since the following two steps would need to take place
before new myelin can be produced:

1) recruitment phase—OPCs proliferate in order to
populate demyelinated areas;

2) differentiation phase—first OPCs differentiate
into premyelinating oligodendrocytes which in
turn contact demyelinated axons and differentiate
into mature, myelinating oligodendrocytes that
form functional myelin sheaths.

Having the aforementioned in mind, we modify the
third equation in system (1) by adding a remyelination
term. To obtain the desired effect, we turn to a delay
partial differential equation.

The levels of remyelination in affected areas have
been shown to correlate significantly to the concentra-
tion of macrophages and oligodendrocytes in the le-
sion [22]. For simplicity, we shall propose a connection

only between the part of destroyed oligodendrocytes
and the rate of myelin restoration. We shall assume that
the term responsible for remyelination depends on a
previous moment in time, with ∆0 being the delay. We
postulate the rate of remyelination to be proportional
to the part of the destroyed oligodendrocytes at the
delayed moment with a scale factor of µ.

Therefore, we consider the model

∂m

∂t
= ∆m+m(1−m)−∇ · (χ(m)∇c),

∂c

∂t
=

1

τ

[
ε∆c+ δd+ βm− c

]
,

∂d

∂t
= rF (m)m(1− d)− µD∆0d,

(3)

where D∆0
is a time-delay operator, defined with

D∆0
d(X, t) = d(X, t−∆0). We allow that r = r(t) > 0

and µ = µ(t) ≥ 0, ∀t be time-dependent as we discuss
in the later sections with all other parameters being
positive constants.

In order to write the model in coordinate form, we
use polar coordinates:

x = ρ cosϕ, y = ρ sinϕ. (4)

The form of the differential operators ∇ and ∆ in
polar coordinates is as follows [23]:

∇ =

(
∂

∂ρ
,

1

ρ

∂

∂ϕ

)
,

∆ =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂ϕ2
.

(5)

Now we shall study the special case, in which we
impose an assumption of radial symmetry, i.e. m, c and
d do not depend on the angle ϕ (this is, e.g., consistent
with the pattern formation in Baló’s concentric disease).
Thus, m, c, and d are only functions of ρ and t and
we obtain the following coordinate form of the model,
which is 1D with respect to space:
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∂m

∂t
=

1

ρ

∂

∂ρ

(
ρ
∂m

∂ρ

)
+m(1−m)

− 1

ρ

∂

∂ρ

(
ρχ(m)

∂c

∂ρ

)
,

∂c

∂t
=

1

τ

[
ε

ρ

∂

∂ρ

(
ρ
∂c

∂ρ

)
+ δd+ βm− c

]
,

∂d

∂t
= rF (m)m(1− d)− µ d|t=t−∆0

,

(6)

where χ and F are defined with (2), ρ ∈ [0, R], t ∈
[0, T ], and all time-dependent quantities are evaluated
at time t, except for the last term in the third equation
(thus, we state explicitly the point of time only in this
term and omit the arguments of all other functions for
simplicity of notation).

We close the system by imposing homogeneous
Neumann boundary conditions for m and c at the right
boundary:

∂m

∂ρ
(R, t) = 0,

∂c

∂ρ
(R, t) = 0, t ∈ (0, T ], (7)

symmetry boundary conditions at the left boundary:

∂m

∂ρ
(0, t) = 0,

∂c

∂ρ
(0, t) = 0, t ∈ (0, T ], (8)

and initial conditions:

m(ρ, 0) = m0(ρ), c(ρ, 0) = c0(ρ), ρ ∈ [0, R]. (9)

For d, we need to impose an initial history function
instead of an initial condition. We do this in the
following manner:

d(ρ, t) =

{
0, t ∈ [−∆0, 0),

d0(ρ), t = 0,
ρ ∈ [0, R]. (10)

Note that under these conditions, the modified model’s
solution will be identical to the solution of (1) in the
time interval [0,∆0). This lets us directly compare the
solutions of the two models.

