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Abstract: Several models on honeybee population dy-
namics have been considered in the past decades, which
explain that the growth of bee colonies is highly dependent
on the availability of food and social inhibition. The
phenomenon of the Colony Collapse Disorder (CCD) and
its exact causes remain unclear and here we are interested
on the factor of social immunity.

We work with the mathematical model in [1]. The core
model, consisting of four nonlinear ordinary differential
equations with unknown functions: brood and nurses B,
iB, N and iN represent the number of healthy brood,
infected brood, healthy nurses, and infected nurses, re-
spectively.

First, this model implements social segregation. High-
risk individuals such as foragers are limited to contact
only nectar-receivers, but not other vulnerable individuals
(nurses and brood) inside the nest. Secondly, it includes
the hygienic behavior, by which healthy nurses actively
remove infected workers and brood from the colony.

We aim to study the dynamics and the long-term
behavior of the proposed model, as well as to discuss the
effects of crucial parameters associated with the model.
In the first stage, we study the model equilibria stability

in dependence of the reproduction number.
In the second stage, we investigate the inverse problem

of parameters identification in the model based on finite
number time measurements of the population size. The
conjugate gradient method with explicit Frechet derivative
of the cost functional is proposed for the numerical
solution of the inverse problem.

Computational results with synthetic and realistic data
are performed and discussed.

Keywords: honeybee population dynamics, social immu-
nity, least-squares fitting

I. INTRODUCTION

Over recent years, numerous mathematical frame-
works have been formulated to analyze and forecast
the population dynamics of honeybees.

In the study [1], the researchers devised a novel
model focusing on the spread of diseases within bee
colonies, primarily through trophallactic interactions.
The model posits that an infection enters the colony
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when a foraging bee, having contracted the disease
outside the hive, engages in nectar transfer through
trophallaxis to a bee receiving nectar. This receiver bee
then propagates the disease to other bees, encompassing
both nurse bees and larvae. This model is broadly
relevant to diseases that are spread through pathways
related to food, particularly those presumed to be facil-
itated by trophallaxis.

The developed model incorporates several critical
aspects that distinguish it from other prominent models
in the field. Initially, it emphasizes the concept of social
immunity, particularly highlighting the separation of
bees into low-risk and high-risk groups, and the prac-
tices of hygiene directed at ill bees. This focus on social
immunity has rarely been the primary consideration in
other models, with only a few exceptions. Additionally,
the model integrates the concept of hygienic behavior,
wherein healthy nurse bees remove infected workers
[2–4] and brood [5–7] from the colony. These two
elements are central to the model’s representation of
social immunity, playing a pivotal role in curbing the
horizontal spread of pathogens among colony members.

The paper is organized as follows. In the next section,
both the core and the extended model are presented.
The nonnegativity and boundedness properties of the
solution are studied in Section 3, while in the following
section the equilibrium points are explored in detail.
The reproduction number is explained and derived
in Section 5. The solution to the inverse coefficient
problem, which is the main novelty of the paper, is
extendedly considered in Section 6. The following sec-
tion contains the numerical simulations of the solutions,
and the paper is concluded in the last section.

II. MATHEMATICAL MODELS

In this section, we present the models we will further
investigate. First to discuss is the core model, which is
later extended into a sophisticated counterpart, simply
called the extended model.

A. Core model

We follow the modeling of paper [1], where the core
model is

dB

dt
= l0 −

1

nB
B − pt0 · kNB · iN ·B, (1)

diB

dt
= − 1

nB
iB + pt0 · kNB · iN ·B

− krem · iB ·N − kd · iB, (2)

dN

dt
=

1

nB
·B − 1

nN
·N − pt1 · kRN · iR1 ·N

− pt,rem · krem · iB ·N, (3)
diN

dt
=

1

nB
· iB − 1

nN
· iN + pt1 · kRN · iR1 ·N

− krem · iN ·N − kd · iN
+ pt,rem · krem · iB ·N, (4)

where

dB

dt
=

d

dt
(B),

diB

dt
=

d

dt
(iB), etc.

To formulate the mathematical model, we use the
following assumptions [1]:

A1. Offspring originates from a consistent egg-laying
rate represented by l0. Both uninfected and afflicted
evolve into their corresponding nurse states, either
uninfected or affected, at a rate given by 1/nB , where
nB = 20 days as referenced in [8, 9]. Uninfected
and affected nurses further mature into their respective
states of nectar-collectors at a rate given by 1/nN ,
where nN = 10 days [10]. The main model does not
account for nectar collectors and foragers, but they are
incorporated in the extended model (next subsection).

