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Abstract: We consider a mathematical continuous-time
model for biodegradation of 4-chlorophenol and sodium
salicylate mixture by the microbial strain Pseudomonas
putida in a chemostat. The model is described by a
system of three nonlinear ordinary differential equations
and is proposed for the first time in the paper [Y.-
H. Lin, B.-H. Ho, Biodegradation kinetics of phenol and 4-
chlorophenol in the presence of sodium salicylate in batch
and chemostat systems, Processes, 10:694, 2022], where the
model is only quantitatively verified. This paper provides a
detailed analysis of the system dynamics. Some important
basic properties of the model solutions like existence,
uniqueness and uniform boundedness of positive solutions
are established. Computation of equilibrium points and
study of their local asymptotic stability and bifurcations in
dependence of the dilution rate as a key model parameter
are also presented. Thereby, particular intervals for the
dilution rate are found, where one or three interior (with
positive components) equilibrium points do exist and pos-
sess different types of local asymptotic stability/instability.
Hopf bifurcations are detected leading to the occurrence
of stable limit cycles around some interior equilibrium
points. A transcritical bifurcation also exists and implies
stability exchange between an interior and the boundary
(washout) equilibrium. The results are illustrated by lots
of numerical examples.

Keywords: 4-chlorophenol and sodium salicylate mix-
ture, Biodegradation, Chemostat model, SKIP kinetics,
Equilibrium points, Stability analysis, Hopf bifurcations,
Numerical simulation

I. INTRODUCTION

Phenol, phenolic derivatives and their mixtures are
among the extremely toxic pollutants, arising as ef-
fluents from many industrial processes and affecting
the environment and the human health [1, 2]. Sodium
salicilate (SA) is recently also qualified as a typical
contaminant in wastewater although its usage as a drug
derivative in medicine and as preservative in foods pro-
duction (cf. e. g. [3] and the references therein). Among
the many effluent treatment processes like chemical,
physical, physicochemical, etc., biological degradation
of chemical organic mixtures is known to be the most
effective and efficient technology in terms of costs,
time and performance. Various specific microorganisms
such as Aspergillus awamori, Arthrobacter, Candida
tropicalis, Gliomastix indicus, Pseudomonas putida,
Rhodococcus, Trametes hirsute, and many others are
recently successfully used to degrade the pollutants up
to prescribed ecological norms [4–10]. Microorganisms
ability to remove toxic organic compounds has been
mostly studied at lab-scales in batch systems, whereas
investigations performed in continuous-time systems
(continuously stirred bioreactors or chemostats) are of
much smaller number.

One of the most important characteristics in chemo-
stat cultivation is the dilution rate D. In practice, D
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is defined as the flow of medium per time over the
volume of the culture in the reactor and can be directly
manipulated by the experimenter. For that reason a
large number of studies is devoted to investigate the
effect of D on the long-term behavior of the chemostat
dynamics. Among the rich literature we can mention
e. g. the books [11,12]. Using D as a control parameter
is considered in [13–15] and applied to a bioreactor
model for simultaneous degradation of phenol and p-
cresol [13,14] as well as of phenol and SA mixture [15]
in industrial wastewater.

Biodegradation of 4-chlorophenol (4-CP) and SA
mixture by the strain Pseudomonas putida (P. putida)
is reported in [16–19], where series of batch tests are
conducted and used to determine the parameters in
the kinetic growth models. The high biodegradation
rate of 4-CP and SA by P. putida is established in
details by Lin and Ho in [10]. Experimental results
show that P. putida cells are not able to degrade 4-
CP alone due to its toxicity. However, the addition of
SA to 4-CP significantly enables the biodegradation of
the whole mixture by P. putida microorganisms. The
authors present in their paper [10] for the first time a
continuous-time (chemostat) model for biodegradation
of the 4-CP and SA mixture by the strain P. putida. It
is shown that the experimental results in the chemostat
system fit well with the model prediction for a particular
value of the dilution rate D = 0.04.

Here we consider the chemostat model for biodegra-
dation of 4-CP and SA mixture by the strain P. putida
proposed in [10]. To our knowledge, till now this model
has not yet been investigated mathematically. This
paper aims to perform a detailed qualitative analysis
of the model solutions.

The paper is structured in the following way. Section
II presents shortly the mathematical model for biodegra-
dation of 4-chlorophenol and sodium salicylate mixture
by the strain Pseudomonas putida, taken from [10].

Section III reports on basic and important properties
of the model solutions, namely existence and uniform
boundedness of nonnegative solutions.

Section IV is devoted to computation of the equilib-
rium points and investigation of their local asymptotic
stability. Depending on the values of the parameter D
it is shown numerically, that the model can possess up
to three interior (with positive components) and one
boundary (washout with respect to biomass) equilib-
rium points.

Section V presents numerical examples as illustration
of the model dynamics. All calculations in Sections IV
and V are carried out in the computer algebra system

Maple using its computational and visualization tools.
The last Section VI contains discussion and some

concluding remarks.