III. FINITE DIFFERENCE APPROXIMATION

In this section, we construct an explicit finite dif-
ference approximation of the model (6)–(10). First we
discretize time and space by introducing the uniform
mesh ω̄s × ω̄t, where

ω̄s =

{
ρi = ihs, i = 0, 1, · · · , Ns, Ns =

R

hs

}
,

ω̄t =

{
tj = jht, j = 0, 1, · · · , Nt, Nt =

T

ht

}
,

and hs and ht are the respective space and time
discretization steps. Next we introduce the approximate
solutions of the model which are defined for the nodes
of the mesh:

M j
i ≈ m(ρi, tj), Cji ≈ c(ρi, tj), Dj

i ≈ d(ρi, tj).

A. Approximation of the main equations

Now we are ready to approximate equations (6) by
substituting finite difference formulae for the time and
spatial derivatives in such a way that second order
of local approximation is obtained with respect to the
spatial discretization step.

For the time derivatives, we utilise a forward differ-
ence formula of the form [24, 25]:

f ′(t) ≈ f(t+ ∆t)− f(t)

∆t
,

which for sufficiently smooth functions f has an ap-
proximation error O(∆t). We approximate the second
order spatial derivatives, resulting from the modelling
of the diffusive and chemotactic processes, using the
following formula:

(α(ρ)f ′(ρ))′

≈ 1

∆ρ

(
α(ρ+ ∆ρ) + α(ρ)

2

f(ρ+ ∆ρ)− f(ρ)

∆ρ

− α(ρ) + α(ρ−∆ρ)

2

f(ρ)− f(ρ−∆ρ)

∆ρ

)
,

which has been shown to have an approximation error
O(∆ρ2) for sufficiently smooth functions α and f [26,
27].

Thus, we obtain:

M j+1
i −M j

i

ht

=
1

ρih2
s

(
ρi+1 + ρi

2
(M j

i+1 −M
j
i )

− ρi + ρi−1

2
(M j

i −M
j
i−1)

)
+M j

i (1−M j
i )

− 1

ρih2
s

(ρi+1
χ∞M

j
i+1

1+Mj
i+1

+ ρi
χ∞M

j
i

1+Mj
i

2
(Cji+1 − C

j
i )

−
ρi
χ∞M

j
i

1+Mj
i

+ ρi−1
χ∞M

j
i−1

1+Mj
i−1

2
(Cji − C

j
i−1)

)
i = 1, 2, · · · , Ns − 1, j = 0, 1, · · · , Nt − 1,

(11)
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Cj+1
i − Cji
ht

=
1

τ

[
ε

ρih2
s

(
ρi+1 + ρi

2
(Cji+1 − C

j
i )

− ρi + ρi−1

2
(Cji − C

j
i−1)

)
+ δDj

i − C
j
i + βM j

i

]
i = 1, 2, · · · , Ns − 1, j = 0, 1, · · · , Nt − 1,

(12)

Dj+1
i −Dj

i

ht
= rj

M j
i

1 +M j
i

M j
i (1−Dj

i )− µ
jDj−θ

i

i = 0, 1, · · ·Ns, j = 0, · · · , Nt − 1,
(13)

where θ :=

⌈
∆0

ht

⌉
(in the numerical experiments we

shall use such a value of ∆0, so that ∆0/ht is a whole
number), and rj := r(tj), µj := µ(tj).

B. Approximation of the initial and boundary condi-
tions

We approximate the initial conditions exactly through
the functions given in (9):

M0
i = m0(ρi), C0

i = c0(ρi), D0
i = d0(ρi),

i = 0, 1, · · · , Ns;
Dj
i = 0, j = −θ,−θ + 1, · · · ,−1,

i = 0, 1, · · · , Ns.