A2. When providing nourishment, affected nurses
pass the ailment to the offspring. The assumption is
that the offspring are susceptible to the ailment at a
rate represented by pt0 · kNB · iN , where pt0 denotes
the likelihood of ailment spread per interaction between
an afflicted nurse and offspring, kNB stands for the
interaction rate between nurses and offspring, and iN
signifies the count of afflicted nurses, as shown in (1),
(2). In this context, the term brood encompasses eggs,
larvae, and pupae, collectively for ease of representa-
tion.

A3. Uninfected nurses execute the removal of their
affected counterparts. This action is described by
healthy nurses (N ) actively removing the infected ones
(iN ) from the group at a steady rate of krem, as
depicted in (4).

A4. Healthy nurses (N ) proactively extract infected
offspring (iB) from their chambers at the same consis-
tent rate krem as shown in (2). Though it is documented
that bees aged 15-18 days predominantly perform this
brood removal [5–7], evidence also indicates nurse
bees’ involvement. This paper supposes that nurse bees
have the capability to remove both infected offspring
and fellow workers [2–4].

A5. Nurses risk infection when they come in contact
with infected nectar-collectors. It is noted that these
nectar-collectors engage in nectar-sharing interactions
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with nurse bees during their visits to deposit nectar
within the colony. The model (1)-(4) makes an as-
sumption: the transmission rate of infection stands at
pt1 · kRN · iR1. Here, pt1 represents the likelihood of
disease spread during an encounter between an infected
nectar-collector and a nurse; kRN denotes the encounter
rate, and iR1 is the count of diseased nectar-collectors
bearing nectar, elaborated in the extended model. In the
core model (1)-(4) the value of pt1 · kRN · iR1 in eqs.
(3) and (4) is perceived as a constant, set at 5× 10−4

daily [1].
A6. The main assumption is that the primary pathway

for transmitting infections is through nectar distribution,
and nurses are not susceptible to infections from other
infected nurse bees. Furthermore, the contagion is be-
lieved to propagate singularly from nectar donors to
those receiving it.

A7. When hygienic bee workers engage in the re-
moval of infected broods, they might contract the
infection due to contact with the infected tissues. This
probability is denoted as pt,rem in (3) and (4). Initially,
the value for pt,rem is set at 0, and the scholars from
[1] delved into this parameter through their numerical
evaluations.

A8. The reaction of individual honeybees to in-
fections can vary, influenced by the degree of the
infection and other concurrent stressors. To illustrate,
numerous viruses that affect honeybees do not manifest
any noticeable symptoms. However, when these bees
encounter additional stressors, the latent infection might
escalate, intensifying honeybee mortality rates.

Colony Collapse Disorder (CCD), impacting honey-
bee populations, manifests as abrupt demise of colonies
with an absence of living adult bees within the hive.
This phenomenon is attributed to several contribut-
ing factors including emerging pathogens and pests,
diminished genetic diversity, pesticide usage, lack of
high-quality nourishment, and environmental shifts, as
referenced in [10, 11].

This disorder notably impairs the navigational abil-
ities of adult bees. They depart their hive for pollen
collection but fail to return. Despite the presence of
honey and pollen within the hive, and indications of
recent breeding activities, the adult bee population
vanishes.

Occasionally, the queen bee, along with a handful
of surviving bees, may be found in the brood area.
The presence of honey and pollen remains consistent
in the hive, accompanied by signs of recent brood
rearing. CCD is further distinguished by a delay in
the plundering of honey from the deceased colonies

by neighboring, healthy bee colonies, and a slower
incursion by typical pests such as wax moths or small
beetles. Significantly, CCD seems to exclusively affect
the European honeybee, Apis mellifera [12].

B. Extended model

Upon their return from gathering nectar, foragers dis-
tribute their collected nectar to worker bees in charge of
food refinement through trophallaxis, known as nectar-
receivers.

