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Abstract: Several discrete models for diffusive motion
are known to exhibit checkerboard artifacts, absent in
their continuous analogues. We study the origins of the
checkerboard artifact in the discrete heat equation and
show that this artifact decays exponentially in time when
following either of two strategies: considering the present
state of each lattice site to determine its own future
state (self-contributions), or using non-square lattice ge-
ometries. Afterwards, we examine the effects of these
strategies on nonlinear models of biological cell migration
with two kinds of cell-cell interactions: adhesive and polar
velocity alignment. In the case of adhesive interaction, we
show that growing modes related to pattern formation
overshadow artifacts in the long run; nonetheless, artifacts
can still be completely prevented following the same
strategies as in the discrete heat equation. On the other
hand, for polar velocity alignment we show that artifacts
are not only strengthened, but also that new artifacts
can arise in this model which were not observed in
the previous models. We find that the lattice geometry
strategy works well to alleviate artifacts. However, the
self-contribution strategy must be applied more carefully:
lattice sites should contribute to both their own density
and velocity values, and their own velocity contribution
should be high enough. With this work, we show that
these two strategies are effective for preventing artifacts in
spatial models based on the discrete continuity equation.

Keywords: Artifacts, Collective migration, Discrete
models

I. INTRODUCTION

Mathematical models have become prevalent in the
study of various ecological, biological, and medi-
cal phenomena. Discrete spatio-temporal mathematical
models, such as those based on difference equations,
coupled map lattices, or cellular automata, have become
commonplace in the aforementioned fields due to their
simple computational implementation and straightfor-
ward incorporation of biological mechanisms [1–3].
In these discrete models, continuous variables such
as position and time are discretized. However, it is
well known that the dynamics of discrete dynamical
systems can be markedly different from their continu-
ous counterparts (the most famous example being the
discrete logistic equation [4]). Therefore, some discrete
biological models can present behaviors that do not
correspond to the real biological behaviors observed in
experimental systems, but resulting from the discrete
nature of the definition of the model [5,6]. These unde-
sired model behaviors are known as model artifacts. In
some cases, artifacts are readily identifiable, however,
they could be difficult to discriminate from valuable
model predictions, which could confound the results of
a modeling study and lower their value.
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Although spatio-temporal discrete dynamical systems
have been thoroughly studied theoretically, and their
biological applications are commonplace as well, there
is a need of identifying the potential origin of artifacts
and developing consistent methods for alleviating them,
rather than relying on ad hoc strategies particular to
specific models. Some strategies to alleviate such arti-
facts have already been proposed, for example by up-
dating the states of the lattice sites asynchronously [7].
However, such a strategy can have potentially harmful
effects, such as the appearance of jamming waves [8]
and the formation of static, rather than swarming,
clusters [9]. With this work, we attempt to shed light on
this issue by rigorously studying the origin of the most
common artifacts, and proposing general strategies to
address them, specifically by expanding the range of
spatial points contributing to the state of every discrete
site, and by changing the spatial geometry of the
underlying spatial discretization. This work will help as
a stepping stone towards enhancing the reliability and
accuracy of discrete models in biological and medical
research.

This paper is structured as follows: First, we study
the discrete version of one of the most simple, but
important, models in biology, the diffusion (or heat)
equation. We show an artifact that can easily appear in
this model, and show two strategies that solve this arti-
fact in the long time limit. Afterwards, we showcase the
applicability of these strategies with two biologically-
motivated nonlinear models of adhesive and aligning
cells. Finally, we discuss the results and give a brief
outlook in the conclusion section.

II. DISCRETE HEAT EQUATION

Since we are interested in models of biological cell
migration, we define our spatio-temporal biological
models by abstracting the following situation. We con-
sider a population of motile biological agents (particles,
cells, animals) moving randomly in a certain space. For
simplicity, we consider that agents can only occupy a
discrete set of spatial points L ⊂ Rd, where d is the
spatial dimension (Fig. 1). Furthermore, all agents move
simultaneously at discrete time steps k ∈ N0 from their
present lattice site ~r to the j-th neighboring lattice site
~rj , belonging to a set of N neighboring lattice sites
N (~r). Thus, their velocities are also discrete and given
by the displacement vectors ~cj ∈ Rd, defined as

~cj = ~rj − ~r.

Immobile (resting) agents can also be considered by
defining the null displacement ~c0 = ~0. Therefore, we

f1f3

f2

f4

f0

Fig. 1: Lattice geometry and dynamics. Top: two geome-
tries of two-dimensional lattices are shown, square (left)
and hexagonal (right). Bottom: dynamics of the continuity
equation (Eq. 2). A fraction f0 of the density at a certain site
~r in the present time step remains in the same site ~r in the
next time step, while a fraction fj of the density at a certain
site ~r is transported to the neighboring site ~r+~cj in the next
time step.

can model the number of agents at the lattice site ~r
at time step k moving with velocity ~cj by the random
variable ηj(~r, k).

To simulate random movement, agents can stochasti-
cally change their current velocity to a new velocity
at very time step before they move, where we will
assume that the probability Tj [ηN (~r)(k)] of adopting a
new velocity ~cj depends only on the number of agents
moving in every direction in every neighboring lattice
site at the current time step ηN (~r)(k). If we assume
that every agent can change its velocity independently
of all other agents, then the model can be described by
the stochastic partial difference equation

ηj(~r, k + 1) = Tj [ηN (~r−~cj)(k)]

N∑
`=0

η`(~r − ~cj , k). (1)

The equation states that the number of agents with ve-
locity ~cj at the lattice site ~r after a time step has elapsed
equals the total number of agents at the neighboring
site ~r − ~cj which have adopted the velocity ~cj with

Biomath 12 (2023), 2311177, https://doi.org/10.55630/j.biomath.2023.11.177 2/15

https://doi.org/10.55630/j.biomath.2023.11.177


Nava-Sedeño et al., Artificial patterns in spatially discrete models of cell migration and how to mitigate them

probability Tj [ηN (~r−~cj)(k)] which, in general, depends
on the agents and their velocities in the neighborhood
of ~r−~cj . In other words, agents generally change their
velocities via interactions with other nearby agents.

