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Abstract: This study investigates the impact of melt-
ing/binding rates (referred to hereafter as the parameters)
over the polymers and monomers on the dynamics of
carbon-monoxide-mediated sickle cell hemoglobin (HbS)
de-polymerization. Two approaches, namely the tradi-
tional sensitivity analysis (TSA) and the multi-parameter
sensitivity analysis (MPSA), have been developed and
applied to the mathematical model system to quantify the
sensitivities of polymers and monomers to the parameters.
The Runge-Kutta method and the Monte-Carlo simulation
are employed for the implementation of the sensitivity
analyses. The TSA utilizes the traditional sensitivity func-
tions (TSFs). The MPSA enumerates the overall effect of
the model input parameters on the output by perturbing
the model input parameters simultaneously within large
ranges. All four concentrations (namely, de-oxy HbS
monomers, CO-bound HbS monomers, de-oxy Hbs poly-
mer and CO-bound HbS polymer) as model outputs, and
all four binding/melting rates (namely, the CO binding
and melting rates for polymers and monomers) as input
parameters are considered in this study. The sensitivity
results suggest that TSA and MPSA are essentially con-
sistent.

Keywords: sickle cell, CO-mediated de-polymerization,
sensitivity functions, multi-parameter sensitivity analysis

I. INTRODUCTION

The sickle cell trait originates as a natural muta-
tion of the hemoglobin gene. Such mutation results
in replacement of glutamic acid at position 6 of the

beta chain (β6) of hemoglobin by valine. The mutation
results in the aggregation, in the form of a polymer, of
the sickle cell hemoglobin (HbS) when it is in the de-
oxygenated state [1]. The polymerization process takes
place in two stages, which are separated by a time delay
[2]: 1) homogeneous polymerization where monomers
join to form a polymer; 2) heterogeneous polymeriza-
tion where monomers join an existing polymer. The
polymers formed in the first step can melt yielding
monomers if they return to the lungs quickly enough
to be re-oxygenated. The polymers that do not return
to the lungs in a timely manner will likely go through
the second stage. The mechanisms for the homo- and
heterogeneous polymerization are referred to as single
and double nucleation [3].

Ferrone’s work [3] focused on the growth of sickle
hemoglobin (HbS) polymers or fibers. He explained
that the growth of the HbS fibers follows the double
nucleation mechanism, which he described as homo-
geneous and heterogeneous nucleation. The formation
of a polymer is initiated by homogeneous nucleation
in the solution phase. Local temperature and concen-
tration of the homogenous nuclei can then increase
the formation of additional polymers on the surface of
an existing polymer (heterogeneous nucleation). Local
temperature is very relevant to our work because we
are looking at the change in the rate constant where
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temperature is the only factor that causes the change in
parameters. The surface area of heterogeneous nuclei
is constantly increasing with time [3]. From the un-
derstanding of these two processes, Ferrone developed
a mathematical model for the melting of the polymers
(de-polymerization) on the assumption that the polymer
melting is the reversal of polymerization. The model
can be described by two rate equations, one for the for-
mation of polymers and the second for the incorporation
of monomers into polymers.

The kinetics of the sickle cell hemoglobin polymer
melting has been studied experimentally by using the
stopped flow method where the melting was monitored
using light scattering [2]. The results showed that
polymers melt more quickly in cells containing oxygen
or carbon monoxide. Therefore, two sets of experiments
were conducted to study polymer melting. The first ex-
periment involved monitoring the rate of HbS polymer
melting in a deoxygenated phosphate buffer at pH 7.1,
25◦C, and in the second experiment the same buffer
was saturated with carbon monoxide (CO) [2]. The
author concluded that polymers melt more efficiently in
presence of CO. Additionally, the authors noted that for
the model to fit the experimental data, CO was assumed
to bind to HbS in the polymeric and in the monomeric
form [2]. In Aroutiounian’s study [2], the model was
rewritten as a system of two equations by including
the fact that polymer only melts from the ends. Thus,
the study improved Ferrone’s model, which is based
on a single differential equation. Further investigation
of the effects of CO binding to the depolymerization
of solution phase of the polymer used a nonlinear
model that extended the original two-species model
[2] into a model that included the four species: de-
oxy HbS monomers, CO-bound HbS monomers, de-
oxy Hbs polymer and CO-bound HbS polymer [4]. The
model assumed that CO binds to both the monomeric
and polymeric forms of HbS and described the dynamic
interaction in each phase of the melting and their CO
binding processes. Results from the analyses predicted
that melting of de-oxy polymers occurs rapidly when
the solution was saturated with CO. Additionally, they
observed from the model equations that not all the
polymers melt in the CO- binding equilibrium stage,
indicating that the melting of the CO-bound polymer
takes place as an equilibrium process.

Normally cell behaviors are determined by the in-
teraction of the components in the biological system
instead of the characteristics of the individuals. The
impact on the system output from various parame-
ters is usually different. In biological experiments, the

impacts from different parameters are often difficult
to determine as it requires the repeated experiments
and the subtle measurements which may be practically
impossible [5]. This, however, can be easily achieved in
mathematical modeling with numerical simulations by
parameter sensitivity analysis. Sensitivity analysis is the
study of how the uncertainty in the model output can be
attributed to different sources of uncertainty in its inputs
[5,6]. This sensitivity analysis provides guidance toward
the parameters that must be taken into consideration
during the experimental design [7].

There have been studies concerning parameter es-
timation, which have led to approximation of param-
eters value in the nonlinear dynamic system [2, 4].
However there remains the possibility to improve the
measurement of the parameter values. In this paper
the importance of parameters in the extended model
of melting (de-polymerization) of HbS polymers in the
presence of CO is assessed.