While the majority of these nectar receivers promptly
store the nectar in honey chambers, a fraction distributes
the nectar to secondary receivers, predominantly nurse
bees. In the more detailed model, both nectar-receivers
and foragers are further classified into distinct bee cate-
gories. Receivers can be categorized as either unloaded
(R0 and iR0) or loaded with nectar (R1 and iR1).
Similarly, foragers are categorized as unloaded (F0 and
iF0) or loaded (F1 and iF1).

In the core model, both uninfected and infected
nurses transition to become either uninfected or infected
nectar-receivers without nectar in the broader model,
respectively. Nectar-handlers transition into foragers at
a consistent rate of 1/nR, given that nR equates to 11
days [10]. Foragers retain their roles until they reach
the end of their life cycle, at a rate concluded by 1/nF ,
with nF being 14 days [10].

Unloaded foragers gather nectar and, subsequently,
are classified as loaded at a steady rate represented by k.
This rate encapsulates various actions, such as rallying,
sourcing nectar, and re-entering the hive. It is assumed
that foragers contract infections outside the confines of
the hive. To represent the beginning of an infection
within the colony, a singular infected forager is assumed
to return from a nectar-gathering expedition at initial
time, denoted as iF1(t0) = 1. Within the designated
offloading zone, loaded foragers (F1 or iF1) pass on
their nectar to unloaded (R0 or iR0) at a fixed rate,
symbolized by kFR, denoting the interaction frequency
between foragers and nectar-handlers. Once foragers
have dispensed their load, they pause before being
prompted to gather more resources. Studies have indi-
cated that foragers with infections exhibit significantly
diminished navigational abilities when compared to
their healthy counterparts. Consequently, it is assumed
that these infected foragers have a survival probability,
denoted as psurv , in successfully returning to the colony
during their foraging expeditions.

Nectar-receivers who are initially without nectar and
then acquire it from foragers become loaded at a steady
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rate, represented by kFR. When a non-infected nectar-
receiver acquires nectar from an infected forager, there
exists a chance, marked as pt2, that the former will
contract the infection. Once loaded, nectar-receivers
proceed to deposit the nectar in the hive’s honey cells
and then revert to an unloaded state at a consistent
rate of 1/tS . In the process of storing nectar, these
receivers often engage in feeding interactions with
numerous nurse bees. An encounter between an infected
nectar-receiver and a healthy nurse bee may lead to
the transmission of the disease to the latter, with a
transmission probability denoted as pt1, (3) and (4).

Similar to the fundamental assumptions of the core
model, transmission of the infection is believed to
occur solely from nectar-donating to nectar-receiving
bees. The full model integrates the core and extended
models, where the infection rate of N in (3) and (4) is
contingent on the quantity of infected nectar-receivers
carrying loads (iR1). In the extended model, mortality
among infected receivers and foragers due to the disease
is not considered, focusing instead on the non-lethal,
subclinical infection of the colonies, hence assuming a
death rate coefficient (kd) of zero:

dR0

dt
=

N

nN
− R0

nR
− kFR(F1 + iF1)R0 +

R1

tS
,

dR1

dt
= −R1

nR
+ kFR(F1 + (1− pt2)iF1)R0 −

R1

tS
,

d(iR0)

dt
=
iN

nN
− iR0

nR
− kFR(F1 + iF1)iR0 +

iR1

tS
,

d(iR1)

dt
= − iR1

nR
− kFR(F1 + iF1)iR0

+ pt2kFRiF1R0 −
iR1

tS
, (5)

dF0

dt
=
R0

nR
− F0

nF
+ kFR(R0 + iR0)F1 − kF0,

dF1

dt
=
R1

nR
− F1

nF
− kFR(R0 + iR0)F1 + kF0,

d(iF0)

dt
=
iR0

nR
− iF0

nF
+ kFR(R0 + iR0)iF1 − kiF0,

d(iF1)

dt
=
iR1

nR
− iF1

nF
− kFR(R0 + iR0)iF1

+ psurvkiF0.

III. NONNEGATIVITY AND BOUNDEDNESS

In this section we analyze the positivity and bounded-
ness of the system variables to show the well-posedness
of system (1)-(4).

Following [1], we have formulated a four compart-
ment model (1)-(4) to analyze the segregation of worker
bees and a hygienic response by which heathy nurse

bees exterminate infected bees to mitigate horizontal
transmission of the infection to other bee members.

Let us introduce some notations in order to simplify
the rewriting of the system (1)-(4).