(14)

The boundary conditions can be approximated with
the following finite difference formulae:
• for the left boundary we apply the following three-

point right-sided finite difference formula:

f ′(ρ) ≈ −3f(ρ) + 4f(ρ+ ∆ρ)− f(ρ+ 2∆ρ)

2∆ρ

• for the right boundary we apply the following
three-point left-sided finite difference formula:

f ′(ρ) ≈ 3f(ρ)− 4f(ρ−∆ρ) + u(ρ− 2∆ρ)

2∆ρ

Both formulae have local approximation error O(∆ρ2)
for sufficiently smooth functions f [28]. Thus, we
obtain the following finite difference approximations of
the boundary conditions:

M j
0 =

4M j
1 −M

j
2

3
, M j

Ns
=

4M j
Ns−1 −M

j
Ns−2

3
,

Cj0 =
4Cj1 − C

j
2

3
, CjNs

=
4CjNs−1 − C

j
Ns−2

3
.

5 10 15 20 25 30
ρ

-4

-2

0

2

4

6

8

10

Order of

Convergence

Fig. 2: Estimated order of convergence for the numerical
scheme (11)-(14).

C. Practical estimate of the order of convergence

We study the convergence of the finite difference
scheme numerically, by using Runge’s method over
three nested meshes [24,27]. We show second order of
convergence with respect to hs. Let us note that ht is
taken in the numerical experiments of the order O(h2

t )
from considerations of stability and, thus, we study the
convergence with respect to hs.

The core concept of the method is the following—we
solve the system numerically over three nested meshes
with step sizes hs, hs/2, and hs/4, respectively. If
we denote the approximate solution at the common
points of the three meshes (i.e., the nodes of the coarse
mesh) with yji,hs

, yji,hs/2
, and yji,hs/4

, respectively,
one can derive the following estimate of the order of
convergence p at a given point:

p ≈ log2

∣∣∣∣∣ y
j
i,hs
− yji,hs/2

yji,hs/2
− yji,hs/4

∣∣∣∣∣ .
Here, we present the results from one such experi-

ment, which is representative for all parameter values
that are further used in the paper (thus, we postpone the
assignment of specific values to the model parameters
until the next section, even though, formally speaking,
we present the results from a single numerical experi-
ment). To estimate the order of convergence we conduct
an experiment, which illustrates the convergence order
of the presented numerical scheme, given sufficiently
smooth initial conditions. Using Runge’s method, we
are able to show that in almost all nodes of the space
discretization at least second order of convergence is
observed (see Fig. 2).
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IV. NUMERICAL EXPERIMENTS

In this section, we present results from the imple-
mentation of the finite difference scheme, derived in
Section III. We set the following initial conditions:

m0(ρ) =
1

2

(
1

10
− ρ

R

)
+

, c0(ρ) = 0, d0(ρ) = 0,

corresponding to the presence of macrophages near the
centre of the lesion at time t = 0 with all oligo-
dendrocytes being still healthy. Let us further fix the
following parameter values, which are used in what
follows, unless stated otherwise:

β = 1.5, ε = 0.5, δ = 0.5, χ∞ = 15,

τ = 1, r = 6, ∆0 = 0.04.

The numerical domain is defined with T = 20, R =
20 and the discretization steps are chosen to be hs =
0.2, ht = 0.0039.

For all the figures, illustrating the results from the
numerical experiments, we have reverted back to di-
mensional variables in order to obtain more informa-
tive images of disease progression. Thus, let us note
that in dimensional quantities T = 20 corresponds
approximately to 13.2 days and R = 20 is equal to
roughly 5 mm. Since the authors of [10] give intervals
as estimations for the dimensional values of b̄/ν and
α/ν, we assume, for definiteness, these values to be
respectively b̄/ν = 10−6 and α/ν = 10−2.

A. Numerical study of the effect of remyelination
strength on the model solutions

First, we conduct several experiments to determine
the influence of the remyelination strength on the
quantity of destroyed oligodendrocytes. We assume for
those experiments that µ is a constant. We compare the
results for three possible values of µ: µ = 0 (i.e. no
remyelination), and µ = 1, µ = 10.

We present the results for the density of macrophages
at time t = T in Fig. 3. Here, there is no distinc-
tive difference in the quantitative behaviour (in terms
of number of clusters of macrophages and values of
the local maxima) for varying remyelination intensity.
However heterogeneities in the spatial distribution of
the macrophage clusters are observed.