II. THE CHEMOSTAT MODEL

The chemostat model for biodegradation of the bi-
nary mixture of 4-chlorophenol (4-CP) and sodium sali-
cylate (SA) by the strain Pseudomonas putida, proposed
and experimentally validated in [10], is described by
the following system of nonlinear ordinary differential
equations

dSA(t)

dt
= D(S0

A − SA(t))

− µSA(SA(t), SCP (t))X(t), (1)
dSCP (t)

dt
= D(S0

CP − SCP (t))

− µCP (SCP (t))X(t), (2)
dX(t)

dt
= (µX(SA(t), SCP (t))−D)X(t), (3)

where µSA(SA, SCP ) and µCP (SCP ) are the degrada-
tion rates of sodium salicylate (SA) and 4-chlorophenol
(4-CP) by the strain P. putida, and µX(SA, SCP ) is
the specific growth rate of P. putida cells on binary
substrates SA and 4-CP. These kinetic functions are
described by the following analytical expressions [10]

µSA = µSA(SA, SCP ) =
kASA

KSA + SA +
S2
A

KI,A
+

S2
CP

ICP

,

µCP = µCP (SCP ) =
kCSCP

KCP + SCP +
S2
CP

KI,CP

,

µX = µX(SA, SCP ) =
µm,ASA

KSA + SA +
S2
A

KI,A

− kd,A(1 +md,CPSCP ).

The meaning of the state variables SA, SCP , X and
of the model parameters is summarized in Table I. The
numerical values in the last column are obtained by
laboratory experiments and given in [10].

The function µSA(SA, SCP ) presents the so called
SKIP (Sum Kinetics with Interaction Parameters,
cf. [4]) model, where the SA utilization is inhibited
by 4-CP, µCP (SCP ) is described by the well known
Haldane law, and does not incorporate inhibition by
SA. The specific growth rate µX(SA, SCP ) is presented
as a difference of a Haldane function and a second
term, representing the toxicity of 4-CP on the P. putida
cells by a maintenance/death quantity: kd,A is the
endogenous decay coefficient of cells on SA alone, and
md,CP is a decay constant due to 4-CP (cf. [10] and the
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Table I: Model variables and parameters

Definition Value
SA Sodium salicylate (SA) concentration [mg/L] –
SCP 4-chlorophenol (4-CP) concentration [mg/L] –
X Cells concentration [mg/L] –
D Dilution rate [h−1] –
S0
A Influent SA concentration [mg/L] 85
S0
CP Influent 4-CP concentration [mg/L] 12
kA Maximum specific degradation rate of SA by cells [mg SA/mg cell-h] 0.564
KSA Half-saturation constant of SA [mg/L] 71.7
KI,A Inhibition constant of SA [mg/L] 3178.2
ICP Interaction parameter of 4-CP to SA [mg/L] 0.355
kC Maximum specific degradation rate of 4-CP by cells [mg 4-CP/mg cell-h] 0.189
KCP Half-saturation constant of 4-CP [mg/L] 1.106
KI,CP Inhibition constant of 4-CP [mg/L] 0.977
µm,A Maximum specific growth rate of cells on SA [h−1] 0.247
kd,A Decay coefficient of cells on SA [h−1] 1.635× 10−4

md,CP Decay constant due to 4-CP [L/mg] 6.11

references therein). It is shown in [10] that these kinetic
models give a good fit to the experimental results of
4-CP and SA biodegradation for a particular value of
D = 0.04.

III. BASIC PROPERTIES OF THE MODEL SOLUTIONS

In this section we investigate important properties of
the solutions of system (1)–(3) ensuring adequacy of
the dynamic model and its ability to describe a real-life
process.

Theorem 1. The nonnegative cone and the interior of
the nonnegative cone in R3 are positively invariant for
the model (1)–(3).

Proof: If X(τ) = 0 at some time moment τ ≥ 0
then equation (3) implies that X(t) = 0 for all t ≥ 0
due to uniqueness of solutions of Cauchy’s problem
(cf. e. g. [20], Chapter 1). Then the model reduces to

dSA(t)

dt
= D(S0

A − SA(t)),

dSCP (t)

dt
= D(S0

CP − SCP (t)),

which solutions are

SA(t) = S0
A + (S0

A − SA(0))e−Dt,

SCP (t) = S0
CP + (S0

CP − SCP (0))e−Dt.

Obviously, SA(t) → S0
A and SCP (t) → S0

CP expo-
nentially as t → ∞. Thus the face {SA ≥ 0, SCP ≥
0, X = 0} is invariant under the flow (1)–(3).

If X(0) > 0 then by equation (3) it follows

X(t) = X(0)e
∫ t
0
(µX(SA(θ),SCP (θ))−D)dθ,

which means that X(t) > 0 for all t > 0.
If SA(τ) = 0 for some τ ≥ 0 then equation (1)

implies
dSA(t)

dt
= DS0

A > 0.
Similarly, if SCP (τ) = 0 for some τ ≥ 0 then

by equation (2),
dSCP (t)

dt
= DS0

CP > 0 holds true.
Therefore the vector field of (1)–(3) points inside the
positive cone in R3, i. e. all model solutions are positive.
This completes the proof of Theorem 1.

Denote

Ω = {(SA, SCP , X) : SA > 0, SCP > 0, X > 0} .

In what follows we shall consider initial conditions for
(1)–(3) in Ω.

In the proof of the next theorem we need the follow-
ing assumption.