There are many approaches to study the sensitivity
of a model output with respect to the input parameter
[5]. A comprehensive evaluation of various sensitiv-
ity analysis methods (including the FAST and Sobol
methods) is provided in a case study on a hydrological
model [8]. This study particularly focuses on a tradi-
tional sensitivity analysis (TSA) and a multi-parameter
sensitivity analysis (MPSA) on the extended version of
the model with four species [4]. All four concentrations
as model outputs and four binding/melting rates as input
parameters are considered in this study. The sensitivity
analysis results from TSA and MPSA are essentially
consistent.

The remainder of this paper consists of the fol-
lowing sections. Section 2 presents the derivation of
the mathematical model equations starting from a de-
scription of the double nucleation process to the ex-
tended CO-mediated sickle cell polymer melting (de-
polymerization). Then, Section 3 explains the detailed
methodology of the parameter sensitivity analysis in-
cluding the TSA and MPSA. Section 4 reports and
discusses the obtained results from our analysis. Section
5 summarizes the conclusion of the study and provides
the recommendation for future work. Lastly, Appendix
includes the detailed sensitivity equations for TSA.

II. MODEL EQUATIONS

A. Double Nucleation Mechanism

Our current version of the model is an extension of
the basic model proposed in [2,3]. The model developed
for the HbS polymer melting is based on the observation
that the HbS fiber melting is the reversal of growth.
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Fig. 1: The double nucleation model. Homogeneous nucle-
ation (top) and heterogeneous nucleation (bottom) nuclei are
assumed to be pieces of the infinite polymer [3].

According to [3], the growth of fiber occurs through a
double nucleation process. Figure 1 depicts the process.

As it happens in the solution, homogeneous nucle-
ation is the simple process where the monomers attach
to each other to form a polymer. In heterogeneous
nucleation, the monomers add onto an existing polymer
to form a more complex polymer. As Fig. 1 depicts, the
length of the arrows going back and forth changes in
the different stages of the figure, which indicates the
change in the relative rates of fibers melting or growth.
In the early stages of the homogeneous nucleation phase
the rate constant of melting (Kbackward) is higher than
the rate constant of growth (Kforward). The equilibrium
stage (Keq), where the rate constants of the growth and
melting are the same (Kforward = Kbackward), happens
when the polymer reaches a certain size. Beyond this
size, the rate of the polymer growth becomes higher
than the rate of melting. The driving force for this
switch in kinetics is the increase in the stability of the
polymer as it exceeds the above-mentioned size. This
increase in stability is due to the increasing amount
of energy released as more and more monomers join
the polymers which makes the polymer formation to
have higher negative ∆G (meaning polymer formation
becomes thermodynamically more favorable). The same
cascade of events takes place in the heterogeneous
nucleation phase. Again, when the size of the polymer
exceeds a certain limit the formation –or growth– of
the polymer becomes more favorable than the melting
of the polymer. The final size of the polymer is limited
by its solubility. This means once the size of the
polymer –the fiber– in the heterogeneous nucleation
exceeds a certain limit it becomes insoluble, or a better
explanation is that the polymer stops growing when
there are no more monomers to bind to it. When the size
of the polymer reaches this limit it would deplete the

solution from any monomers –now the concentration of
the monomer to begin with is limited by its solubility
at the conditions at hand (temperature, phosphate buffer
concentration and the fact that the buffer is saturated
with carbon monoxide).

The double nucleation model can be described by two
rate equations, one for the homogeneous and the other
for the heterogeneous. Since in either homogeneous
or heterogeneous nucleation there is an addiction of a
monomer to the nucleus, they both can be represented
as (this applies to the CO bound and deoxygenated
polymer) the equilibrium Pi + (monomers) ⇐⇒ Pj .
Here Pi and Pj are two forms of the polymer where
the j form has one monomer more than the i form,
or Pi is the homogeneous polymer and Pj is the
heterogeneous polymer. The formation of the polymer
is thus expressed by:

dCp,j(t)

dt
= k+Cm(t)Cp,i(t)− k−Cp,j(t) (1)

and the rate of disappearance of the monomers from
the solution phase into polymer is given by:

− dCm(t)

dt
= k+Cm(t)Cp,i(t)− k−Cp,j(t) (2)

where Cp,i(t) and Cp,j(t) are the time-dependent
concentration of polymers i and j, respectively, and
Cm(t) is the monomer concentration, k+ is the con-
centration–independent rate constant for addition of
monomers to nuclei or polymer i , and k− is the
concentration- independent rate of the dissociation of
a monomer from polymer j.

B. The Simple Model with Two Equations

Briefl [9] observed that the growth is an elongation
and the melting is a shortening of the HbS fiber at
the ends. Thus melting of the HbS polymers can only
occur at the end of the polymers. On a short time
scale, the concentration of polymers Pi and Pj remains
constant at a certain time. Therefore, Aroutiounian [2]
sets the concentration of polymers Pi and Pj to be the
same as Cp(t); he replaced k+ with k−

Cs
, where Cs is

the solubility concentration of the de-oxygnated HbS
polymer in the buffer at T , and k− with kd indicating
the rate constant of the melting of the de-oxygenated
HbS polymer. So Eq.2 is rewritten as the following in
term of the melting rate:

dCm(t)

dt
= −kd

(
Cm(t)

Cs
− 1

)
Cp(t) (3)

Also, the total HbS molar concentration (Ctot) is
the sum of the molar concentration of the hemoglobin
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molecules in the polymer phase, Cp, and that in the
monomer phase, Cm. Ctot(t) = Cm(t) + Cp(t). After
differentiating and substituting into Eq.3 with the fact
that dCtot(t)

dt = 0, we have:

dCp(t)

dt
= kd

(
Cm(t)