Namely, we let:

x1(t) = B(t), x2(t) = iB(t),

x3(t) = N(t), x4(t) = iN(t),

p0 = pt0 · kNB , kr = krem, b =
1

nB
,

p1 = pt1 · kRN · iR1, p2 = pt,rem, n =
1

nN
.

Then, we rewrite the system (1)-(4) as follows

dx1
dt

= l0 − bx1 − p0x1x4
≡ f1(x1, x4), (6)

dx2
dt

= −(b+ kd)x2 + p0x1x4 − krx2x3
≡ f2(x1, x2, x3, x4), (7)

dx3
dt

= bx1 − (n+ p1)x3 − p2krx2x3
≡ f3(x1, x2, x3), (8)

dx4
dt

= bx2 + p1x3 − (n+ kd)x4 + p2krx2x3

− krx3x4 ≡ f4(x2, x3, x4). (9)

In the following, we write the system (6)-(9) in the
vector form

dx

dt
= f

(
x(t)

)
, x ≡ (x1, x2, x3, x4), t ≥ 0, (10)

f
(
x(t)

)
=
(
f1
(
x(t)

)
, f2
(
x(t)

)
, f3
(
x(t)

)
, f4
(
x(t)

))
.

System (10) is positive (short for ‘non-negativity
preserving’) if

x(0) ≥ 0 =⇒ x(t) ≥ 0 ∀ t ≥ 0.

Theorem 7.1 in [13] says that if the right-hand side
f(x) satisfies the Lipschitz condition, then the system
is positive if for any vector v ∈ R4 and all i = 1, 2, 3, 4
we have the following results:

Theorem 1. Solutions of system (6)-(9) or (10) in R4
+

are positive for all final time t ∈ (0, tf ).

Proof: The right-hand f(x(t)) of the system (10)
is continuous and locally Lipschitzian on the space of
continuous functions, from which it follows that there
exists a unique solution x(t) on a finite interval [0, tf ],
see e. g. [14]. We show that x(t) > 0, ∀ t ∈ [0, tf ).
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Let us suppose that it does not hold, then ∃ t1 ∈
[0, tf ) such that

x1(t1) = 0,
dx1
dt

(t1) ≤ 0 and x1(t) > 0, ∀ t ∈ [0, t1).

Then, it follows from equation (6):

0 ≥ dx1
dt

(t1) = l0 > 0 =⇒ contradiction.

Next, suppose that there exists t3 ∈ [0, tf ) such that

x3(t3) = 0,
dx3
dt

(t3) ≤ 0 and x3(t) > 0, ∀ t ∈ [0, t3).

Then it follows from equation (8) and x1(t) > 0, t ∈
[0, t1) that

0 ≥ dx3
dt

(t3) = b(x1(t3)) > 0 =⇒ contradiction.

Further, we show that x2(t) > 0 for t ∈ [0, tf ). If it
does not hold, then ∃ t2 such that

x2(t2) = 0,
dx2
dt

(t2) ≤ 0 and x2(t) > 0, ∀ t ∈ [0, t2).

So, it must be true that x4(t) ≥ 0, ∀ t ∈ [0, t2). If it
does not hold, then ∃ t4 ∈ (0, t3) such that

x4(t4) = 0,
dx4
dt

(t4) ≤ 0 and x4(t) ≥ 0, ∀ t ∈ [0, t4).

Then from the equation (9) we have:

0 ≥ dx4
dt

(t4) = bx2(t4) + p1x3(t4)

+ p2k2x2(t4)x3(t4) > 0 =⇒ contradiction.

Therefore x4(t) > 0 for x ∈ [0, t2). Now from equation
(7) we have:

0 ≥ dx2
dt

(t2) = p0x1(t2)x4(t2) > 0 =⇒ contradiction.

Corollary 1. The total population N(t) =
∑4

i=1 xi(t)
is positive, if xi(0) > 0, i = 1, 2, 3, 4 and N(t) < C =
constant for all 0 < t <∞.

Proof: The positiveness of N(t) directly follows
from Theorem 1.

Next, summing the left-hand sides and the corre-
sponding right-hand sides of the equation (6)-(9) and
applying Theorem 1, we obtain:

dN

dt
< l0 − kdx2 − nx3 − (n+ kd)x4 ≤ l0 − (c− x1),

where c = min(kd, n, n+ kd) = min(kd, n).