Assumption A1. There exist a time moment T > 0 so
that the inequality

µX(SA(t), SCP (t)) ≤ µSA(SA(t), SCP (t))

is fulfilled for all time t ≥ T .

Remark. Assumption A1 is technical and is used in
the proof of Theorem 2. It can also be justified by the
following reasoning. As already mentioned before, the
P. putida cells could not degrade the 4-CP alone due
to the strong toxicity of the latter, which is described
by the term −kd,A(1 + md,CPSCP ) in the expression
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Fig. 1: Graph of the function µX(SA, SCP )−µSA(SA, SCP )
for SA ∈ [0.1, S0

A], SCP ∈ [0.1, 7.5].

of µX(SA, SCP ) (cf. [10] and the references therein).
For that reason SA is used as growth substrate for
the cometabolic biodegradation of 4-CP by P. putida
cells [16]. Moreover, the growth rate of SA should be
higher to neutralize the toxicity of 4-CP and in this
way to enable the growth of the microorganisms and
their ability to degrade both SA and 4-CP in the culture
medium. For the specific growth rate of cells on SA
alone in the absence of 4-CP (i. e. with SCP = 0),
using the fact that µm,A < kA (see Table I) we obtain

µX(SA, 0)− µSA(SA, 0) =
(µm,A − kA)SA

KSA + SA +
S2
A

KI,A

− kd,A < 0.

It is then reasonable to expect that appropriate re-
duced values of SCP < S0

CP do exist which could
retain the inequality µX(SA, SCP ) ≤ µSA(SA, SCP )
after some time moment T , so that Assumption A1
is meaningful. Using the numerical coefficient values
in Table I, Figure 1 shows an example where the
difference µX(SA, SCP ) − µSA(SA, SCP ) is negative
if SCP ≤ 7.5 < S0

CP = 12.

Theorem 2. Let Assumption A1 be fulfilled. Then for
any starting point (SA(0), SCP (0), X(0)) ∈ Ω, all
model solutions are uniformly bounded and thus exist
for all time t > 0.

Proof: From equation (2) we have

dSCP (t)

dt
= D(S0

CP − SCP (t))− µCP (SCP (t))X(t)

≤ D(S0
CP − SCP (t)).

Multiplying both sides of the latter inequality by eDt

we obtain consecutively

eDt
dSCP (t)

dt
+ eDtDSCP (t) ≤ eDtDS0

CP ,

d

dt

(
eDtSCP (t)

)
≤ eDtDS0

CP ,∫ t

0

d

dξ

(
eDξSCP (ξ)

)
dξ ≤ DS0

CP

∫ t

0

eDξdξ,

eDtSCP (t)− SCP (0) ≤ S0
CP (eDt − 1),

SCP (t) ≤ e−DtSCP (0) + S0
CP (1− e−Dt).

The last inequality implies lim supt→∞SCP (t) ≤ S0
CP .

Since SCP (t) is positive, it follows that it is uniformly
bounded and thus exists for all time t ∈ (0,+∞).

Since SA(t), SCP (t) are positive for all t > 0, it
follows that µSA(SA(t), SCP (t)) is also positive for
all t > 0. Using equation (1), in a similar way as above
we obtain

SA(t) ≤ e−DtSA(0) + S0
A(1− e−Dt),

which means that lim supt→∞SA(t) ≤ S0
A, i. e. SA(t)

is uniformly bounded and exists for all time t ∈
(0,+∞).

Suppose now that Assumption A1 is fulfilled, i. e.
there exists a time moment T > 0, so that

µX(SA(t), SCP (t))− µSA(SA(t), SCP (t)) ≤ 0

for each t ≥ T is valid. Denote W (t) = SA(t) +X(t).
Then by equations (1) and (3) we obtain

dW (t)

dt
=

d

dt
SA(t) +

d

dt
X(t)

= D(S0
A − SA(t))− µSA(SA(t), SCP (t))X(t)

+ µX(SA(t), SCP (t))X(t)−DX(t)

= D(S0
A − SA(t)−X(t)) + µX(SA(t), SCP (t))X(t)

− µSA(SA(t), SCP (t))X(t)

≤ D(S0
A −W (T )).

The latter inequality implies that

W (t) ≤ S0
A + (W (0)− S0

A)e−Dt for all t ≥ T,

which means that lim supt→∞W (t) ≤ S0
A. Since SA

and X are positive, and SA is upper bounded, the latter
inequality shows that X(t) is uniformly bounded as
well and thus exists for all time t ≥ 0. This completes
the proof of Theorem 2.
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IV. EQUILIBRIUM POINTS AND THEIR LOCAL
ASYMPTOTIC STABILITY

The equilibrium points of model (1)–(3) are solutions
with respect to (SA, SCP , X) of the following nonlinear
algebraic system, obtained from (1)–(3) by setting in the
latter the right-hand sides equal to zero:

D(S0
A − SA)− µSA(SA, SCP )X = 0, (4)

D(S0
CP − SCP )− µCP (SCP )X = 0, (5)

(µX(SA, SCP )−D)X = 0. (6)

Substituting SA = S0
A, SCP = S0

CP in equations (4)–
(5) obviously leads to X = 0 for any D > 0. We denote
this equilibrium point by E0 = (S0

P , S
0
A, 0) and call it

boundary or washout equilibrium.
Assume that X 6= 0. The third equation (6) implies

µX(SA, SCP )−D = 0.