Cs
− 1

)
Cp(t) (4)

C. The Extended Model with Four Equations
With the CO-mediating the melting of the polymer

incorporated [4], the polymerized and monomerized
populations are then divided into two sub-populations:
CCO

p (t) and CCO
m (t) which are CO-bound polymer and

monomer HbS, respectively; and Cd
p (t) and Cd

m(t)
which are de-oxy polymer and monomer HbS. Since
CO binds to the monomer and polymer tightly, the
model then assumes that CO-binding results in a de-
crease from de-oxy HbS Cd

m(t) in the solution phase,
which then becomes a gain for the CO-bound solu-
tion phase CCO

m (t), with a CO binding rate constant
km. Taking all these into consideration produces Eq.
5. Likewise with the polymer phase molecules, the
assumed CO-binding outcome is a loss from the Cd

p (t)
and a gain to CCO

p (t) by the CO binding rate constant
kp. Equation 6 corresponds to the production of CO-
monomer. It is generated while making the same as-
sumptions for the melting of the CO-polymer as the
ones made when writing the differential equation of
the melting of de-oxypolymer (Eq. 3), with the melting
rate constant being KCO, and the formation of the CO-
monomer from deoxy monomer in the presence of CO
with the rate constant being Km. Equations 7 and 8
are produced the same way as Eq. 4 with taking into
consideration the binding of CO to deoxy polymer. Our
model is then based on the following:

dCd
m(t)

dt
= −kd

(
Cd

m(t)

Cs
− 1

)
Cd

p (t)

− km(CO)Cd
m(t) (5)

dCCO
m (t)

dt
= kCO

(
1− CCO

m (t)

CCO
s

)
CCO

p (t)

+ km(CO)Cd
m(t) (6)

dCd
p (t)

dt
= kd

(
Cd

m(t)

Cs
− 1

)
Cd

p (t)

− kp(CO)Cd
p (t) (7)

dCCO
p (t)

dt
= −kCO

(
1− CCO

m (t)

CCO
s

)
CCO

p (t)

+ kp(CO)Cd
p (t) (8)

These models allow CO-binding to polymers and
melting occur at the endpoints as well as at the surfaces

Fig. 2: The reaction paths of the CO-mediated de-polyme-
rization of sickle cell HbS.

of polymer fibers [4]. The diagram in Fig. 2 describes
the reaction paths in the model equations. With CO-
binding, the de-oxygenated polymers/monomers of HbS
produce CO polymers/monomers HbS. The melting/de-
polymerization of the CO-bound or de-oxygenated
polymers yields CO-bound de-oxygenated monomers,
respectively in an equilibrium process.

To mathematically analyze the system, we simplify
the notations by replacing (Cd

m(t), CCO
m (t), Cd

p (t),
CCO

p (t), kd, km(CO), kCO, kp(CO), Cs, CCO
s ) by (x(t),

y(t), z(t), u(t), k1, k2, k3, k4, C1, C2) respectively
[10]. We then have the following model equations:

dx(t)

dt
= −k1

(
x(t)

C1
− 1

)
z(t)− k2x(t) (9)

dy(t)

dt
= k3

(
1− y(t)

C2

)
u(t) + k2x(t) (10)

dz(t)

dt
= k1

(
x(t)

C1
− 1

)
z(t)− k4z(t) (11)

du(t)

dt
= −k3

(
1− y(t)

C2

)
u(t) + k4z(t) (12)

III. METHODOLOGY

A. Traditional Sensitivity Analysis (TSA)

The traditional sensitivity functions (TSFs) are used
in the traditional/classical sensitivity analysis. To in-
vestigate and quantify the sensitivity of a model output
resulting from the variations in the parameters, we con-
sider the partial derivatives of the output variable with
respect to the parameters that it depends on [11,12]. The
detailed TSFs for the sickle cell model in this study are
derived and presented as follows.
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Many times, the model is described by a system of
ordinary differential equations (ODEs). The system can
be written in the vector form:

dX(t)

dt
= F (X,P ) (13)

where X ∈ Rn denotes the state variable vector and
P ∈ Rr denotes the vector of parameters and the initial
condition is X(to) = Xo. Depending on the research
goal, the output variable vector Y for the sensitivity
analysis can be a subset of X or the full state X . By
sensitivity we mean how Y changes with respect to
P , that is ∂Y (t)

∂P . Since all the states are related and
coupled, solving ∂Y (t)

∂P requires solving the full states
∂X(t)
∂P . In the following, we work on the full state

vector as the output variable vector. Note that as X
is a function of time, the sensitivity is also a function
of time. By differentiating both sides of Eq. 13 with
respect to P , we have a system of differential equations
for the sensitivities:

∂

∂P

dX(t)

dt
=
∂F

∂X

∂X

∂P
+
∂F

∂P
(14)

Now if we reverse the order of differentiation and
couple the equation with Eq. 13 then we get a n+ nr
dimensional system of ordinary differential equations
for both the model variables and the sensitivities

dX(t)

dt
= F (X,P ) (15)

d

dt

∂X

∂P
=
∂F

∂X

∂X

∂P
+
∂F

∂P
(16)

Here, we assume that ∂X(0)
∂P = 0, because the initial

conditions for the model would be considered indepen-
dent of the parameters.

We apply the above Eqs. 15 and 16 onto our sickle
cell model Eqs. 5–8. The new system is obtained with 4
original model equations and 16 equations for the TSFs.
The detailed equations for the TSFs are presented in
Appendix.