This model is a cellular automaton (a model with
discrete space, time, and states); specifically, a lattice-
gas cellular automaton (LGCA), where agent velocities
are explicitly considered. Eq. 1 is the microdynamical
equation of the LGCA which dictates the evolution of
the automaton [3, 10].

To simplify the mathematical analysis of this model,
we study the spatio-temporal evolution of the mean
number of agents at ~r at time step k with velocity
~cj , denoted by 〈ηj(~r, k)〉. The mean total number of
particles at ~r at time step k is then given by

ρ(~r, k) =

N∑
j=1

〈ηj(~r, k)〉.

Calculating the expected value of Eq. 1, adding over j,
and assuming stochastic independence among particles
with different velocities and on different lattice sites
(a mean-field approximation [3]), we arrive at the
deterministic partial difference equation

ρ(~r, k + 1) =

N∑
j=0

fj(~r − ~cj , k)ρ(~r − ~cj , k), (2)

where
fj(~r, k) := Tj [〈ηN (~r)(k)〉]

are the mean-field expectations of the transition proba-
bilities, which we call mass fractions, and must there-
fore satisfy

N∑
j=0

fj(~r, k) = 1. (3)

Eq. 2 is called the discrete continuity equation since
it conveys that the expected mass at every lattice site
is just the sum of the mass fractions entering from
its neighbors plus the fraction which remained in the
same node (see Fig. 1), where Eq. 3 ensures mass is
conserved.

A simple diffusion process, results from Eq. 2 when
mass fractions are assumed to be constant and in-
dependent from the mean number of agents in the
neighborhood

fj(~r, k) =


α

α+N
, j = 0,

1

α+N
, j 6= 0,

(4)

where we assume that the probability of agents moving
is different from the probability of resting. Using this
expression for the mass fractions, Eq. 2 results in the
discrete heat equation

ρ(~r, k+1) =
1

α+N

[
αρ(~r, k)+

N∑
j=1

ρ(~r+~cj , k)

]
, (5)

where α ≥ 0 is the resting weight. Thus, a fraction
α

α+N of ρ remains in place (“rests”), while an identical
fraction 1

α+N is received from all N nearest neighbors
every time step (Fig. 1). This equation is linear, since
the terms containing ρ do not multiply each other, nor
is ρ in a nonlinear function anywhere.

We can see that the right hand side of Eq. 5 is
just a weighed average of the values of ρ among the
neighbors of ~r. It is not surprising, then, that this
equation converges to the continuous heat equation,
since the Laplacian operator ∇2f , appearing in the
latter, can be regarded as the limit of the local averaging
of f [11]. To show this, we rescale space by the lattice
spacing ε > 0 and time by the time step length τ > 0.
Defining macroscopic space and time by ~x = ε~r and
t = τk, respectively, we arrive at the rescaled discrete
heat equation

ρ(~x, t+ τ) =
1

α+N

[
αρ(~x, t) +

N∑
j=1

ρ(~x+ ε~cj , t)

]
.

Then, we expand in Taylor series up to first order in
t and second order in ~x (macroscopic scaling), and
recalling the definition of the directional derivative

lim
h→0

f(~x+ h~v)− f(~x)

h
= ∇~vf(~x) = ~v · ∇f(~x),

we obtain

ρ+ τ∂tρ =

1

α+N

{
αρ+

N∑
j=1

[
ρ+ ε~cj · ∇ρ+

ε2

2
(~cj · ∇)2ρ

]}
,

where dependencies on ~x and t have been dropped for
brevity. Rearranging terms, assuming radial symmetry
and identical magnitude among the vectors ~cj , applying
trigonometric identities, and taking the limit τ, ε → 0,
we obtain the continuous heat equation

∂tρ = D∇2ρ, (6)

where the diffusion coefficient is given by

D = lim
τ,ε→0

N‖~cj‖2ε2

2d(α+N)τ
, (7)
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where d is the spatial dimension.
From Eq. 7 it could be thought that the only effect

of the resting weight α is to decrease the diffusion
coefficient. Indeed, the bigger α, the greater fraction
of ρ that contributes to the lattice site ~r itself and
the lesser fraction contributing to other lattice sites.
However, for the discrete diffusion equation, α can play
a more important role, depending on the lattice L.

A. Square lattices

Let’s start by a considering a finite square spatial
partition, i.e. a finite lattice L such that the displacement
vectors ~cj are all parallel to the Cartesian basis vectors
~ej ∈ Rd (Fig. 1). For simplicity and without loss of
generality, we choose ~cj = ~ej , so that first neighbors
are exactly one unit away from each node and L ⊂ Zd.
Additionally, we consider periodic boundary conditions,
such that the lattice L forms a toroidal manifold, i.e.
we “glue” the ends of the lattice together, such that all
lattice sites have the same number of neighbors despite
L being finite.

We would now like to explore the behavior of the
solution to Eq. 5 with this choice of displacement
vectors. However, the solution may not have a general,
closed form in most cases. To circumvent this issue,
we transform the discrete heat equation, a partial finite
difference equation, into an ordinary finite difference
equation, which can be solved exactly in many cases.

We apply the discrete Fourier transform to Eq. 5, use
the linearity and shift theorem of the transform (see
Appendix) to obtain

ρ̂(~q, k + 1) =
1

α+N

[
αρ̂(~q, k) +

N∑
j=1

ei~ej ·~qρ̂(~q, k)

]
,

where we have used that ~cj = ~ej . Rearranging and
using the properties of the Cartesian basis, we can
simplify this expression to

ρ̂(~q, k + 1) =
1

α+N

[
α+

N
2∑
j=1

(eiqj + e−iqj )

]
ρ̂(~q, k).

Using the definition of the cosine function through the
complex exponential,

cos θ =
1

2
(eiθ + e−iθ),

we obtain the ordinary difference equation

ρ̂(~q, k + 1) =
1

α+N

[
α+ 2

d∑
j=1

cos(qj)

]
ρ̂(~q, k), (8)

where we have the fact that, for a square lattice, d = N
2 .