Substituting in the latter SA = S0
A and SCP = S0

CP

we obtain
µX(S0

A, S
0
CP ) = D.

This value of D also leads to X = 0 as an equilibrium
component of the model. We denote

Dmax := µX(S0
A, S

0
CP ).

Using the numerical values in Table I we get

Dmax ≈ 0.11991488.

In what follows we shall show by numerical com-
putations that there exist one or three interior equi-
libria in dependance of D in different subintervals of
(0, Dmax). The computations are carried out in the
computer algebra system Maple using the procedure
solve for solving a system of nonlinear algebraic
equations. We proceed in the following way. A mesh
of points {Dj} in the interval (0, Dmax] is constructed
and for each value D = Dj the system (4)–(6) is solved
numerically, looking for solutions (SA, SCP , X), such
that 0 < SA ≤ S0

A, 0 < SCP ≤ S0
CP , X > 0. These

solutions will be called admissible. The numerical
computations deliver that there exist four values of D,
0 < D1 < D2 < D3 < D4 < Dmax,

D1 ≈ 0.09348963, D2 ≈ 0.095396073,

D3 ≈ 0.09539752, D4 ≈ 0.0960529898,

such that
(i) If D ∈ (0, D1) then there exists a unique interior

admissible equilibrium.
(ii) If D ∈ [D1, D2] ∪ (D2, D3] then there exist three

admissible interior equilibrium points.

(iii) If D ∈ (D3, D4]∪ (D4, Dmax) then there exists a
unique admissible interior equilibrium.

(iv) If D ≥ Dmax then the washout equilibrium E0 is
the unique steady state.

More details on the existence of the equilibrium
points will be given below after investigating their local
asymptotic stability, see items (S1) to (S6).

The local asymptotic stability of an equilibrium point
is determined by the signs of the real parts of the
eigenvalues of the Jacobian evaluated at this equilib-
rium, or equivalently by the roots of the corresponding
characteristic polynomial (cf. [21], Chapters 1 and 3).

The Jacobian J = J(SA, SCP , X) related to equa-
tions (4)–(6) has the form

J =−D −
∂µSA

∂SA
X − ∂µSA

∂SCP
X −µSA(SA, SCP )

0 −D − ∂µCP

∂SCP
X −µCP (SCP )

∂µX

∂SA
X −kd,Amd,CPX µX(SA, SCP )−D


Denote by |J−λI3| = det(J−λI3) the characteristic

polynomial of J evaluated at some equilibrium point,
here I3 is the 3-dimensional identity matrix, and λ is a
complex number. Obviously, |J − λI3| is a polynomial
of 3rd degree with respect to λ, which always possesses
one real root, the other two roots are either real or a
pair of complex conjugate values. Consider first the
characteristic polynomial |J(E0) − λI3| evaluated at
the boundary equilibrium E0 = (S0

A, S
0
CP , 0). It is

straightforward to see that

|J(E0)− λI3| = (−D − λ)2
(
µX(S0

A, S
0
CP )−D − λ

)
= (D + λ)2 (Dmax −D − λ) .

Obviously, λ1,2 = −D < 0 are two real roots of the
above characteristic polynomial. The third root is also
real, λ3 = Dmax −D, and its sign satisfies

λ3 = Dmax −D

 > 0, if D < Dmax,
< 0, if D > Dmax,
= 0, if D = Dmax.

Therefore

E0 is


locally asymptotically unstable
(unstable node), if D < Dmax,

locally asymptotically stable
(stable node), if D > Dmax.

At D = Dmax the eigenvalue λ3 becomes equal to zero,
so E0 can undergo a bifurcation at this value of D.
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The eigenvalues of each interior equilibrium
point are determined numerically, using the al-
ready computed values of the corresponding equilib-
rium components on the mesh {Dj}. The compu-
tations are carried out in Maple using the facilities
of the package VectorCalculus (the procedure
Jacobian) and the package LinearAlgebra (pro-
cedure CharacteristicPolynomial) as well as
solve for finding the solutions of the latter polyno-
mial.

Let us remind, that one real root of the characteristic
polynomial for each interior steady state is always
negative, thus the corresponding local stability depends
on the signs of the real parts of the other two roots. The
numerical computations deliver the following results,
which are described below in items (S1) to (S6).

(S1) If D ∈ (0, D1), then there is a unique admissible
interior equilibrium E1, and it is locally asymptotically
stable. For relatively small values of D, E1 has three
negative real eigenvalues, so E1 is a stable node. For
values of D near to (but less than) D1, two of the
real eigenvalues are transformed into a pair of complex
conjugate eigenvalues with negative real part, the third
eigenvalue remains real and negative, thus E1 is a stable
focus.

At D = D1, two new equilibrium points are ‘born’,
E2 ≡ E3 ≈ (46.626, 3.121, 19.977), E1 ≈ (44.789,
0.80632, 17.702).