B. Multi-Parameter Sensitivity Analysis (MPSA)

First developed in the field of hydrology [13–15], the
MPSA method is a technique that quantifies the relative
importance of the parameters related to the output
variables in the model [16]. The MPSA considers the
combined effects of multiple parameters on the output
of the model. We first use the Monte-Carlo method
to randomly select values from the distributions of the
considered parameters. Similar to the studies reported
in [17, 18], we use the uniform probability distribution
since the natural distribution of the parameters in the

sickle cell polymer decomposition system is unknown.
With the randomly selected parameters values, the
differential equations model is then simulated repeat-
edly. Next, an objective value is calculated by using
the objective function (defined below) to classify the
output of the model simulation as either acceptable or
unacceptable. Lastly, a statistical evaluation is carried
out for the acceptable and unacceptable cases, giving
quantified values for the sensitivities of the parameters.

The detailed procedure of the MPSA can be found
in Cho et al. [16]. In this study, instead of setting
the range between one fifth of a nominal value and
five times the nominal value [16], for the sickle cell
model, we set the range between one half of the nominal
value and two times the nominal value since roughly
speaking the rates may be doubled or halved when the
temperature changes within ten degrees. In comparing
the two cumulative distribution functions (CDF) of the
parameter values associated with the acceptable and the
unacceptable results, Cho et al. [16] simply consider
the “cumulative frequencies” for each parameter via
corresponding correlation coefficients. In this study,
a more thorough comparison technique is adopted,
namely, the Kolmogorov-Smirnov (KS) test [16]. The
KS distance is calculated, with the large distance value
indicating the large sensitivity of the parameter, since
the large KS distance implies that the two CDFs are
different to each other.

The objective value is defined as the sum of squared
differences between the output values from the sam-
pling parameters and the output values from the nomi-
nal parameters:

fobj(k) =

q∑
i=1

(fnominal(i)− fsampling(i, k))
2 (17)

where fobj(k) is the objective function that describes
how much the system output with the sampling parame-
ters changes from the data with the nominal parameters;
fnominal(i) denotes an output value from the nominal
parameters at the ith time; fsampling(i, k) denotes the
output value from the sampling parameter k at the ith
time; and q is the number of time point.

IV. RESULTS AND DISCUSSION

A typical solution behavior of the model over time
and the general dynamics of the CO-mediated de-
polymerization process can be seen in Fig. 3. The
de-oxy monomer x(t) first increases to its peak, then
decreases gradually to 0, while the de-oxy polymer z(t)
decreases the whole time to 0. The CO-bound monomer
y(t) first increases to its peak which is higher than the
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Fig. 3: Solution behavior of the model and dynamics of
the CO-mediated de-polymerization process. Blue: de-oxy
monomers x, red: CO-bound monomers y, green: de-oxy
polymers z, black: CO-bound polymers u.

solubility, then decreases to its solubility, while the CO-
bound polymer u(t) increases the whole time to its
solubility. For the solutions in Fig. 3, the parameters
are set as k1 = 0.028, k2 = 0.07, k3 = 0.1, k4 = 0.01.
The solubilities are C1 = 0.4 and C2 = 0.8. The
initial conditions of the system are chosen as x(0) =
0.0036mM, y(0) = 0, z(0) = 1.175mM, u(0) = 0. A
detailed analysis with rigorous mathematical proofs on
the dynamics of the extended model Eqs. 9–12 can be
found in Daniels-Jones et. al [10].

The above parameter values are set as the nominal
values of the parameters. The above solubilities and
initial conditions for Fig. 3 are used for the rest analysis
in this study. The ranges of the parameters are set
around the nominal values: k1 ∈ [0.014, 0.056], k2 ∈
[0.035, 0.014], k3 ∈ [0.05, 0.2], k4 ∈ [0.005, 0.02].
The initial values and parameters ranges are chosen
based on previous experimental studies on the CO-
mediated sickle cell de-polymerization [2, 3]. Among
all species, the initial concentration of de-oxy polymers
z(0) is the highest (1.175mM), because medically this
is the species that causes sickle cell illness. The initial
concentration of de-oxy monomer x(0) being low value
(0.0036mM) is justified due to the high value of de-oxy
polymers. The initial concentrations of the other two
species (y(0) and u(0)) are assumed to be 0 because
they are not exposed to the CO yet. Based on the model
equations, the results remain similar for some range of
initial and parameters values around the chosen ones.
For very different initial and parameters values, the

results of sensitivity may be different, which is not
covered in this study. For the numerical simulations,
we use the Runge-Kutta method for the time-marching
integration of the ODEs, with time step dt = 0.01 and
the time interval [0, 400], which provides an adequate
accuracy and sufficient transient time.

People often vary the parameter values and conduct
experiments for responses to observe the effects of the
parameters over the output variables. A rough estimate
and some findings may be obtained in this way. As
an example, with a few different k1 values (0.0112,
0.0224, 0.0336, 0.0448, 0.0560), the corresponding
solutions of all four concentrations are presented in
Fig. 4. From Fig. 4a, the increase of k1 leads to the
increase of the peak for x; the peak time remains the
same; after the peak, the decreasing speed is large with
a large k1-value. From Fig. 4b, the larger the k1-value
is, the y−value increases faster to its higher peak (over
the solubility 0.8), then decreases slower to 0.8 the
solubility. From Fig. 4c, the larger the k1-value is,
the faster/quicker the z-value decreases to 0. Lastly,
the u-value first increases slower with larger k1-value.
At some point of time, this is reversed: the u-value
increases faster with larger k1-value, as shown in Fig.
4d. It takes shorter time for the u-value to reach its
solubility 0.4 with a larger k1-value. The rough effect of
the k1-value on the individual variable can be observed
in Fig. 4. However, some detailed sensitivity analysis,
such as on which variable does the parameter k1 have
the most effect, cannot be obtained from Fig. 4 directly.