For the cytokine distributions at time t = T , see Fig.
4. Here, in addition to the varying spatial distribution,
we can also clearly document significant quantitative
variation between the three experiments, specifically
that higher remyelination intensity leads to lower cy-
tokine levels.

μ=0 μ=1 μ=10

1 2 3 4 5
ρ (mm)

100

200

300

400

500

Macrophages

(cells per mm2)

Fig. 3: Density of macrophages for various values of µ at
time t = T (13.2 days).

μ=0 μ=1 μ=10

1 2 3 4 5
ρ (mm)

0.01

0.02

0.03

0.04

Cytokines

(pg per mm2)

Fig. 4: Cytokine concentrations for various values of µ for
t = T (13.2 days).

For the third cell species—the destroyed oligoden-
drocytes, a more detailed analysis is in order, since the
effects of the varying remyelination coefficent has a di-
rect relation to their concentration in contrast to the two
previous cell types. Furthermore, we aim to ultimately
recreate different MS types, and the most direct route
to that goal would be to better understand the most
direct cause (lack of myelin produced by functioning
oligodendrocytes) of the clinical symptoms observed.
The graphs for the destroyed oligodendrocytes at time
points t = 7.5, t = 12, t = 20 can be seen in Figures
5a–5c, respectively.

From these graphs, several effects of higher remyeli-
nation rates can be documented, namely:
• Slower demyelination;
• Faster remyelination of demyelinated areas;
• Larger level of recovery in areas experiencing
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(a) t = 7.5 (5 days)
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(b) t = 12 (7.9 days)
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(c) t = 20 (13.2 days)

Fig. 5: Progression of the density of destroyed oligodendro-
cytes for various values of µ

intensive remyelination;
• Lower demyelination levels in the most negatively

affected areas;
• Larger myelinated areas separating the more seve-

rely demyelinated ones.
The most obvious consequence of the introduction of
remyelination into the model is the overall significantly
lower levels of destroyed oligodendrocytes. A some-
what more indirect effect of the remyelinating term is
observed in the density of the macrophages and in the
concentration of cytokines. These are phenomena that
can hopefully be observed, once more clarity is present
on the mechanisms and quantification of remyelinating
processes.

Since the model assumes that cytokines are being
produced by destroyed oligodendrocytes, the simula-
tions with non-zero values for µ leads to lower cy-
tokine levels as a consequence of the fewer destroyed
oligodendrocytes observed due to remyelination. This,
in turn, would appear to also influence the diffusion-
based spatial dynamics of the cytokines, as visible from
Fig. 4.

The leftward shift of the cytokine levels’ extrema
appear to consequently influence the macrophages’
chemotactic processes by forming the clusters in differ-
ent positions as compared to the non-remyelinating case
(note how the maxima of the cytokine concentration
and macrophage density appear in what seem to be
identical positions for the different remyelination levels
in Figures 3 and 4).

Also worth pointing out is that higher remyelination
levels appear to result in overall slower processes of
disease progression.

Upon further inspection including longer periods of
time (i.e. more than 100 days) no equilibrium spatial
profile of the destroyed oligodendrocytes could be
observed for µ > 0 in contrast to the result proven
for the original model in [10]. In fact, the destroyed
oligodendrocytes appear to move in clusters towards
the focal point of the inflammation (i.e. ρ = 0)
with some pairs of clusters merging into a single one
while new clusters spontaneously arise from healthy
oligodendrocytes. Analogous behaviour is displayed by
the macrophages and cytokines. The results of these
numerical experiments lead us to believe that, although
still lacking an analytical proof, the modified model
tends to no steady state for this type of choice for the
parameters—including positive constant values for µ
and r (see Fig. 6). The latter observation could possibly
be connected to the relapses and remissions in the active
forms of MS as we further discuss in subsection IV-C.
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Fig. 6: Spatio-temporal plot of the destroyed oligodendrocyte
density for T = 150 (100 days) and µ = 10.