The exact solution to Eq. 8 can be found trivially
(see Appendix) to be

ρ̂(~q, k) = ρ̂(~q, 0)λ(~q)k, (9)

where ρ̂(~q, 0) is the discrete Fourier transform of the
initial condition of Eq. 5, and λ(~q) is called the eigen-
value spectrum, in this case given by

λ(~q) =
1

α+N

[
α+ 2

d∑
j=1

cos(qj)

]
. (10)

Since, in this case, λ(~q) ∈ R, there are only three
possible temporal behaviors for Eq. 9: decaying to
zero, diverging, remaining constant, or alternating (see
Appendix). Therefore, the long-time behavior of the
solution depends on the value of λ(~q), which depends
on ~q, which in turn depends on the values of all nj .
Recalling that Eq. 9 is the solution to the square lattice
discrete heat equation in Fourier space, only those
wavenumbers ~q for which |λ(~q)| ≥ 1 will be observed
in the limit k →∞ (cp. Fig. 2).

To identify the wavenumbers ~q which contribute the
most to the solution of the heat equation, we calculate
the extrema of the eigenvalue spectrum. We start by
calculating the partial derivatives with respect to each
qj , yielding

∂qmλ = − 2

α+N
sin(qm).

At every extremum, ∂qmλ = 0, which corresponds to
qm = 0 or qm = π, given the range of values the
wavenumber components are restricted to. Finally, we
evaluate these critical points and find the corresponding
values of λ(~q), and check whether these critical points
correspond to extrema which will survive in the long-
time limit. We find several cases:
1) When α = 0 and qj = 0 for exactly half of all

j and qj = π for the remaining half, then λ = 0.
This is not an extremum but a saddle point. These
modes correspond to spatially alternating stripes.
They decay instantly (see Appendix), since the value
of all lattice sites will be exactly equal to the average
of the alternating stripes in just one time step, as can
be readily observed from Eq. 5.

2) When qj = 0∀j, λ = 1, since d = N
2 . This is a

global maximum (cp. Figs. 2a, 2b, 2c, and 2d). The
contribution of this wavenumber remains constant
in the long time limit. Since qj = 0 corresponds to
nj = 0, this Fourier mode does not oscillate, and
corresponds to a constant solution.

3) When α = 0 and qj = π for all j, then λ = −1.
This is a global minimum (cp. Figs. 2a, and2c). The
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(a) 1D, α = 0

π

2
π

3π

2
2π

q

-1.0

-0.5

0.5

1.0

λ(q)

(b) 1D, α = 1

contribution of this wavenumber remains constant
through time but alternates every time step, corre-
sponding to a period-2 cycle (see Appendix).

4) When α 6= 0 and for some, or all j, qj = π, then
−1 < λ < 1. These Fourier modes decay exponen-
tially with time and therefore are not observed in the
long-time limit. If qj = π, this is the same global
minimum as in the previous case (cp. Figs. 2b, and
2d). If qj = π for only some j, then these can be
local, but not global, extrema.

Since the global maximum of the eigenvalue spec-
trum corresponds to qj = 0 ∀ j with a value of
λmax = 1, and the global minimum to qj = π ∀ j
with a value λmin ≥ −1, we conclude that, for all other
wavevectors, −1 < λ(~q) < 1, so that

lim
k→∞

ρ̂(~q, k) = 0,

for these modes ~q. Thus, Eq. 9 converges in the long-
time limit to

ρ̂(~q, k) =


ρ̂(~q, 0), qj = 0∀j,
(−1)kρ̂(~q, 0), α = 0, qj = π∀j,
0, o.c.

(11)

We can now obtain the exact solutions in the long time
limit by Fourier-inverting Eq. 11. To this end, we must
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(e) Hexagonal, α = 0

Fig. 2: Eigenvalue spectra for the heat equation (Eq. 10).
(a) and (b) show the spectra for a one-dimensional lattice
without and with self-contributions, respectively, while (c),
(d) and (e) show the spectra for a two-dimensional lattice
with a square lattice and no self-contributions, a square lattice
with self-contributions and a hexagonal lattice with no self-
contributions, respectively. Dashed lines in (a) and (b) show
the values |λ(q)| = 1.
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first calculate the Fourier transform of the initial condi-
tion evaluated at the two surviving wavevectors. Using
Eq. 27 and the definition of the complex exponential,
we find

ρ̂(~q, 0) =


∑
~r∈L

ρ(~r, 0), qj = 0∀j,

∑
~r∈L

ρ(~r, 0)

d∏
j=1

(−1)rj , qj = π∀j,
(12)

where rj are the components of the position of a node
on the lattice. Substituting Eq. 12 into Eqs. 11 and using
the inverse Fourier transform (see Appendix) we obtain
the solutions in the long-time limit

ρ(~r, k) = A+B(−1)k
d∏
j=1

(−1)rj , (13)

where the constants A and B are real constants pro-
portional to the surviving Fourier modes of the initial
condition, given by

A =
1

Ld

∑
~r∈L

ρ(~r, 0), (14)

B =


1

Ld

∑
~r∈L

ρ(~r, 0)

d∏
j=1

(−1)rj , α = 0,

0, α > 0.

(15)

Thus, when α > 0, the values of all sites in the
lattice tend to the average value of the initial condition,
which agrees with the behavior of the continuous heat
equation with periodic and Neumann boundary condi-
tions [12]. However, when α = 0, the solutions show
a spatial checkerboard pattern (contiguous lattice sites
have different values due to the factor

∏d
j=1(−1)rj ),

which alternates in time (originating from the factor
(−1)k). It is clear that diffusing chemicals and heating
materials do not suddenly distribute matter or heat into
an alternating grid, and such behavior is not observed in
the continuous heat equation, therefore it is considered
an artifact.

As seen from Eq. 5, α represents a contribution from
every node to itself. Consequently, even small self-
contributions can help alleviating checkerboard patterns
in discrete (or even numerically discretized) models.