(S2) If D ∈ (D1, D2), then there exist three admissi-
ble equilibrium points, E1, E2 and E3. The steady state
E1 is a stable focus, with one real negative eigenvalue
and a pair of complex conjugate eigenvalues with
negative real part. E2 and E3 are locally asymptotically
unstable, E2 is a saddle, having one positive and two
negative real eigenvalues. For values of D near to (but
greater than) D1, E3 is a saddle possessing one negative
and two positive real eigenvalues, if D is close to (but
less than) D2, then E3 becomes a saddle-focus, having
one real negative eigenvalue and a pair of complex
conjugate eigenvalues with positive real part.

At D = D2, the pair of complex conjugate eigen-
values of E1 crosses the imaginary axis form left to
right, i. e. the real parts become equal to zero, so E1

undergoes a supercritical Hopf bifurcation, leading to
the occurrence of a stable limit cycle and sustainable
oscillation around it thereafter.

(S3) If D ∈ (D2, D3), then the three interior equi-
librium points are locally asymptotically unstable. E1

is a saddle-focus with one negative real eigenvalue and
a pair of complex conjugate eigenvalues with positive
real part. E2 is a saddle having three real eigenvalues—
one positive and two negative. E3 is a saddle-focus
with one negative real eigenvalue and a pair of complex
conjugate eigenvalues with positive real part.

At D = D3, the two equilibria E1 and E2 coalesce
and disappear thereafter, so that only the equilibrium
E3 continues to exist for D > D3.

(S4) If D ∈ (D3, D4) then the unique admissible
equilibrium E3 is a saddle-focus (locally asymptotically
unstable), having one real negative eigenvalue and a
pair of complex conjugate eigenvalues with positive real
part.

At D = D4, the real parts of the complex conjugate
eigenvalues of E3 cross the imaginary axis from right to
left (i. e. they become equal to zero), thus E3 undergoes
a subcritical Hopf bifurcation, leading to the occurrence
of a stable limit cycle around E3 just before D4.

(S5) If D ∈ (D4, Dmax) then the unique interior
equilibrium E3 is locally asymptotically stable. If D
is near to (but greater than) D4, then E3 changes into
a stable focus with one negative real eigenvalue and
a pair of complex conjugate eigenvalues with negative
real part.

For values of D relatively away from D4 and near
to Dmax, the pair of complex conjugate eigenvalues of
E3 is transformed into two negative real eigenvalues,
so E3 becomes a stable node.

At D = Dmax, the two equilibria E3 and E0

coincide and exchange stability, thus E3 undergoes a
transcritical bifurcation, leading to stability exchange
between E3 and E0.

(S6) If D > Dmax then the washout equilibrium E0

is the unique locally asymptotically stable equilibrium
of the model, having three real negative eigenvalues,
i. e. E0 is a stable node.

Items (S1) to (S6) are summarized in Table II for
better visibility.

Figures 2, 3 and 4 visualize the equilibrium com-
ponents of E1, E2 and E3 and their local asymptotic
stability. It is seen from these figures, that the inequali-
ties E1 < E2 < E3 are satisfied componentwise for all
D ∈ (D1, D3).

Below we will demonstrate the different stability
types of the equilibrium points taking particular numer-
ical values of the dilution rate D in accordance with
items (S1) to (S6).
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Table II: Stability and bifurcations of equilibrium points, where the following notations are used: StN—stable node, StF—
stable focus, Sad-F—saddle-focus, Sad—saddle, SpHB—supercritical Hopf bifurcation, SbHB—subcritical Hopf bifurcation,
TrB—transcritical bifurcation.

(0, D1) (D1, D2) D2 (D2, D3) (D3, D4) D4 (D4, Dmax) Dmax D > Dmax

E1 StN&StF StF SpHB Sad-F — — — — —
E2 — Sad Sad Sad — — — — —
E3 — Sad&Sad-F Sad-F Sad-F Sad-F SbHB StF&StN TrB —
E0 Sad Sad Sad Sad Sad Sad Sad TrB StN

Fig. 2: (a) SA-component of the interior equilibria for D ∈
(0, Dmax]. (b) Enlarged fragment of plot (a) in the region
[D1, D4]. Solid lines mark the stable branches, and dotted
lines mark the unstable branches of the equilibria.

Fig. 3: (a) SCP -component of the interior equilibria for D ∈
(0, Dmax]. (b) Enlarged fragment of plot (a) in the region
[D1, D4]. Solid lines mark the stable branches, and dotted
lines mark the unstable branches of the equilibria.
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Fig. 4: (a) X-component of the interior equilibria for D ∈
(0, Dmax]. (b) Enlarged fragment of plot (a) in the region
[D1, D4]. Solid lines mark the stable branches, and dotted
lines mark the unstable branches of the equilibria.

V. NUMERICAL SIMULATION OF THE MODEL
DYNAMICS

In this section we consider several numerical ex-
amples illustrating the dynamic behavior of the model
solutions for different values of D > 0 according to
items (S1) to (S6) and Table II. The simulations are
fulfilled in Maple using the procedure DEplot in the
package DEtools for solving a system of ODEs and
visualizing its solutions and trajectories.

Example 1. D = 0.04 ∈ (0, D1) = (0, 0.09348963).
According to item (S1), for this value of D there is a
unique locally asymptotically stable equilibrium point

E1 = (13.975632, 0.0990022, 30.911877), stable node,

having three real negative eigenvalues −0.040234675,
−0.169519608, −4.377294035.