The effects of all four parameters over the variable
CO-bound polymers concentration u are displayed in
Fig. 5. All four parameters have some effects on vari-
able u. From Fig. 5a and 5c for parameters k1 and k3,
it starts with the lower the parameter values, the faster
the u-value increases; after some time, this is reversed:
the lower the parameter values, the slower the u-value
increases. The solutions with various parameter values
for k2 and k4 in Fig. 5b and 5d show the consistent
trend: the lower the parameter values, the slower the
u-value increases. The rough effect of the individual
parameter over the u variable can be observed in Fig.
5. However, some detailed sensitivity analysis, such as
which parameter has the most effect on the variable,
cannot be obtained from Fig. 5 directly.

For a systematic sensitivity analysis and to compare
the impacts of the parameters, we utilize the TSA and
the MPSA to examine the sensitivities of the output
variables (x, y, z, u) that are presented in our model
equations with respect to the changes in the parameters’
values (k1, k2, k3, k4). In the following 3 subsections,
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Fig. 4: The solutions of four concentrations when varying parameter k1. blue: k1 = 0.0112, red: k1 = 0.0224, green:
k1 = 0.0336, black: k1 = 0.0448, magenta: k1 = 0.056. (a). de-oxy monomers x; (b). CO-bound monomers y; (c). de-oxy
polymers z; (d). CO-bound polymers u.

we quantify the sensitivity with estimates, and we rank
the effects of parameters accordingly.

A. Results from TSA

1) TSFs with parameters at nominal values: With
the nominal values for the parameters, the ODEs for the
TSF functions in Appendix can be solved numerically.
Figure 6 shows the TSF functions

(
∂x
∂k1

, ∂y
∂k1

, ∂z
∂k1

, ∂u
∂k1

)
of the variables with respect to parameter k1. The
behavior of the TSFs in Fig. 6 is consistent with the
phenomenon in Fig. 4. The larger the TSF value is, the
larger the sensitivity (change/variation) of the variable
is. The positive TSF value means that the increase of
the parameter leads to the increase of the variable value,
while the negative TSF value means the opposite. From
Fig. 6a for the sensitivity of variable x over parameter
k1, the sensitivity increases to its peak at t ≈ 20, then

decreases to 0 at t ≈ 75, continues to decrease and
then increases but remains negative, lastly at t ≈ 200 it
settles at 0. The time stamps (20, 75, 200) match well
with those in Fig. 4a. Similar consistency can be found
in Fig. 6b vs Fig. 4b, in Fig. 6c vs Fig. 4c, and in Fig.
6d vs Fig. 4d. It should be noted that all the sensitivities
converge asymptotically to 0 over some time. Note that
instead of the discrete values for the parameter in the
trials in Fig. 4, the TSF describes the instantaneous
change/impact of the variable with respect to the change
(increase or decrease) in the parameter. Therefore, as a
quantified sensitivity, the TSF in Fig. 6 is more rigorous
and more reliable than the rough estimate observed
from Fig. 4.

The sensitivities presented in Fig. 6 are functions of
time, i.e., the sensitivity values are different at different
times. To better compute the sensitivity of the variable
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Fig. 5: The response of CO-bound polymers concentration u when varying parameters. (a). Various k1, blue: k1 = 0.0112,
red: k1 = 0.0224, green: k1 = 0.0336, black: k1 = 0.0448, magenta: k1 = 0.056. (b). Various k2, blue: k2 = 0.028, red:
k2 = 0.056, green: k2 = 0.084, black: k2 = 0.112, magenta: k2 = 0.14. (c). Various k3, blue: k3 = 0.04, red: k3 = 0.08,
green: k3 = 0.12, black: k3 = 0.16, magenta: k3 = 0.2. (d). Various k4, blue: k4 = 0.004, red: k4 = 0.008, green:
k4 = 0.012, black: k4 = 0.016, magenta: k4 = 0.02.

to the parameter, we sum up the sensitivity values over
the time. For this analysis, we use the L2 norm of
the TSF to measure the sensitivity. Note this norm is
defined as [11]:

‖f‖22 =

∫ b

a

f2(t)dt (18)

Since we are approximating the solution to our sensitiv-
ity ∂X

∂P , we also approximate this norm. The L2 norms
of the TSFs are shown in Table I.

With the quantified sensitivity values in Table I, we
can compare and rank the sensitivities of variables to
the parameter by reading the table in columns. The
column of k1 for the sensitivities of variables to the
parameter k1 shows that variable z is the most sensitive,
followed by y. The sensitivities of u and x variables are

similar. The sensitivity values in column k1 quantify the
phenomenon in Fig. 4, sum up the values in Fig. 6, and
are consistent with the figures. Note that the scales in
the vertical axes in Figs. 4 and 6 vary. All the sensitivity
values in column k2 are smaller than those in column
k1, which implies that k2 may not affect the variables as
much as k1. The effect of k3 is simple with 0 sensitivity
for variables x and z, and some small sensitivity for
the other two variables. The values in k4 column are
large, indicating the large effect on all variables. In a
summary, from the columns in Table I, the order of
variables’ sensitivities (from large to small) is (z, y, u,
x) for k1; (x, y, u, z) for k2; (u − y, x − z) for k3;
and (u, z, y, x) for k4, where the dash ”−” means the
same sensitivity.
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Fig. 6: The TSF functions of variables with respect to param-
eter k1 with the nominal values for the parameters. (a) the
TSF of variable x(t) with respect to k1, ∂x(t)

∂k1
; b) the TSF of

variable y(t) with respect to k1, ∂y(t)
∂k1

; c) the TSF of variable
z(t) with respect to k1, ∂z(t)

∂k1
; d) the TSF of variable u(t)

with respect to k1, ∂u(t)
∂k1

.