B. Non-square lattices

So far, we have considered square lattices for our
calculations. However, Eq. 5 is very general and, as seen
previously, converges to the continuous heat equation
independently of the particular lattice geometry.

For simplicity, we will now examine the model’s
behavior using with α = 0 and a two-dimensional finite
hexagonal lattice with periodic boundary conditions,
since hexagonal lattices constitute one of the few spatial
tessellations with unit displacement vectors, rotational
and translational symmetry (Fig. 1). Note, however, that
for non-square lattices in higher dimensions the proce-
dure would be analogous and the results equivalent.

In this case, the lattice is defined by

L ⊂

{
z1(1, 0) + z2

(
1

2
,

√
3

2

)
: z1, z2 ∈ Z

}
. (16)

There are six displacement vectors given by

~cj =

(
cos

(j − 1)π

3
, sin

(j − 1)π

3

)
. (17)

Note that ~cj = −~cj+3, j ∈ {1, 2, 3}. Using this fact
and the shift theorem, we Fourier transform Eq, 5 and
obtain

ρ̂(~q, k + 1) =
1

6

(
3∑
j=1

ei~cj ·~q + e−i~cj ·~q

)
ρ̂(~q, k).

Applying the definition of the cosine, we obtain the
finite difference equation

ρ̂(~q, k + 1) =
1

3

3∑
j=1

cos(~cj · ~q)ρ̂(~q, k), (18)

such that the eigenvalue spectrum is

λ(~q) =
1

3

3∑
j=1

cos(~cj · ~q). (19)

Since λ(~q) ∈ R, we may calculate its extrema to assess
which Fourier modes survive and which decay in the
long-time limit. Its partial derivatives are

∂q1λ = −1

6
[2 sin(~c1 · ~q) + sin(~c2 · ~q)− sin(~c3 · ~q)],

∂q2λ = −
√

3

6
[sin(~c2 · ~q) + sin(~c3 · ~q)].

These partial derivatives vanish for several values of
q1 and q2, yielding the following cases (cp. Fig. 2e):
1) If q1 = q2 = 0 then λ = 1, the global maximum.

This corresponds to a Fourier mode that stays con-
stant in time, without decaying.

2) If q1 = 4π
3 and q2 = 0, or q1 = 2π

3 and q2 = 2
√

3π
3 ,

then λ = − 1
2 , corresponding to global minima.

Since |λ| < 1, these modes decay exponentially in
time.
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3) If q1 = 0 and q2 = 2
√

3π
3 , or q1 = π and

q2 =
√

3π
3 , or q1 = π and q2 =

√
3π, then

λ = − 1
3 , corresponding to saddle nodes. Likewise,

these modes decay exponentially.

Since for every wavevector ~q, − 1
2 < λ(~q) ≤ 1, where

λ(~q) = 1 only for ~q = (0, 0), all Fourier modes decay
exponentially in time, except for the zero eigenvector,
which corresponds to the spatially homogeneous solu-
tion.

Therefore, we can see that a non-square lattice, even
in the absence of resting weights, prevents the formation
of checkerboard patterns in the discrete heat equation.

III. NON-LINEAR DISCRETE MODELS

Up to this point, we have focused on the discrete
heat equation, as the linearity of both the equation and
the Fourier transform enables us to perform an exact
mathematical analysis.

However, most biological models are nonlinear, re-
flecting the complex processes involved in such phe-
nomena. Strictly speaking, these nonlinearities prevent
us from exploiting the Fourier transform in the same
manner as in the linear case. However, under certain
approximations we can simplify nonlinear models and
follow analogous steps to determine their long-time
behavior.

We will now explore two nonlinear biological models
and, using analytical and numerical arguments, we will
show that discrete artifacts arise and can be prevented
using the same strategies used for the discrete heat
equation.

The discrete heat equation results from Eq. 2 by
assuming that mass fractions are independent of the
states of the lattice sites, which models the movement
of non-interacting agents. The following models will
assume that agents interact in two possible manners
(adhesion and alignment), and, as such, mass fractions
are different for every node since they depend on their
states.

A. Adhesion equation

We consider Eq. 2 with mass fractions defined by

fj(~r, k) =
α

Z(~r, k)
, j = 0,

1

Z(~r, k)
exp

[
β~cj ·

N∑
n=1

~cnρ(~r + ~cn, k)

]
, j > 0,

(20)

where

Z(~r, k) = α+

N∑
j=1

exp

[
β~cj ·

N∑
n=1

~cnρ(~r + ~cn, k)

]
is a normalization factor warranting Eq. 3 and β ≥ 0
is a free parameter. Note that, when β = 0, the
resulting equation reduces to Eq. 5, so we can expect
an analogous behavior to the discrete heat equation in
this limit.

The quantity
∑N
n=1 ~cnρ(~r + ~cn, k) is a vector that

points in the direction of the highest density, so the mass
fraction is highest when it is parallel to ~cj , and lowest
when it is antiparallel. Thus, this model Eq. 20 models
the tendency of individuals, such as biological cells, to
clump or adhere to one another [10]. The parameter β
is proportional to the adhesion strength.

One can see from Eq. 20 that, when ρ(~r, k) = ρ̄∀~r ∈
L, ρ̄ ∈ R, mass fractions are equal to

fj(~r, k) =


α

α+N
, j = 0,

1

α+N
, j > 0,

everywhere, assuming radial symmetry among all dis-
placement vectors, such that, from Eq. 2 we obtain

ρ(~r, k + 1) = ρ̄,

and therefore, ρ(~r, k + 1) = ρ(~r, k). Thus, the homo-
geneous state ρ(~r, k) = ρ̄ is a steady state.

For simplicity, we assume a one-dimensional lattice
with periodic boundary conditions, L ⊂ Z. We start
by linearizing (see Appendix) the equation around the
homogeneous steady state, which yields

ρ(r, k + 1) =
1

α+ 2

{
(α+ 2βρ̄)ρ(r, k)

+ ρ(r + 1, k) + ρ(r − 1, k)

− βρ̄
[
ρ(r + 2, k) + ρ(r − 2, k)

]}
.