As already mentioned before, the model (1)–(3) has
been validated only for this value of the dilution rate
D in [10]. There, the authors state that the solutions
approach in finite time the point F = (7.3, 0.58, 39.2),
called a steady state, but it is not so. Obviously, the
components of F are quite different from the ones of
E1.

Figure 5 illustrates the time evolution of SA(t),
SCP (t) and X(t) with starting point P1(0) = (SA(0),
SCP (0), X(0)) = (85, 12, 21), taken from [10]. It is
seen that the solution curves cross (even twice by
X(t)) or go close (to SA(t)) to the dotted horizontal
line corresponding to the point F , but do not stabilize
around the latter. As expected, the solutions approach
the stable node E1 for sufficiently large time t.

Figures 6 and 7 demonstrate the attractivity of the
equilibrium E1 with more initial conditions in the
set P1(0) = {(40, 0.2, 21), (9, 0.1, 25), (15, 0.01, 38),
(20, 0.3, 42)}.

Example 2.
D = 0.09345 ∈ (0, D1) = (0, 0.09348963). For this
value of D, relatively near to D1 (see item (S1)), the
equilibrium point is unique,

E1 = (44.755915, 0.802484, 17.714725), stable focus,

with one real negative eigenvalue and a pair of com-
plex conjugate eigenvalues with negative real part:
−0.326342, −0.0695014± 0.00448095i.

Figures 8 and 9 illustrate the dynamic behavior of
the model using the initial data in the set P2(0) =
{(84, 11, 21), (11, 0.1, 25), (15, 4, 38), (20, 0.3, 42)}.

Example 3. D = 0.09539 ∈ (D1, D2) = (0.09348963,
0.095396073). This value of D is near to (but less than)
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D2. According to item (S2) there are three equilibrium
points

E1 = (46.67302939, 1.27619548, 17.17288338),

stable focus,

E2 = (46.74561931, 1.36605468, 17.21665458),

saddle,

E3 = (49.47866269, 4.66718279, 22.25755272),

saddle-focus,

with eigenvalues to

E1 :− 0.12075918, −0.003430554± 0.02042685i,

E2 :− 0.11893152, −0.013142216, 0.029675853,

E3 :− 0.13434182, 0.0036402605± 0.0410774i.

Here, starting with initial data in the basin of attrac-
tion of E1 (i. e. in a neighborhood of E1), the solutions
are attracted by this locally asymptotically stable steady
state. Figure 10 illustrates damped oscillations around
E1 using the initial point P2(0) = (46.67, 1.27, 17.17).

Figure 11 shows sustainable oscillations around the
three equilibrium points E1, E2 and E3 when the
starting point P3(0) = (45, 5, 16.5) is relatively away
from the stable steady state E1. Since the numerical
components of E1 and E2 are very close to each other,
they are difficult to be distinguished in the plots. Please
note that the inequalities E1 < E2 < E3 are satisfied
componentwise, so that in each plot the horizontal
lines passing through the steady states components are
ordered from bottom to top respectively.

Figures 12, 13 and 14 show projections of sev-
eral trajectories in different phase planes using initial
data from the set P3(0) = {(45, 5, 16.5), (50, 1, 18),
(48, 6, 23), (55, 3, 42)}. Since the numerical compo-
nents of the equilibria E1 and E2 are very close to
each other, it seems from the top plots in each figure
that the trajectories pass though their corresponding
components. For that reason, the bottom plots in each
figure visualize sufficiently large fragments of the cor-
responding top plots to show that the trajectories do not
approach E1 and E2.

Example 4. D = 0.0953960741 ∈ (D2, D3) =
(0.095396073, 0.09539752). According to item (S2), at
this value of D, relatively near to (but grater than)
D2, the following three locally asymptotically unstable
equilibria exist

E1 = (46.69745375, 1.30036307, 17.18187872),

unstable focus,

E2 = (46.72951125, 1.34004418, 17.20117597),

saddle,

E3 = (49.48610141, 4.66987416, 22.26048696),

saddle-focus,

with eigenvalues to

E1 :− 0.12013495, 6.148532× 10−7 ± 0.0135992i,

E2 :− 0.0091122998, −0.11933523, 0.019457666,

E3 :− 0.13434881, 0.0036040251± 0.041098628i.

Figure 15 shows projections in different phase planes
of a stable limit cycle around E1 with initial point
P4(0) = (46.7, 1.3, 17.182) as a result of a supercritical
Hopf bifurcation.

Example 5. D = 0.0953969 ∈ (D2, D3) =
(0.095396073, 0.09539752). For this value of D, near
to D3, there exist the following three locally asymptot-
ically unstable equilibrium points (see item (S3)):

E1 = (46.70342177, 1.30692531, 17.18469175),

saddle-focus,

E2 = (46.72467428, 1.33323162, 17.19748187),

saddle,

E3 = (49.48711272, 4.67023984, 22.26088530),

saddle,

with eigenvalues to

E1 :− 0.11998495, 0.0008949218± 0.01099891i,

E2 :− 0.11945544, −0.0073855085, 0.016034111,

E3 :− 0.13434976, 0.003599103± 0.04110151i.