Then, N(t) ≤ Ñ(t), where

dÑ

dt
+ CÑ = l0 + cx̃1(t), Ñ(0) = N(0),

dx̃1
dt

+ bx̃1 = l0, x̃1(0) = x1(0).

First, for x̃1 we get

x̃1(t) =

(
x1(0)−

l0
b

)
e−bt +

l0
b
,

then for Ñ(t) we find

Ñ(t) = l0

(
1

c
+

1

b

)
+

c

c− b

(
x1(0)−

l0
b

)
e−bt

+

[
N(0)− l0

(
1

c
+

1

b

)
− c

c− b

(
x1(0)−

l0
b

)]
e−ct

Since the constants b, c are positive, then Ñ(t) < C =
const.

IV. EQUILIBRIUM ANALYSIS

In this section we analyze the equilibrium points of
system (1)-(4) along their stability conditions. For epi-
demiological models, usually basic reproduction num-
ber R0 (16) determines the existence of endemic equi-
librium and stability of disease-free equilibrium of a
system. System (6)-(9) (respectively (1)-(4)) has the
following equilibrium points.

A. Disease-free equilibrium (DFE)

A disease-free equilibrium point is a solution to the
system (1)-(4) in holding that there is no disease in
the population. In this case iB = iN = 0 in (1)-(4),
respectively x2 = x4 = 0 in (6)-(9). Therefore

E0 =

(
l0
b
, 0,

l0
n
, 0

)
. (11)

B. Endemic equilibrium (EE)

Using the definition of an equilibrium point, we solve
the system of nonlinear algebraic equations of right
hand-side of (6)-(9).

Using the proposed values of model parameters in
[1], we have pt,rem = 0.0, kd = 0.0 day−1 and
therefore in the system (6)-(9): p2 = 0, kd = 0. Now
from (8) we find

x1 =
n+ p1
b

x3. (12)

We substitute this expression for x1 into (6) to obtain

x4 =
b

p0

(
l0

n+ p1
· 1

x3
− 1

)
. (13)
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Next, from the right hand side of (9) and using formulas
(7), (8) we obtain:

x2 = −
(
p1
b

+
kr
p0

)
x3 +

nl0
p0(n+ p1)

· 1

x3

+
1

p0

(
krl0
n+ p1

− n
)
. (14)

Finally, substituting (12)-(14) into (7), we get the cubic
equation for x3

Ax33 +Bx23 + Cx3 +D = 0, (15)

where

A = kr

(
p1
b

+
kr
p0

)
,

B = −n− kr
p0

(
krl0
n+ p1

− b− n
)
,

C = −krl0(b+ n)

p0(n+ p1)
+
bn

p0
+ l0,

D = − bnl0
p0(n+ p1)

.

Once the equation (15) is solved, we find x1 from (12),
x4 from (13) and then x2 from (14).

We now analyze the roots of equation (15) for
positivity. Since always A > 0, we rewrite (15) in the
short form

x33 + px23 + qx3 + r = 0, p =
B

A
, q =

C

A
, r =

D

A
.

Algorithm:
Step 1. Calculate 4 = −27r2+18pqr−4q3−4p3r+

p2q2 ≥ 0 to ensure that all roots are positive (not
necessarily distinctive).

The necessary and sufficient conditions for the posi-
tivity of the roots are

p < 0, q > 0, r < 0.

This follows from the fact that the coefficient in front
of x33 is 1 > 0 and then we apply the Descartes’ rule
of signs.

We note that r < 0 is always true.
Step 2. At the second stage we calculate x1, x2, x4

and find three, two or one equilibrium points.

V. REPRODUCTION NUMBER

The basic reproduction number, R0, of an infectious
disease is the average number of secondary cases gen-
erated by a single primary case in a fully susceptible
population. R0 is the most widely epidemiological
measurement of the transmission potential in a given
population.

It is primary used as a threshold: if R0 < 1, then
the disease will fade out of the population, but if
R0 > 1 the disease persist and become epidemic to
the population. Furthermore, the larger the magnitude
ofR0, the faster the disease will spread and presumably
the more difficult it would be to control.

There are different methods in which R0 can be
calculated. R0 is defined as a spectral radius of the
next generation matrix [15].