(21)

Since this equation is now linear, one can apply the
Fourier transform which, by using linearity and the shift
theorem, yields

ρ̂(q, k + 1) =
1

α+ 2

[
α+ 2βρ̄+ 2 cos(q)

− 2βρ̄ cos(2q)
]
ρ̂(q, k),

(22)

where the complex exponential definition of the cosine
was used. Therefore, the eigenvalue spectrum is

λ(q) =
1

α+ 2

[
α+2βρ̄+2 cos(q)−2βρ̄ cos(2q)

]
. (23)
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Fig. 3: Eigenvalue spectra for the one-dimensional adhesion
model (Eq. 23). (a): no self-contributions are considered.
(b): model with self-contributions. In all cases, the parameter
values were set at βρ̄ = 1

2
. Dashed lines indicate the critical

value |λ(q)| = 1.

Differentiating and using trigonometric identities, we
find that the critical points must fulfill

sin(q)[4βρ̄ cos(q)− 1] = 0.

There are three possibilities (cp. Fig. 3):

1) If q = 0, then λ(q) = 1, so the contribution of
this Fourier mode stays constant in time. This is a
global maximum when βρ̄ < 1

4 , and a minimum
when βρ̄ > 1

4 .
2) If q = arccos

(
1

4βρ̄

)
, then λ(q) = 16β2ρ̄2+4αβρ̄+1

8βρ̄+4αβρ̄ .
Note that, since cos θ ∈ [−1, 1]∀θ ∈ R, then this
case is only valid when βρ̄ ≥ 1

4 . Also note that
this regime corresponds to the case when λ(0) is a
minimum. In this case, λ(q) is a maximum. Since
in this case λ(q) ≥ 1, this Fourier mode grows
exponentially over time, resulting in the formation
of a pattern with wavelength 2π

q .
3) If q = π, then λ(q) = α−2

α+2 . This is a global
minimum. In this case −1 ≤ λ(q) < 1, where the
equality holds when α = 0. This corresponds to the
checkerboard pattern.

Therefore, we can see that the checkerboard pattern can
manifest itself even for parameter ranges far from the
diffusive limit, only when α = 0, when there are no
resting fractions.

B. Polar alignment equation

So far, we have looked at checkerboard patterns
in models consisting of a single equation. However,
the same approach can also be applied to systems of
equations. More equations are needed when there are
several important characteristics of the population that
influence its behavior. For example, consider the fol-
lowing nonlinear system where the mean velocity of the
population determines mass transport and the direction
of movement of incoming mass fractions determine the
mean velocity of the population. The model consists of
Eq. 2 and the vector equation

~v(~r, k + 1) =

N∑
j=1

~cjfj(~r − ~cj , k)ρ(~r − ~cj , k), (24)

with mass fractions given by

fj(~r, k) =



α1

Z(~r, k)
, j = 0,

1

Z(~r, k)
exp

{
β~cj ·

[
α2~v(~r, k)+

N∑
n=1

~v(~r + ~cn, k)
]}
, j > 0,

(25)
where

Z(~r, k) = α1 +

N∑
j=1

exp

{
β~cj ·

[
α2~v(~r, k)

+

N∑
n=1

~v(~r + ~cn, k)
]}
.

The quantity ~v(~r, k) is the average momentum entering
each node, as seen in Eq. 24. Thus, in this model, the
highest mass fraction is displaced in the direction of
the local momentum, resulting in similar mass transport
in nearby lattice sites [13]. When β = 0, this model
reduces to Eq. 5, like in the adhesion model.

Note that, in this model, there are two self-
contributions: α1 modulates the resting fraction (density
self-contribution) and α2 determines the extent with
which the velocity of a lattice site influences the mass
fraction staying in its own site in the next time step
(velocity self-contribution).

Similarly to the previous model, it can be easily
shown that the spatially homogeneous state ~v(~r, k) = ~0,
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ρ(~r, k) = ρ̄ ∀~r ∈ L is a steady state. We consider a one-
dimensional lattice for simplicity, linearize around the
steady state, Fourier transform, and write the system in
vector form, to arrive at(

ρ̂(q, k + 1)
v̂(q, k + 1)

)
=

1

α1 + 2

×
(
α1 + 2 cos(q) −2iβρ̄[α2 sin(q) + sin(2q)]
−2i sin(q) 2βρ̄[1 + α2 cos(q) + cos(2q)]

)
×
(
ρ̂(q, k)
v̂(q, k)

)
. (26)

We have two matrix eigenvalue spectra, which have a
closed, but complicated, form, and which can become
complex for certain wavevenumbers. Consequently, we
perform a purely numerical analysis. Since for low
β values, the model is similar to the discrete heat
equation, we turn to the high β value regime.

From Fig. 4 we observe that, for q = 0, one of the
eigenvalues has the exact value λ1(0) = 1, which is
due to mass conservation in the model, while the other
reaches a real value with λ2(0) > 1. This indicates an
exponential increase in global ordering, corresponding
to the onset of collective migration at high enough
values of β and ρ̄, similarly to the adhesion model.

Contrary to the adhesion model, however, we find
that for α1 = α2 = 0, the wavenumber q = π has
two different non-decaying contributions. At q = π,
one of the eigenvalues has the value λ1(π) = −1,
which corresponds to the checkerboard artifact. The
other eigenvalue reaches a purely real value λ2(π) > 1,
indicating the exponential growth of an immobile pat-
tern. This is also an artifact, albeit a different type of
artifact, since the model with α1 = 0 does not allow for
resting fractions and promotes mass transport in specific
directions. Thus, the growth of an immobile pattern is
contrary to the mechanisms specified in the model.

Numerically, we find that allowing for a resting
fraction by setting α1 > 0 alleviates the checkerboard
artifact as before, while setting α2 > 0 alleviates the
new immobile artifact. It should be noted, however, that
this second artifact is not alleviated simply by setting
a nonzero value for α2. Since this artifact is caused by
the mode λ2(π) > 1, the value of α2 should be set
at a high enough value such that the eigenvalue λ2(π)
dips below the threshold value λ = 1, rather than just
decrease slightly.