Figure 16 visualizes the solutions and the equilib-
rium components (horizontal lines) with starting point
P3(0) = (45, 5, 16.5). Similarly to Example 3 (see
Figure 11), the components of the equilibrium points
E1 and E2 are very close to each other, so that the
inequalities E1 < E2 < E3 should be taken into
account to distinguish their components order (from
bottom to top) in each plot.

Example 6. D = 0.0957 ∈ (D3, D4) = (0.09539752,
0.0960529898), near to D3. According to item (S4)
there is only one locally asymptotically unstable equi-
librium point

E3 = (49.85615931, 4.80058160, 22.39739731),

saddle-focus,

with eigenvalues

−0.13466673, 0.0018647634± 0.042019126i.
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Oscillating solutions around E3 are shown in Figure 17.

Example 7. D = 0.096052989 ∈ (D3, D4) =
(0.09539752, 0.0960529898). There is a unique equi-
librium point

E3 = (50.28183762, 4.94411687, 22.53466279),

unstable focus,

since its eigenvalues are

−0.13496827, 4.01863506× 10−9 ± 0.042801144i.

For this value of D, near to (but less than) D4,
cf. item (S4), a stable limit cycle around the unstable
focus E3 occurs as a result of a subcritical Hopf
bifurcation at D4, see Figure 18.

Example 8. D = 0.098 ∈ (D4, Dmax) =
(0.0960529898, 0.11991488), near to D4. In this case
(see item (S5)), there is only one locally asymptotically
stable equilibrium point

E3 = (52.60034923, 5.63859964, 22.98228780),

stable focus,

which eigenvalues are

−0.13578529, −0.0084167520± 0.043929975i.

The solutions and the corresponding equilibrium
components are shown in Figure 19.

Example 9. D = 0.11 ∈ (D4, Dmax) =
(0.0960529898, 0.11991488), near to Dmax. According
to item (S5), there exists a unique locally asymptotically
stable equilibrium

E3 = (68.24992090, 9.05274083, 17.81895944),

stable node,

since its eigenvalues are

−0.019430357, −0.060837981, −0.13004378.

The solutions and the corresponding equilibrium
components are shown in Figure 20.

Example 10. D = 0.13 > Dmax = 0.11991488. The
boundary equilibrium E0 = (S0

A, S
0
CP , 0) = (85, 12, 0)

is the unique locally asymptotically stable equilibrium,
a stable node, since its eigenvalues are −0.13, −0.13,
−0.010085117, cf. item (S6). Solutions with three
initial points in the set

P4(0) = {(84, 11, 21), (50, 6, 15), (30, 3, 5)}

and the corresponding equilibrium components are
shown in Figure 21.

Fig. 5: Example 1: D = 0.04 ∈ (0, D1). Starting with the
initial point P1(0) = (85, 12, 21), the solutions SA(t) (top),
SCP (t) (middle) and X(t) (bottom) tend to the equilibrium
E1 as t → ∞. Initial conditions are denoted by circles on
the vertical axis.
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Fig. 6: Example 1: D = 0.04 ∈ (0, D1). Time evolution
of SA (top), SCP (middle) and X (bottom) with initial
conditions in the set P1(0), denoted by circles.

Fig. 7: Example 1: D = 0.04 ∈ (0, D1). Projections of the
trajectories in different phase planes with initial conditions in
the set P1(0), denoted by circles.
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Fig. 8: Example 2: D = 0.09345 ∈ (0, D1). Solutions SA(t),
SCP (t), X(t) with initial conditions in the set P2(0), denoted
by circles.

Fig. 9: Example 2: D = 0.09345 ∈ (0, D1). Projections of
the trajectories in different phase planes with initial conditions
in the set P2(0), denoted by circles.
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Fig. 10: Example 3: D = 0.09539 ∈ (D1, D2). Solutions:
(a) SA(t), (b) SCP (t), and (c) X(t) with initial point
P2(0) = (46.67, 1.27, 17.17). The dash lines pass trough the
corresponding components of the equilibrium point E1.

Fig. 11: Example 3: D = 0.09539 ∈ (D1, D2). Solutions:
(a) SA(t), (b) SCP (t), and (c) X(t) with initial point
P3(0) = (45, 5, 16.5). The horizontal lines correspond to
the components of E1 (solid red line), E2 (dash line), E3

(dash-dot line).
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Fig. 12: Example 3: D = 0.09539 ∈ (D1, D2). Projections
of trajectories in the phase plane (SA, SCP ) using initial data
in P3(0). The bottom plot presents enlarge fragment of the
top plot. E1 is marked by the red solid box, E2—by the black
box, and E3—by the green solid circle.

Fig. 13: Example 3: D = 0.09539 ∈ (D1, D2). Projections
of trajectories in the phase plane (SA, X) using initial data in
P3(0). The plot below presents enlarge fragment of the top
plot. E1 is marked by the red solid box, E2—by the black
box, and E3—by the green solid circle.
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Fig. 14: Example 3: D = 0.09539 ∈ (D1, D2). Projections
of trajectories in the phase plane (SCP , X) using initial data
in P3(0). The plot below presents enlarge fragment of the top
plot. E1 is marked by the red solid box, E2—by the black
box, and E3—by the green solid circle.