Here, terms that describe appearances of new infec-
tions in each compartment belong in F , and the other
terms belong in V. The Jacobian matrices obtained by
differentiating F and V with respect to the relevant
subset of variables are computed and evaluated at an
equilibrium point, resulting the matrices JF u JF ,
respectively. So, the basic reproduction number, R0, is
defined as the spectral radius of the matrix JF (JV )−1.

So, we represent the system (10) in the form

dx

dt
= F (x)− V (x),

where

F (x) =

(
p0x1x4
p1x3

)
,

V (x) =

(
bx2 + krx2x3
−bx2 + nx4 + krx3x4

)
,

JF (x) =

(
0 p0x1
0 0

)
,

JV (x) =

(
b+ krx3 0
−b n+ krx3

)
.

Then,

JF (E0) =

(
0 p0

l0
b

0 0

)
,

JV (E0) =

(
b+ kr

l0
n 0

−b n+ kr
l0
n

)
,

and eventually

R0 =
l0n

2p0
(n2 + l0kr)(bn+ l0kr)

. (16)

VI. SOLUTION TO THE COEFFICIENT INVERSE
PROBLEM

When we solve the problem (6)-(9) with the re-
spective initial conditions, knowing the values of all
coefficients, we actually solve the direct problem. In
practice, though, we do not know the values of some
parameters, since they cannot be measured directly and
obtained in some way, even reasonably approximated.
However, we are able to measure the functions B,
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iB, N , iN , since they represent the number of bees,
belonging to the respective class, and could be counted
by means of special hardware.

Before defining the observations, we are interested
in the values of parameters p = (p0, p1, p2, kr, kd),
since they vary [1] and cannot be approximated. Their
values could be bounded to belong to the admissible
set p ∈ Sadm = {p ∈ R5, 0 ≤ pj < P j , j = 1, 5},
and the values P j come from biological reasoning. Let
p ∈ Sadm and all solutions xi(t;p), i = 1, 4 be defined
on 0 ≤ t ≤ T . Now, we define the observations in the
form

xobs1 (tk;p) =Wk, x
obs
2 (tk;p) = Xk,

xobs3 (tk;p) = Yk, x
obs
4 (tk;p) = Zk, k = 1,K. (17)

The solution to the inverse problem consists of re-
constructing the system (6)-(9) and the values of the
parameters p, using the additional data (17). To solve
it, we employ the adjoint equation optimization method
[16, 17].

In order to derive the implied values of the param-
eters, we will minimize the following quadratic cost
functional

J(p) = J(p0, p1, p2, kr, kd)

= J1(p) + J2(p) + J3(p) + J4(p), (18)

where

J1(p) =

K∑
k=1

(
x1(tk;p)−Wk

)2
,

J2(p) =

K∑
k=1

(
x2(tk;p)−Xk

)2
,

J3(p) =

K∑
k=1

(
x3(tk;p)− Yk

)2
,

J4(p) =

K∑
k=1

(
x4(tk;p)− Zk

)2
.

Using the gradient method [18], we solve the inverse
problem.

Theorem 2. The gradient J ′(p) = (J ′p0
, J ′p1

, J ′p2
, J ′kr

,
J ′kd

) of the functional J(p) (18) is defined as follows

J ′p0
(p) =

∫ T

0

(ϕ1 − ϕ2)x1x4dt,

J ′p1
(p) =

∫ T

0

(ϕ3 − ϕ4)x3dt,

J ′p2
(p) =

∫ T

0

(ϕ3 − ϕ4)krx2x3dt,

J ′kr
(p) =

∫ T

0

(
ϕ2 + p2(ϕ3 − ϕ4)

)
x2x3 + ϕ4x3x4dt,

J ′kd
(p) =

∫ T

0

ϕ2x2 + ϕ4x4dt, (19)

where the auxiliary functions ϕi, i = 1, 4 are the unique
solution to the adjoint final-value problem

dϕ1

dt
= ϕ1(b+ p0x4)− ϕ2p0x4 − ϕ3b

+ 2

K∑
k=1

(
x1(t;p)−W (t)

)2
δ(t− tk),

dϕ2

dt
= ϕ2(b+ kd + krx3) + ϕ3p2krx3

− ϕ4(b+ p2krx3)

+ 2

K∑
k=1

(
x2(t;p)−X(t)

)2
δ(t− tk),

dϕ3

dt
= ϕ2krx2 + ϕ3(n+ p1 + p2krx2)

− ϕ4(p1 + p2krx2 − krx4)

+ 2

K∑
k=1

(
x3(t;p)− Y (t)

)2
δ(t− tk),

dϕ4

dt
= (ϕ1 − ϕ2)p0x1 + ϕ4(n+ kd + krx3)

+ 2

K∑
k=1

(
x4(t;p)− Z(t)

)2
δ(t− tk),

ϕi(T ) = 0, i = 1, 4, (20)

where δ(·) is the Dirac delta function.