B. Numerical study of the effect of remyelination delay
on the model solutions

Now we shall study how varying the values of ∆0 af-
fects the model solutions. For the following experiments
the same parameter values as before were retained with
µ = 10. The large value for µ is chosen with the
prospect of stronger remyelination potentially reacting
more sensitively to delay variation and thus illustrating
the effects of ∆0 more clearly.

In the experiments we focus on the destroyed oligo-
dendrocytes due to their importance in disability de-
velopment and since the macrophages and cytokines
display analogous reaction to varying delay rates. We
compare three cases with ∆0 = 10ht, ∆0 = 20ht
and ∆0 = 40ht respectively, which translates to 37,
74 and 148 minutes in dimensional quantities. The
main consequence of larger ∆0 values is best seen
when two clusters are in the process of merging. These
phenomena are observed at an earlier moment in time
when ∆0 is large (see Fig. 7). This indicates that disease
progression for longer remyelination delays is faster
when compared to a faster recuperative reaction from
the CNS. Although the relationships between the re-
myelination delay with disease progression are still in-

Δ0=37 min Δ0=74 min

Δ0=148 min

1 2 3 4 5
ρ (mm)

100

200

300

400

Destroyed

Oligodendrocytes

(cells per mm2)

Fig. 7: Density of the destroyed oligodendrocytes for varying
∆0 values at t = 90.9, µ = 10.

sufficiently well understood, it would seem biologically
plausible that bigger delay in recuperative processes
would lead to more rapid disease progression, e.g due to
the longer initial period of uninterrupted degenerative
processes until the first effects of remyelination take
place, among other reasons.

The varying of the values µ and ∆0 is also of practi-
cal interest since older patients typically display weaker
regenerative processes [29] which would translate to
large values of ∆0 and smaller values for µ in terms of
our model.

C. Ability to describe different types of MS

A tool for measuring the extent of disease pro-
gression was developed in 1983 by neurologist John
Kurtzke [30]. Named the Extended Disability Status
Scale (EDSS), this scale takes into account examina-
tions of various functional systems in the brain and
yields a score ranging from 0—lack of any diagnosed
disability, to 10—death caused by the disease. We shall
most prominently distinguish between the following
types of MS:
• Relapsing-remitting MS (RRMS): This is the

most common form. Around 85% of people with
MS are initially diagnosed with RRMS. This type
of MS involves episodes of new or increasing
symptoms, followed by periods of remission, dur-
ing which symptoms go away partially or totally.

• Primary progressive MS (PPMS): Symptoms
worsen progressively, without early relapses or
remissions. Some people may experience times of
stability and periods when symptoms worsen and
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then get better. Around 15% of people with MS
have PPMS.

• Secondary progressive MS (SPMS): At first,
people will experience episodes of relapse and re-
mission, but then the disease will start to progress
steadily.

• Progressive-relapsing MS (PRMS): Patients ex-
perience gradual worsening of the symptoms as
in PPMS, but also superimposed relapses and
remissions are observed.

In a more recent 2014 work [31], a further mod-
ification to MS classification was presented without
coming in conflict or abolishing the established in 1996
disease subtypes. Essentially, the existing MS types
were further subdivided in accordance to their status
regarding the so called “disease activity” and “disease
progression”. Thus, the authors speak about active/non-
active and progressive/non-progressive disease, mean-
ing as follows:

• Active disease—relapses, acute or subacute epi-
sodes of new or increasing neurologic dysfunc-
tion followed by full or partial recovery, in the
absence of fever or infection.

• Progressive disease—steadily increasing object-
ively documented neurologic dysfunction/disabi-
lity without unequivocal recovery (fluctuations and
phases of stability may occur). In this work we
shall use the term “worsening” instead of “pro-
gressive” as to avoid confusion with the other
progressive disease types.

For our next simulations, we shall vary the model
parameters in order to show the highly enriched dy-
namics of the model (with respect to the model without
remyelination) and its ability to mirror more adequately
the different types of multiple sclerosis. In order to do
so, we monitor the temporal evolution of the destroyed
oligodendrocytes at various fixed distances from the
focal point, since it has been well established in neuro-
science that different parts of the brain relate to different
functionality and thus studying a localized part of the
CNS can be expected to be directly connected to con-
crete symptoms which can then be directly measured.