Fig. 15: Example 4: D = 0.0953960741 ∈ (D2, D3).
Projections of the stable limit cycle around E1 as a result of
supercritical Hopf bifurcation in different phase planes with
initial point P4(0) = (46.7, 1.3, 17.182). The circles denote
projections of the initial point P4(0).
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Fig. 16: Example 5: D = 0.0953969 ∈ (D2, D3). Solutions
(a) SA(t), (b) SCP (t), and (c) X(t) with initial point
P3(0) = (45, 5, 16.5). The horizontal lines pass through the
components of the equilibrium points: E1—solid red line,
E2—dash line, E3—dash-dot line.

Fig. 17: Example 6: D = 0.0957 ∈ (D3, D4). Solutions
with initial point P5(0) = (84, 11, 21). The dash lines pass
through the corresponding components of E3.
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Fig. 18: Example 7: D = 0.096052989 ∈ (D3, D4).
Projections of the stable limit cycle around E3 as a result of
a subcritical Hopf bifurcation in different phase planes with
initial point P6(0) = (50.3, 4.9, 22.5). The circles in the plots
denote projections of the initial point.

Fig. 19: Example 8: D = 0.098 ∈ (D4, Dmax). Initial point
P7(0) = (84, 11, 10). Damped oscillations around the stable
focus E3. The dash-lines pass through the corresponding
components of E3. The circles mark the components of
P7(0).
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Fig. 20: Example 9: D = 0.11 ∈ (D4, Dmax), initial
point P5(0) = (84, 11, 21). The dash-lines pass through
the corresponding components of E3. The circles denote the
components of P5(0).

Fig. 21: Example 10: D = 0.13 > Dmax. Solutions with
three different initial points in the set P4(0). The dash-lines
pass through the corresponding components of E0. The circles
denote the components of the initial points.
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VI. DISCUSSION AND CONCLUSION

Biotechnological processes are highly complex pro-
cesses, involving living microorganisms which dynam-
ics is often unstable and not well known. Most of the
controlling and monitoring techniques available in the
literature are model-based and are successfully used in
recent decades to predict the behavior of the systems.

This paper provides an analysis of the continuous-
time model for biodegradation of 4-chlorophenol (4-
CP) and sodium salicylate (SA) mixture in a chemo-
stat by Pseudomonas putida cells, proposed for the
first time and experimentally validated in [10]. The
model is presented by a system of three nonlinear
ordinary differential equations involving different and
nonstandard types of kinetic models µSA(SA, SCP ),
µCP (SCP ) for degradation of SA and 4-CP by mi-
croorganisms as well as for the specific growth rate
µX(SA, SCP ) of the cells. Some important proper-
ties of the model solutions—positivity, uniqueness and
uniform boundedness—are established theoretically in
Section III, Theorems 1 and 2. By numerical com-
putations, performed in the computer algebra system
Maple, critical values 0 < D1 < D2 < D3 < D4 <
Dmax of the key model parameter D, the dilution rate,
are found, so that in the intervals (0, D1), (D1, D2),
(D2, D3), (D3, D4), (D4, Dmax) there exist one or
three interior (with positive components) admissible
equilibrium points. Local stability analysis of all equi-
libria is provided when D belongs to each one of the
above mentioned intervals. It is shown numerically that
the interior steady states possess different types of local
stability/instability. Two types of Hopf bifurcations—
supercritical and subcritical—of the interior equilibria
are also established for particular values of D. A bound-
ary (washout with respect to biomass) equilibrium E0

exists for all values of D > 0. It is shown that the
latter is locally asymptotically unstable if D < Dmax

and stable for D > Dmax. Moreover, at D = Dmax

a transcritical bifurcation occurs and leads to stability
exchange between an interior and the boundary steady
states. These results are summarized in Table II. The
dynamic behavior of the model solutions is illustrated
by several numerical examples for different values of
D in the environment of the software system Maple.

According to item (S1), for D ∈ (0, D1) =
(0, 0.09348963) there is a unique locally asymptoti-
cally stable equilibrium point E1, but with different
stability properties. It can be shown numerically, that
if D ≤ 0.0746, then E1 is a stable node, but for
0.0746 < D < D1, E1 becomes a stable focus. In

practical applications it is recommended to use values
of D ≤ 0.0746, since then the model solutions stabilize
to the corresponding equilibrium in reasonable time,
cf. Examples 1 and 2, otherwise some oscillations of
the model solutions are possible, which may cause
unpredictable behavior of the process.

At D = 0.10845, the unique equilibrium is E3 =
(66.00867405, 8.62409201, 19.28481020). If 0.10845
≤ D < Dmax then E3 is a stable node, whereas if
D4 < 0.10845 < Dmax then E3 is a stable focus
(see item (S5)). In the first case of a stable node
the model solutions will stabilize to E3 in relatively
small time without any oscillations (like in Figure 20).
However, for these values of D, the SA and 4-CP
concentrations in the chemostat remain rather high (and
become higher with increasing D) and may not fall into
the prescribed ecological bounds, which is not desirable
in practical applications. That is why smaller values of
D < 0.0746 are recommended to control a real-life
chemostat (bioreactor) system.
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