IV. COMPUTATIONAL SIMULATIONS

We performed computer simulations of all the models
discussed above to visually identify artifact effects and
corroborate that they are alleviated with our proposed

methodology. All simulations were performed with
MATLAB and were performed over several time steps.

A. Discrete heat equation
We performed simulations on a two-dimensional 30×

30 grid. The initial condition consisted of all lattice sites
initialized with a density value of zero, except for two
lattice sites located approximately in the center of the
grid, both with a density value of one thousand. These
two lattice sites were chosen such that they were second
neighbors of each other. In the case of the square lattice,
this condition means that they are contiguous along a
diagonal. In the hexagonal lattice, this means that they
were chosen such that only two of their respective six
first neighbors overlap.

As observed in Fig. 5, under these initial conditions,
the checkerboard artifact is quite visible when the lattice
is square and no resting fractions are allowed. However,
this pattern quickly decays when considering a square
lattice and α 6= 0 or when α = 0 but the lattice
is hexagonal. The checkerboard pattern is completely
unnoticeable after a hundred time steps.

B. Adhesion equation
In this case, the effect of considering self-

contributions (α 6= 0) was more noticeable in one
dimension. Thus, we performed simulation on a one-
dimensional lattice consisting of 50 sites, and let the
simulation run for 50 time steps. In this case, we could
plot the complete temporal evolution of the model, by
representing the lattice coordinate on the horizontal
axis, and the time step on the vertical axis. The colors
represent the density value of each node at every time
step. As an initial condition, the density values at every
node consisted of independent, identically distributed
random variables, distributed as U(0.95, 1.05), to sim-
ulate a slightly perturbed steady state. We used a value
of β = 0.35 in all cases.

As observed in Fig. 6, the exponentially growing
wavelength corresponding to adhesion-mediated pattern
formation quickly dominates, and therefore the checker-
board artifact becomes less visible as time progresses,
even when no resting fractions are considered. When
resting fractions are allowed, the checkerboard is com-
pletely destroyed after only a couple of time steps.
Thus, we can see that in certain cases nonlinearities
can quickly overshadow artifacts, once the system is
far from the linear regime.

C. Polar alignment equation
In this case, artifacts were more noticeable in two

dimensions than in one dimension. We simulated the
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Fig. 4: Eigenvalue spectra for the one-dimensional polar align-
ment model (matrix in Eq. 26). The vertical axis represents
the modulus, whereas the color bar represents the argument
of the spectrum. Parameter values were set to βρ̄ = 0.7 in
all cases.
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(a) Square lattice, α = 0.
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(b) Square lattice, α = 0.5.
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(c) Hexagonal lattice, α = 0.

Fig. 5: Computer simulations of the discrete heat equation,
Eq. 5, after one hundred time steps. Colors correspond to the
density value at each lattice site. Periodic boundary conditions
were used in every case.
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(b) α = 0.5

Fig. 6: Computer simulations of the adhesion equation, Eqs. 2
and 20. Colors correspond to the density of each node at each
time step. Periodic boundary conditions were used.

model on a 60×60 lattice for 100 time steps. As in the
case of the adhesion model, for the initial condition, the
density values were independent, identically distributed
random variables U(0.95, 1.05), and each of the two
components of the velocity consisted of independent,
identically distributed random variables distributed as
U(−0.1, 0.1), to simulate a perturbed condition close
to the steady state. The sensitivity value was set to 1
in all cases.

From Fig. 7 and Movies S1-S5 (available as separate
download Movies.pdf), both the checkerboard artifact
and the immobile artifact manifest strongly even after
several time steps have elapsed and the system has
evolved far from the linear regime. The checkerboard
artifact is visible as a pattern of alternating squares
in regions of low density and near cluster boundaries.
These are most noticeable with square lattices and

α1 = 0, when these modes do not decay, though they
are slightly visible when α1 > 0 as well. This indicates
that the checkerboard pattern is more resilient in this
case than in the previous model.

More importantly, immobile patterns arise every time
a square lattice is used and α2 is small. They manifest
themselves as irregular clusters, ranging from a couple
of sites to several sites in size (Figs. 7a and 7b, indi-
cated by black circles and arrows pointing in opposite
directions). These clusters are not transported, unlike
non-artificial traveling clusters, since they are composed
of lattice sites which switch their velocity every time
step and therefore do not have a net displacement. From
Fig. 4, we see that both the modes corresponding to this
artifact and to collective migration reach similar values,
thus growing at a similar rate. The combination of the
immobile artifact and the collective migration modes
produces an additional artificial pattern, with a worm-
like shape. These “worms” are one lattice site in width
and several sites in length and move diagonally in a
zigzag pattern with respect to the lattice (Figs. 7a and
7b, white circles and orthogonal arrows). Both static
clusters and “worms” disappear only after α2 reaches a
sufficiently high value, corresponding to the eigenvalue
λ2(π) dipping below the critical unit value. Also in
this case, checkerboard, immobile and “worm” artifacts
are absent when the lattice is hexagonal, even when
α1 = α2 = 0.

V. RESULTS AND CONCLUSIONS

In this paper, we have explored the origins of arti-
facts in spatially discrete models and proposed general
strategies to alleviate them. We started by studying
the discrete heat equation, and finding general condi-
tions under which the model shows artifacts. Based
on this study, we proposed two general strategies to
mitigate discrete artifacts, either changing the lattice
geometry, or adding “self-contributions”, i.e. terms
where the future state of a lattice site depends on its
own present state. Then, we studied two biologically-
motivated models and showed that artifacts in these
models are subdued when applying the same strategies.

We find that in all diffusive models, i.e. models
which behave like the heat equation in certain parameter
limits, checkerboard artifacts appear both near and far
from the diffusive regime. In the case of the adhesion
equation, the checkerboard pattern becomes less appar-
ent far from the diffusive regime; however, adding self-
contributions in the form of resting fractions completely
eliminates this artifact.