Proof: Let us designate δp = (δp0, δp1, δp2, δkr,
δkd)

>, δp0 = εh1, δp1 = εh2, δp2 = εh3, δkr = εh4,
δkd = εh5 and δxi(t;p) = xi(t;p+ δp)− xi(t;p) for
i = 1, 4. If we write the system (6)-(9) at p+δp, i. e., a
system for {xi(t;p+δp)}, i = 1, 4 with the same initial
conditions, and perform the differences between these
two systems, we will arrive at a system for δxi(t;p),
i = 1, 4 with zero initial data. Actually, the system is

d

dt
δx1 = −bδx1 − p0x1δx4 − p0δx1x4 − δp0x1x4

+ O(δ·),
d

dt
δx2 = −(b+ kd)δx2 − δkdx2 + p0x1δx4

+ p0δx1x4 + δp0x1x4 − krδx2x3
− krx2δx3 − δkrx2x3 + O(δ·),
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d

dt
δx3 = bδx1 − (n+ p1)δx3 − δp1x3 − p2krx2δx3
− p2krδx2x3 − p2δkrx2x3 − δp2krx2x3
+ O(δ·),

d

dt
δx4 = bδx2 + p1δx3 + δp1x3 − nδx4 − kdδx4
− δkdx4 + p2krx2δx3 + p2krδx2x3

+ p2δkrx2x3 + δp2krx2x3 − krx3δx4
− krδx3x4 − δkrx3x4 + O(δ·).

The increment of the functional δJ(p) = J(p+ δp)−
J(p) in integral form could be written as [19]

δJ(p) = 2

K∑
k=1

∫ T

0

(
δx1(t;p)

(
x1(t;p)−W (t)

)
δ(t− tk)

+ δx2(t;p)
(
x2(t;p)−X(t)

)
δ(t− tk)

+ δx3(t;p)
(
x3(t;p)− Y (t)

)
δ(t− tk)

+ δx4(t;p)
(
x4(t;p)− Z(t)

)
δ(t− tk)

)
dt

+ O(ε), (21)

where δ(·) is the Dirac delta function.
As the fundamental idea of the adjoint equation

method [16], we multiply the equations for
d

dt
δxi,

respectively, by smooth functions ϕi(t) s. t. ϕi(T ) = 0
for i = 1, 4, integrate both sides of the result from 0 to
T and sum them up. On the other hand, if we integrate
the left-hand side by parts and make use of δxi(0) = 0,
ϕi(T ) = 0 for i = 1, 4, then∫ T

0

4∑
i=1

ϕi
d

dt
δxidt = −

4∑
i=1

∫ T

0

δxi
dϕi

dt
dt. (22)

So, placing the expressions for
dϕi

dt
from (20) in

(22) and taking into account (21), after some algebra
we obtain

δJ(p) = δp0

∫ T

0

(ϕ1 − ϕ2)x1x4dt

+ δp1

∫ T

0

(ϕ3 − ϕ4)x3dt+ δkd

∫ T

0

ϕ2x2 + ϕ4x3dt

+ δkr

∫ T

0

(
ϕ2 + p2(ϕ3 − ϕ4)

)
x2x3 + ϕ4x3x4dt

+ δp2

∫ T

0

(ϕ3 − ϕ4)krx2x3dt+ O(ε).

If we set h2 = h3 = h4 = h5 = 0, divide both
sides by εh1 and pass to the limit ε → 0, we arrive
at the formula for J ′p0

in (19). The other formulae are
obtained analogously.
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Fig. 1: Solution to the direct problem (6)-(9).

VII. COMPUTATIONAL SIMULATIONS

In this section, we provide numerical tests to verify
the quality of the proposed algorithm. First we test the
direct problem for the core and full model, and then we
proceed to the inverse problem.