Reading in rows of Table I, we can compare and rank
the sensitivities of the variable to parameters. In row x,
parameter k4 is with the largest sensitivity, followed
by k1 and then k2. k3 has no effect on variable x.
From the other rows for the other variables, even though
the sensitivity values are different, but the order of
parameters is consistent: k4, k1, k2, k3. Note that the
values in row u in Table I quantify the variation in Fig.
5 for variable u with different varying parameters. The
measure provided in Table I is more reliable and clearer
than the rough variation in Fig. 5. The order/rank of the
parameters (k4, k1, k2, k3) may not be obtained directly
from Fig. 5.

2) TSFs when all parameter values vary: The above
sensitivities are measured for the nominal values of
the parameters. With different parameters’ values, the
changes on the variables are different. Figure 7 shows
the variations of the variables for various parameter
values in the ranges around the nominal values. The
reference variable values are the solutions when the
parameters are at the nominal values. For Fig. 7,
the parameters’ values are chosen randomly from the
ranges of the parameters. Therefore, the effects of the
combinations of the parameters are presented in Fig. 7.

It can be seen from Fig. 7 that the solution values
vary above and below the reference values with dif-
ferent values for the parameters. However, it is not
easy to analyze the sensitivity behavior directly from

Variables k1 k2 k3 k4
x 41.5601 25.9384 0 44.3415
y 77.1920 20.7210 10.3865 100.7236
z 113.7541 1.9437 0 128.8967
u 47.7038 20.0600 10.3865 203.1208

Table I: TSA results: the sensitivities when parameters are
nominal values.

Variables k1 k2 k3 k4
x 0.6195 0.9640 0 0.0772
y 1.0130 0.8312 0.4162 0.7778
z 1.5828 0.0025 0 0.7172
u 1.0570 0.9943 0.4162 1.9409

Table II: TSA results: the sensitivities when all parameters
vary.

Fig. 7. To quantify the measure of the sensitivities,
we utilize the TSFs. As an example, Fig. 8 shows the
TSFs of all variables with respect to parameter k1 when
all parameters are varied. The behavior of the graphs
follows a similar pattern due to the increase or the
decrease of the parameters’ values.

Next, to wrap up the results in Fig. 8, we semi-
normalize the TSFs. Normalization is a process that
is used to eliminate redundancy, reduce the potential
for anomalies during data processing and maintain the
consistency and integrity of the data. The L2 norm of
the TSF with the sampling parameters referenced to the
TSF with the nominal parameters is given∥∥∥∥∂X∂P |P=Ps

− ∂X

∂P
|P=Po

∥∥∥∥2
2

(19)

=
∑
i

(∣∣∣∣∂X(ti)

∂P
|P=Ps −

∂X(ti)

∂P
|P=Po

∣∣∣∣2 ·∆t
)

where X = {x, y, z, u}′, P = {k1, k2, k3, k4}′, Ps is
the sampled parameter value, and Po is the nominal
value. The semi-normalizer consists of multiplying the
norm by the distance between the parameters. It is
defined as follows:∑

j

(
|Psj − Po|

∥∥∥∥∂X∂P |P=PSj
− ∂X

∂P
|P=Po

∥∥∥∥
2

)
(20)

The results, the semi-normalization norm for the
TSFs of each variable and each parameter is reported in
Table II. The values in Table II measure the difference
between the magnitudes of TSFs. The larger the value
is, the larger difference between the magnitudes of the
TSFs is, thus the more sensitive the variable is to the
parameter.
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Fig. 7: The variations of the variables with various parameters’ values in the ranges around the nominal values. The reference
values are the solutions when the nominal values are set in the model equations. (a). The x(t)− variation with various
parameters’ values; (b). The y(t)− variation with various parameters’ values; (c). The z(t)− variation with various parameters’
values; (d). The u(t)− variation with various parameters’ values.

Compared with Table I, the rankings of the sensi-
tivities in Table II for variables and for parameters
are different. Reading in columns, the ranking of the
variables (from high to low) is z, u, y, x for k1; u,
x, y, z for k2; (y, u), (x, z) for k3; u, y, z, x for k4.
Reading in rows, the ranking of the parameters (from
high to low) is k2, k1, k4, k3 for x; k1, k2, k4, k3 for
y; k1, k4, k2, k3 for z; k4, k1, k2, k3 for u.

B. Results from MPSA

We use the random values following the uniform
distribution for the sampling of parameters k1, k2,
k3, k4. The sample size is 10,000 points. In other
words, we take random values within the ranges of k1,
k2, k3, k4 10,000 times and simulate the differential
equations (DEs) system 10,000 times. Six (6) different

percentiles including, the 25th, 37.5th, 50th, 62.5th, 75th

and the mean of the objective function values are chosen
as the criteria to classify the cases as acceptable or
unacceptable in the computation of the probability mass
functions (PMFs) and the cumulative distribution func-
tions (CDFs). Nonetheless, the rank of the sensitivity
of x with respect to each parameter remains the same
for each chosen percentile and the mean. The results
from larger size samplings are essentially identical to
the results reported here.