Biomath 12 (2023), 2311177, https://doi.org/10.55630/j.biomath.2023.11.177 11/15

https://doi.org/10.55630/j.biomath.2023.11.177


Nava-Sedeño et al., Artificial patterns in spatially discrete models of cell migration and how to mitigate them

(a) Square lattice, α1 = 0, α2 = 0.

(b) Square lattice, α1 = 1, α2 = 0.
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(c) Square lattice, α1 = 0, α2 = 0.7
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(d) Square, α1 = 1, α2 = 0.7
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(e) Hexagonal, α1 = 0, α2 = 0

Fig. 7: Computer simulations of the polar alignment model, Eqs. 2, 25 and 24 after one hundred time steps. Colors correspond
to the density value at each lattice site. Red arrows indicate the velocity at each lattice site. Black circles indicate immobile
clusters in which the velocity flips every time step. White circles mark worm-like artifacts, see text for an explanation.
Transparency in (e) has been reduced to enhance visibility. Periodic boundary conditions were used in every case.
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The polar alignment model, on the other hand, shows
two different artifacts which are much more resilient
than the checkerboard pattern in the adhesive model.
Artifacts in this model manifest in a variety of patterns:
the ever-present checkerboard artifact, immobile cluster
artifacts, and motile “worm” artifact. To alleviate all
of these artifacts, we need to consider both resting
fractions and velocity self-contributions of high enough
magnitude.

Our results highlight the importance of carefully
defining biological models and of identifying implicit
modeling choices that can be relaxed without signifi-
cantly impacting the core assumptions and mechanisms
of the model. This allows to identify potential artifact
sources. Furthermore, we expect that our findings will
assist in enhancing the accuracy and realism of discrete
models, and underscoring the versatility of this kind of
models for biological and medical modeling.

So far, we have investigated artifacts in diffusive
models, that is, models where the discrete heat equation
is a limiting case. However, artifact generation and
alleviation in other kinds of model, for example, in
advective models, remain to be studied. Furthermore,
several results were based on the symmetries of the
regular lattices used, and on the periodic boundary
conditions considered. However, we expect that our
results will still hold when considering irregular lattices
where symmetries are conserved in average, such as
in the case of Voronoi tessellations, and for different
boundary conditions as long as the system is studied
far enough from the boundaries.

VI. APPENDIX

A. Linear finite difference equations

Finite difference equations are discrete dynamical
systems, also called recurrences or maps. They can
be classified as ordinary, if only a single independent
variable is considered, or partial otherwise. They are
autonomous if time steps do not appear explicitly in
the equations, and non-autonomous otherwise. They
are nonlinear if dependent variables are found inside
nonlinear functions or multiplying each other, and linear
otherwise. A single ordinary linear autonomous finite
differential equation has the form

x(k + 1) = λx(k).

Independently of the value of λ, this equation always
has a constant solution x(k) = 0∀k, the equilibrium
solution. It can be easily proven by induction that the
general solution to such equation is x(k) = x(0)λk.
Assuming λ ∈ R, the solution can have different

behaviors in the long-time limit. If |λ| > 1 the solution
diverges. On the contrary, if |λ| < 1, the solution
decays exponentially to zero. If λ = 0, the solution
instantly decays to zero, i.e. only the initial condition
can be nonzero. If λ < 0, the solution oscillates with
period two, alternating between positive and negative
values. If λ > 0, the solution is monotonic. If |λ| = 1,
the solutions neither decay nor diverge, but remain at
a fixed distance from zero. Thus, x(n) = 0 is an
asymptotically stable solution when |λ| < 1, stable, but
not asymptotically stable, when |λ| = 1, and unstable
otherwise.

A system of ordinary linear autonomous finite dif-
ferential equations can be expressed in vectorial form
as

~x(k + 1) = A~x(k),

where A is an n× n square matrix, and the n compo-
nents of ~x(k) are the dependent variables to be found.
Here, also, there is an equilibrium solution ~x(k) = ~0∀k,
where ~0 is the origin. It can be easily shown that the
general solution to the system is a linear combination
of the particular solutions ~xj(k) = λkj

~ξj , where λj
are the eigenvalues and ~ξj are the eigenvectors of the
matrix A, provided that all eigenvalues are linearly
independent. If the λj are real, then these solutions
behave as in the previous case. However, even if A
is a real matrix, some eigenvalues may be complex.
In this case, the eigenvalues can be expressed in polar
form as λ = |λ| exp[iarg(λ)]. Given the linearity of the
system, it can be shown that solutions corresponding
to complex eigenvalues behave like |λ|k cos[arg(λ)k]
and |λ|k sin[arg(λ)k]. It should be noted that negative
eigenvalues are a particular case of complex eigenvalues
with arg(λ) = π. The oscillation frequency of solutions
are given by the argument, and their growth or decay
are determined by the absolute value of the eigenvalues.
Therefore, the equilibrium solution ~x(k) = ~0 is stable
when |λj | < 1∀j, unstable when |λj | > 1 for at least
one j, and is the center of a periodic orbit if |λj | = 1
for some j.

B. Linearization

The solutions to nonlinear difference equations rarely
have a closed form, but one can easily determine
their behavior when the initial condition is close to
an equilibrium solution approximating them by linear
equations. A system of ordinary nonlinear equations can
generally be written as a set of n equations of the form

xj(k + 1) = fj [x1(k), . . . , xn(k)],
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where j ∈ {1, . . . , n}, and fj [x1(k), . . . , xn(k)] are
nonlinear functions of all xj(k). An equilibrium so-
lution is a solution of the form xj(k) = x?j∀k, where
x?j are constants, such that fj [x?1, . . . , x

?
n] = x?j∀j, i.e.,

each function fj yields the respective constant x?j when
evaluated on the set of constants {x?j : j ∈ {1, . . . , n}}.
Then, for initial conditions near this equilibrium so-
lution, the nonlinear system can be approximated by
its Taylor series around the equilibrium solution up to
linear order, resulting in the linearized system

xj(k + 1) =

n∑
`=1

Ωj`x`(k),

where Ω is a Jacobian matrix whose elements are
defined as

Ωj` =
∂fj
∂x`

∣∣∣∣
x?1 ,...,x

?
n

.