1) PPMS (non-active worsening MS): The primary-
progressive MS type is the only one well described by
the original model (i.e without remyelination), since it
obviously leads to monotonously increasing values of
d. For this reason we set the remyelinating coefficient
µ = 0, rendering the oligodendrocytes incapable of
recuperation once after being destroyed. All the other
parameters are the same as in the previous examples.
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Fig. 8: Evolution of the destroyed oligodendrocytes at a fixed
distance ρ = 3.8 (0.95 mm) from the lesions’ focal point in
PPMS, µ = 0.
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Fig. 9: Evolution of the destroyed oligodendrocytes at a fixed
distance ρ = 3.2 (0.8 mm) from the lesions’ focal point in
RRMS, µ = 10.

The results of the experiment are shown in Fig. 8
2) Benign RRMS (active and non-worsening MS):

For this experiment, we set µ = 10 and reuse all other
parameter values from previous simulations. In the case
of constant coefficients with a non-negative value for µ,
an interesting pattern is observed, and namely reminis-
cent of the relapses and remissions usually documented
on a macro-level (see Fig. 9). It should be noted that the
lack of significant residual damage after each relapse
can be linked to the benign MS type, a somewhat
loosely defined variant of the RRMS, characterized
by extremely slow to no disability accumulation and
asymptomatic periods between relapses [32].

3) SPMS (MS transitioning from active and non-
worsening to non-active and worsening): Our next goal
is to recreate a scenario, which emulates a transition
from a relapsing-remitting start with no significant
worsening after the first relapses to a progressive dis-
ease course, uninterrupted by relapses (namely, the
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Fig. 10: Evolution of the destroyed oligodendrocytes at a fixed
distance ρ = 0.6 (0.2 mm) from the lesions’ focal point in
SPMS, µ(t) = max(10(T − t)/T, 0).
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Fig. 11: Evolution of the destroyed oligodendrocytes at a fixed
distance ρ = 0.6 (0.2 mm) from the lesions’ focal point in
PRMS, µ(t) = max(10(T − t)/T, 0), r(t) = 60 t/T .

SPMS subtype).
For the purpose of recreating the CNS’s decreasing

remyelinating capacity, we utilise a monotonously de-
creasing function of time for the remyelinating coeffi-

cient and more precisely µ(t) = max

(
10
T − t
T

, 0

)
.

The results indeed show a qualitative behaviour close
to the desired one, as shown in Fig. 10. Note, that
the subtle increase in destroyed oligodendrocytes be-
tween the first and second relapse could indicate that
the reported “stability” between relapses in the initial
stages of SPMS might in fact prove to simply be a
misinterpretation of the much more slowly progressing
disability between these periods.

4) PRMS (active and worsening MS): As we aim
to recreate the final of the main MS types—PRMS,
we modify the damaging coefficient r to also be a
time-dependent function as opposed to being a constant.
More precisely we assume that r follows an increasing
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(a) SPMS and PRMS comparison at t = 10 (6.6 days).
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(b) SPMS and PRMS comparison at t = 33.3 (22 days).

Fig. 12: Comparison of the destroyed oligodendrocytes’ spa-
tial distribution for SPMS (µ(t) = max(10(T − t)/T, 0),
r(t) = 6) and PRMS (µ(t) = max(10(T − t)/T, 0),
r(t) = 60 t/T ).

linear law of the form r(t) = 60
t

T
. In this manner, in

retaining the other coefficient values from the previous
experiment, and more specifically the monotonously
decreasing remyelinating coefficient µ(t), we achieve
a behaviour of the destroyed oligodendrocytes, which
mimics the PRMS disease type, characterized by ongo-
ing continuous worsening, intertwined with concomi-
tant relapses, see Fig. 11. A comparison of the spatial
distribution of the destroyed oligodendrocytes at two
different time points for the SPMS and PRMS are given
in Fig. 12. Near disease onset the two types of MS
progress in a similar manner (see Fig. 12a), but after
a certain point the differences between them become
more apparent (see Fig. 12b). We can see that PRMS
disease progression is more rapid than in SPMS, which
is also a well documented clinical fact [33].
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Fig. 13: Numerical realisation of the model without (left, µ =
0) and with (right, µ = 1) a remyelination term. Destroyed
oligodendrocytes at time t = 20 (13.2 days).