In this study, we plot out all the PMFs and CDFs
of acceptance and non-acceptance of four parameters
for four variables. Here, we choose the variable y for a
detailed analysis. Similar discussions are carried out for
the other variables, and the figures are omitted here. The
PMFs of acceptance and non-acceptance of parameter
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Fig. 8: The TSFs for all variables with respect to parameter k1 when all parameters vary. (a) the TSF of variable x(t) with
respect to k1, ∂x(t)

∂k1
; b) the TSF of variable y(t) with respect to k1, ∂y(t)

∂k1
; c) the TSF of variable z(t) with respect to k1,

∂z(t)
∂k1

; d) the TSF of variable u(t) with respect to k1, ∂u(t)
∂k1

.

k1 for variable y are presented in the Fig. 9, and their
CDFs of acceptance and non-acceptance are displayed
in Fig. 10. The PMFs and CDFs of other parameters are
similar to Figs. 9 and 10. The distributions are tested,
and the Kolmogorov-Smirnov distance is computed to
rank the sensitivity of each parameter, with the results
shown in Table III. From these results including the
figures and the table, for the output variable y the
ranking of all four parameters sensitivities is k1, k2,
k3, k4. From the values in Table III and the graphs in
Figs. 11 and 12 for the PMFs and CDFs of all four
parameters for variable y, the sensitivity of parameters
k3 and k4 are very close with no significant difference.

Similarly to the analysis on the output variable y
in the above, we compute the PMFs of acceptance
and non-acceptance, the CDFs of acceptance and non-

acceptance, and the Kolmogorov-Smirnov distances for
each output variables x, z, and u. Since the rank of
the sensitivity of each parameter remains the same in
each chosen percentile (the 25th, the 37.5th, the 50th, the
62.5th, the 75th) and the mean of the objectives for one
variable, we choose the mean values of the objectives
for each variable to report in detail in Table IV. From
Table IV, with the output variable y the ranking for
all four parameters sensitivities is k1, k2, k3, k4; with
variable z the sensitivity ranking is k1, k4, k2, k3; with
variable u the sensitivity ranking is k4, k2, k1, k3.

C. Comparison of the results from TSA and MPSA

In comparison of the results from the TSA and
MPSA methods, Table V displays the ordering of the
ranks. Here, we notice that both results are consistent
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Fig. 9: The PMFs of acceptable (red) and unacceptable (blue)
cases of parameter k1 for variable y, in different level of
percentile objectives. (a). The 25th percentile; (b). The 37.5th

percentile; (c). The 50th percentile; (d). The 62.5th percentile;
(e). The 75th percentile; (f). Mean.

Fig. 10: The CDFs of acceptable (red) and unacceptable (blue)
cases of parameter k1 for variable y, in different level of
percentile objectives. (a). The 25th percentile; (b). The 37.5th

percentile; (c). The 50th percentile; (d). The 62.5th percentile;
(e). The 75th percentile; (f). Mean.

except for the output variable y whose 3nd and 4rd

sensitivity ranks are reversed in the TSA and MPSA
methods, and the variable u whose 2nd and 3rd sensi-
tivity ranks are also reversed in the TSA and MPSA
methods. Nevertheless, the variable x is most sensitive
to changes in the parameter k2, the variable y and z are
most sensitive to changes in the parameter k1, and the
variable u is most sensitive to changes in the parameter
k4. k3 does not affect any output variable significantly.

Percentile k1 k2 k3 k4
25th percentile 0.3060 0.2864 0.1005 0.1111
37.5th percentile 0.3723 0.2804 0.0831 0.0604
50th percentile 0.4514 0.2844 0.0770 0.0608
62.5th percentile 0.5103 0.3160 0.0721 0.0660
75th percentile 0.5757 0.3877 0.0767 0.0744

Mean of
objectives 0.5097 0.3150 0.0730 0.0653

Table III: MPSA results: ranks of all parameters for variable
x at various percentile objectives.

Variables k1 k2 k3 k4
x 0.0942 0.3389 0.0235 0.0870
y 0.5097 0.3150 0.0730 0.0653
z 0.6505 0.0211 0.0205 0.0958
u 0.1996 0.2837 0.1135 0.3681

Table IV: MPSA results: mean of the objectives for all
parameters with variables.

V. CONCLUSION AND FUTURE TOPICS

From the previous studies [3,4], the melting of HbS
polymers into monomers is beneficial, if not mandatory
to eliminate the sickling of the red blood cell. Fur-
thermore, carbon monoxide (CO) has been shown to
improve the process of HbS polymers melting. Sangart
Inc. (San Diego, CA) [19] has developed a drug called
MP4CO that delivers CO at a therapeutic level to the
sickle cells to facilitate the melting process. In the
extended model [4], we see that many parameters play
important roles in the breaking down of the de-oxy
HbS polymers which leads to the formation of the CO-
bound HbS monomers. Thus, it is crucial to determine
the most important parameters that affect de-oxy HbS
polymers and the CO-bound HbS monomers. Therefore,
we analyze the sensitivity of all parameters to identify
the most important parameters in the de-polymerization
process.

Our first set of numerical experiments addresses
the sensitivity of the variables with respect to the
parameters using the TSA method. The representatives
of sensitivity graphs are plotted as functions of time
in Fig. 6 for CO monomers. The sensitivity values
using the L2 norms of the TSFs are displayed in
Table I, which shows the strong effect of the CO-
binding rate to de-oxygenated polymers (kp(CO) on
all the variables, i.e., the most sensitive parameter. The
melting rate of CO-bound polymers (kCO) shows a weak
effect on the variables, thus it appears to be the least
sensitive or insensitive. Therefore, the concentration of
de-oxygenated HbS polymers and the concentration of
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Fig. 11: The PMFs of acceptable (red) and unacceptable
(blue) cases of all parameters for variable y, in the mean
of percentile objectives. (a). Parameter k1; (b). Parameter k2;
(c). Parameter k3; (d). Parameter k4.