The eigenvalues of this matrix determine the behavior
of solutions near the equilibrium solution, except for
two cases:
• If |λj | = 1 for some j, then the system may not nec-

essarily exhibit a periodic orbit. Instead, the solutions
could converge to or diverge from the equilibrium
solution as a power law, or the system could be at
a bifurcation point. However, nonlinear systems that
exhibit conserved quantities are guaranteed to have
periodic orbits at least for one eigenvalue, |λj | = 1.

• If λj = 0 for some j, the corresponding term in the
solution does not instantaneously decay to the equi-
librium solution. Instead, the term locally behaves
like the solution to the equation x(k + 1) = rx(k)2,
for some real constant r. Thus, the solution decays
to the equilibrium as the double exponential

x(k) ∝ a2n ,

for some constant a. Therefore, such terms decay
much faster than terms with nonzero eigenvalues and
are not observed after just a couple of time steps.
Equilibrium points with zero eigenvalues are called
superstable.
A system of nonlinear partial finite difference equa-

tions with two independent variables can be written as

xj(r, k + 1) = fj
[
{~x(r +m, k)}|m∈Z

]
,

where the notation {~x(r+m, k)}|m∈Z denotes that the
equation could depend on several different dependent
variables xj and increments of the independent variable
r; and fj are nonlinear functions. In this case, we only
consider homogeneous equilibrium solutions xj(r, k) =
yj∀r, k, yj ∈ R, j ∈ {1, . . . , n}.

Then, for initial conditions near the homogenous
equilibrium solution, the nonlinear system can be ap-
proximated by its Taylor series around this equilibrium
up to linear order, resulting in the linearized system of
equations

xj(r, k + 1) =

n∑
`=1

∑
m∈Z

Ωjm`x`(r +m, k),

where the sum indexed by m is taken only over the
increments found in the equation, and the entries of the
tensor Ω are given by

Ωjm` =
∂fj

∂x`(r +m, k)

∣∣∣∣
y1,...,yn

.

C. Fourier stability analysis

Let us suppose that we have a system of nonlinear
partial difference equations for which we have found
a homogeneous equilibrium solution. We would like to
know whether an initial condition close to the homoge-
neous equilibrium solution will eventually return to the
equilibrium (thus yielding no “patterns”, or spatially
non-homogenous solutions in the long-time limit), or
evolve away from it and develop patterns. To this end,
we apply an analogous technique to that used in partial
differential equations to determine the stability of a
steady state [14].

First, we start by linearizing the system around the
steady state as described previously, yielding the linear
system

xj(r, k + 1) =

n∑
`=1

∑
m∈Z

Ωjm`x`(r +m, k).

Next, we make use of the fact that any discrete
function can be expressed in the Fourier basis via the
discrete Fourier transform

F{f(~r)}(~q) = f̂(~q) =
∑
~r∈L

ei~r·~qf(~r), (27)

where i is the imaginary unit, and the components of
the wavevector ~q are defined as

qj =
2πnj
Lj

nj ∈ {0, . . . , Lj − 1},

where Lj ∈ N is the number of sites in the lattice L
along the direction ~ej . For simplicity, we will assume
that Lj = L∀j ∈ {1, . . . , d}. From this definition, we
see that the values of all components of the wavevector
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are bounded, i.e. qj ∈ [0, 2π). The inverse transform is
given by

F−1{f̂(~q)}(~r) = f(~r)

=
1

Ld

L∑
n1=1

· · ·
L∑

nd=1

e−i
2π
L ~r·~nf̂

(
2π

L
~n

)
,

(28)

where ~n = (n1, . . . , nd) ∈ Nd, and the definition of the
wavevector components was used for clarity.

Applying the discrete Fourier transform to the lin-
earized system, we obtain the transformed system

x̂j(q, k + 1) =

n∑
`=1

∑
m∈Z

Ωjm`F{x`(r +m, k)}(q),

where we have used the linearity of the Fourier trans-
form. The discrete Fourier transform allows us to drop
the spatial dependencies of the partial difference equa-
tion by applying the shift theorem

F{f(~r+~v)}(~q) = ei~v·~qF{f(~r)}(~q) = ei~v·~q f̂(~q). (29)

Using this theorem and factorizing common terms,
results in the transformed equation

x̂j(q, k + 1) =

n∑
`=1

[∑
m∈Z

Ωjm`e
imq

]
x̂`(q, k),

which is now a system of linear, ordinary difference
equations since only a single, temporal increment ap-
pears. We need only calculate the eigenvalues λj(q) of
the matrix

Jj` =
∑
m∈Z

Ωjm`e
imq.

Note that, in this case, the eigenvalues λj(q) depend
on the wavenumbers q, since each component in the
Fourier decomposition of ~x(r, k) may behave differ-
ently as time increases. For this reason, we refer to
λ(q) as the eigenvalue spectrum.

Now, we may apply the criteria we defined for
ordinary difference equations in this case, with a few
modifications [3]:
• If |λj(q)| < 1 for every j ∈ {1, . . . , n} and for

every q ∈ [0, 2π), then the homogeneous equilibrium
solution is stable, and no patterns are formed.

• If |λj(q)| > 1 for some j and some q, then the
homogeneous equilibrium is unstable. Let j and qmax

be such that

|λj(qmax)| ≥ |λ`(q)|

for all ` ∈ {1, . . . , n} and q ∈ [0, 2π).

– If λj(qmax) is a positive real number, then the
initial condition will evolve away from the ho-
mogeneous equilibrium solution, and an immobile
pattern with wavelength q/2π will be the most
notorious.

– If λj(qmax) is not a positive real number, then
the initial condition will evolve away from the
homogeneous equilibrium solution, and a pat-
tern with wavelength q/2π, will dominate. Thus
pattern will move across space with velocity
arg[λj(qmax)]/qmax.

Note that, if λj(π) is a negative real number, the
propagation velocity of the resulting (checkerboard)
pattern is of a single lattice site per time step, since
v = π/π = 1, and the resulting pattern may visually
appear more alternating than moving.
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