D. Better agreement with experimental data

Next, we shall compare the results from the original
model (3) and the modified one (6) from another
point of view—their agreement with experimental data.
In Fig. 13 we compare the solutions of the models
with and without remyelination with parameter values
taken from the numerical experiments in section IV
and remyelination coefficients respectively µ = 0 and
µ = 1. Since we are mainly interested with the
progression of the disease, we depict only the graphs of
the destroyed oligodendrocytes. The result is visualised
for time t = 20.

As seen from the illustrations, the effects of re-
myelination lead to a much steeper slope between the
remyelinated and demyelinated zones, as well as areas
of the nervous system that remain almost practically
unscathed. This is much more strongly reminiscent
of the images of the nervous system observed in pa-
tients with Baló’s concentric sclerosis (see Fig. 14a).
Fig. 14b compares the results obtained from the model
respectively with and without remyelination, with the
former bearing a significantly larger resemblance to
the experimentally obtained images, mainly due to the
presence of completely myelinated areas as is the case
in Fig. 14a, while the original models displays only
partially or totally demyelinated areas.

V. CONCLUSION AND DISCUSSION

In the current work, we have proposed a modification
of an existing PDE model of multiple sclerosis in order
to enable the observance of a wider variety of MS
subtypes by the means of a single mathematical model.
We have achieved this mainly through the addition
of a remyelination term, which in turn relies upon a
time delay operator for the purpose of modelling the
organism’s latency in reacting to the accrual of CNS
damage. Also a key assumption of our modification to
the model was to allow for the respective coefficients of
demyelination and remyelination intensity to vary over

(a) Lesions in Baló’s concentric sclerosis [34].

(b) Baló’s disease, as represented by the destroyed oligodendrocytes
d at time t = 20 (13.2 days), obtained in the numerical experiments
without (left, µ = 0) and with (right, µ = 1) remyelination.
The grey scale is defined as follows. White corresponds to no
destroyed oligodendrocytes, while black corresponds to completely
demielynated areas.

Fig. 14: Comparison between the observed CNS damage
in Baló’s concentric disease and the results yielded by the
numerical simulation (white areas represent more severe
oligodendrocyte damage).

time, a property of MS which has been documented e.g.
regarding the decreasing intensity of the inflammatory
reactions and recuperation in SPMS [35].

The model, in its new form, was capable of display-
ing behaviour, qualitatively reminiscent of that found in
RRMS, PPMS, SPMS and PRMS which encompasses
all of the most commonly described types of MS. How-
ever, numerous challenges in regards to “perfecting” the
modelling of MS still remain unresolved and require
intensive future study and consideration.

From a medical point of view, the underlying pro-
cesses need to be more thoroughly studied and de-
scribed for the purpose of further modifying the model’s
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equations to more truthfully describe the real interac-
tions between the main agents involved in MS. This
would in all likelihood contribute to the elimination
of inaccuracies from the model’s solution such as the
observed minima with close to zero values preceding
the relapses in e.g. Figures 10 and 11.

Once more light has been shed on the mechanisms
behind the pathogenesis of MS and a more suitable
model has been formulated, one of the next steps would
be to examine each of the parameter’s influence on the
results of the simulation, so that the model will not
only be capable of displaying satisfactory qualitative
behaviour but also more realistic quantitative results can
be obtained, making it possible to predict the disease
progression in individual-specific cases.

From a mathematical point of view, further develop-
ment of the theory behind delay differential equations
is necessary in order to better evaluate the practical
properties of such models, such as conducting stability
analysis and determining the conditions for convergence
or monotonicity for difference schemes, applied to the
model.
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