CO-bound HbS monomers are affected the most by the
rate kp(CO) and the least by kCO.

In the next analysis, using the previous TSFs, we
study the sensitivities while all parameters are varied.
As all the parameters are varied simultaneously, we no-
tice quite a change in the sensitivity rankings. Here, we
notice the importance of melting rate of de-oxygenated
polymers (kd) on the concentration of de-oxygenated
HbS polymers and CO-bound HbS monomers. It should
be noted that the kd is the most important parameter in
the breaking down of the de-oxygenated HbS polymers
and the formation of the CO-bound HbS monomers.
Followed by kd, kp(CO) is the second sensitive parame-
ter to the concentration of de-oxygenated HbS polymers
and km(CO) is the second sensitive parameter to the
concentration of CO-bound HbS monomers. As for the
concentration of de-oxy HbS monomers, km(CO) fol-
lowed by kd are the two most sensitive parameters. For
the concentration of CO-bound HbS polymers kp(CO)
is the parameter that causes the most disturbance. It
should be noted that kCO has demonstrated the weakest
effect in the sensitivity of all output variables.

Lastly, we perform the MPSA on the CO-mediated
sickle cell de-polymerization with the same set of
initial conditions and parameter ranges. The sensitivity
rankings of all output values with respect to all input
parameters are obtained by the MPSA analysis directly.
These results are essentially identical to the results from
TSA with semi-normalization of the TSFs.

In comparing the methods of sensitivity analysis
employed in this study, both TSA and MPSA have

Fig. 12: The CDFs of acceptable (red) and unacceptable
(blue) cases of all parameters for variable y, in the mean
of percentile objectives. (a). Parameter k1; (b). Parameter k2;
(c). Parameter k3; (d). Parameter k4.

pros and cons. The TSA method is simple to derive
mathematically and simple to implement in the program
codes to obtain the TSFs numerically. But it is limited
by its large computational cost. In a case where there
are many parameters (r) and output variables (n), there
will be many equations (n+ n× r) for the TSFs. The
TSA also focuses on the local effect of the parameter on
the output variables. As for the MPSA method, multiple
parameters can be considered at the same time. This
method studies the overall effect of the parameters on
the output’s variables. The disadvantage of this method
is the large size of sampling for the parameters because
of the Monte-Carlo simulation.

In chemical reactions, temperature plays an important
role. The fluctuation of temperature influences the rate
of reactions. The rate constants present in the model are
influenced by the temperature variation [20]. Sensitivity
analyses, such as the TSA and MPSA performed in
this study, are useful tools in the iterative mathematical
modeling process. Results from the sensitivity analysis
can be used to inform and design future experiments,
whose results can be used to further refine the mathe-
matical model. In this study for CO-mediated sickle cell
de-polymerization, the results indicate that the system
shows the most sensitivity within the first 200 minutes.
The system seems to approach the same equilibria
regardless of the parameters chosen, which suggests that
additional experimentation should focus on obtaining
data during the first 200 minutes. Furthermore, this
study suggests that the system is most sensitive to
the melting rate of the de-oxygenated polymer (kd),

Biomath 13 (2024), 2312036, https://doi.org/10.55630/j.biomath.2023.12.036 13/15

https://doi.org/10.55630/j.biomath.2023.12.036


Liu, Basti, Messan, Tang, Luke, Parameter sensitivity analysis for CO-mediated sickle cell de-polymerization

Variables Sensitivity Analysis Ranking Order
Method

x TSA k2 − k1 − k4 − k3
x MPSA k2 − k1 − k4 − k3
y TSA k1 − k2 − k4 − k3
y MPSA k1 − k2 − k3 − k4
z TSA k1 − k4 − k2 − k3
z MPSA k1 − k4 − k2 − k3
u TSA k4 − k1 − k2 − k3
u MPSA k4 − k2 − k1 − k3

Table V: Ranking results of TSA and MPSA.

followed by the CO binding rates for monomers and
polymers (km(CO), kp(CO)). The system shows little
sensitivity to the melting rate of the CO polymer
(kCO). Future experimentation that investigates these
rates would be useful to further verify these results.

For the future topics, first of all, both the TSA
and MPSA analyses can be conducted for the initial
conditions Cd

m(0), CCO
m (0), Cd

p (0), and CCO
p (0), and the

solubilities Cs, CCO
s , for each output variable Cd

m(t),
CCO

m (t), Cd
p (t), and CCO

p (t). Secondly, it can be seen
from the analysis in this study that the sensitivity values
calculated by the L2 norm of the TSFs are affected by
the scales of the functions. Instead of the TSFs, we may
use the relative sensitivity functions for a more delicate
study. More details of the relative sensitivity functions
can be found in [5,6]. Thirdly and lastly, the MPSA can
be further improved. For example, the K-S measuring
is a rough approximation for the distance between two
CDFs. A more delicate technique may be developed
to measure the difference between the acceptance and
non-acceptance distributions. Another example, if there
exists appreciable correlation between parameters, the
current version MPSA may not be efficient. Taking the
correlation of parameters into consideration, we may
project the distributions onto new axes to obtain a more
accurate result.

VI. SOFTWARE AVAILABILITY

The analysis in this study has been done in Matlab.
The whole set of Matlab codes are uploaded and pub-
lished on GitHub at the following link: https://github.
com/lipingliuncat/ParameterSensitivity.
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VIII. APPENDIX

The sensitivity equations for all four parameters:
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