A. Direct problem

We solve the problem (6)-(9) with initial condition
x1(0) = 600, x2(0) = 0, x3(0) = 600, x4(0) = 0. The
infection is implicitly introduced via iR1, which takes
part in p1. The values are accordingly [1] l0 = 120,
b = 1/20, n = 1/10, p0 = 0.03, p1 = 0.0005, p2 = 0,
kr = 0.0025, kd = 0. In this case, R0 = 0.3808.

We are interested in the near future up to T = 50
days. The results are plotted on Fig. 1.

Then, we solve problem (5) with initial data R0(0) =
700, R1(0) = 0, iR0(0) = 0, iR1(0) = 0, F0(0) =
900, F1(0) = 0, iF0(0) = 0, iF1(0) = 2. It means that
at the first flight, two foragers get infected and transfer
the disease through contact. The parameter values are
nR = 11, nF = 14, kFR = 1.44, tS = 0.01, pt2 = 0.3,
k = 0.5, psurv = 0. The results are shown on Fig. 2.

B. Inverse problem

Now we aim to recover the parameters p, using
the observations (17). The other parameters stay the
same, and the initial approximation to p is pinit =
{0.05, 0.001, 0.001, 0.01, 0.001}. We suggest taking
measurements equidistantly, one at every 10 days. This
is very scarce observation, since the hardware could
obtain measurements between minutes or even seconds.
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Fig. 2: Solution to the direct problem (5).

Table I: Identification of p.

Par pjinit pj p̌j
∣∣pj − p̌j

∣∣ ∣∣pj − p̌j
∣∣

pj

p0 0.05 0.03 0.0300 7.2103e-12 2.4034e-10

p1 0.001 0.0005 5.0000e-4 8.7792e-14 1.7558e-10

p2 0.001 0 2.2279e-14 2.2279e-14 —

kr 0.01 0.0025 0.0025 6.2053e-13 2.4821e-10

kd 0.001 0 2.3357e-14 2.3357e-14 —

The true and implied values of the parameters and
their errors are displayed in Table I. With p̌ it is
denoted the estimator, i. e. the implied values after the
minimization of J (18).

The reconstructed values practically coincide with
the real ones. The errors are negligibly small. The
values of the residuals J1(p̌) = 3.0341e-17, J2(p̌) =
1.0730e-16, J3(p̌) = 9.7635e-18, J4(p̌) = 1.7697e-19
are extremely small. All of these unequivocally demon-
strate that the minimization is successful and the un-
known parameters are accurately recovered.

VIII. CONCLUSION

Over the years, numerous models have been devel-
oped to comprehend the intricate dynamics of honeybee

populations. Central to these models is the understand-
ing that the prosperity of bee colonies is significantly
tethered to factors like food availability and social inter-
actions. A particularly concerning anomaly observed in
these colonies is the Colony Collapse Disorder. Despite
intensive research, the exact triggers of this disorder
remain enigmatic, leading us to explore the role of
social immunity in this context.

The mathematical model we adopted is underpinned
by four nonlinear ordinary differential equations, rep-
resenting various bee categories within a colony, from
healthy brood and nurses to their infected counterparts.

Two pivotal mechanisms are encapsulated within this
model:
1) Social Segregation: To mitigate the spread of infec-

tions, the model limits high-risk bees, like foragers,
to interact solely with nectar-receivers. This strategic
restriction safeguards the more susceptible members
of the colony, namely the nurses and brood.

2) Hygienic Behavior: In a bid to enhance the colony’s
resilience against infections, healthy nurse bees
proactively identify and oust infected peers and
brood, reinforcing the colony’s natural defense
mechanisms.

Our research endeavors focused on unpacking the
intricacies of this model. We were keen to delve deep
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into its dynamics, its long-term implications, and to
discern the impacts of key parameters integral to the
model.

Firstly, we meticulously analyzed the model equi-
libria stability. By evaluating equilibrium points in
relation to the reproduction number, we gained invalu-
able insights into how the model reacts under varying
conditions.

Our subsequent phase pivoted to a more sophisticated
challenge – deciphering the inverse problem of param-
eter identification. Employing the conjugate gradient
method, coupled with the explicit Frechet derivative of
the cost functional, we charted a course to a numerical
solution for this inverse problem.

Our computational simulations lead to findings not
only validating our methodologies but also offering
profound insights into the inner workings of honeybee
colonies, particularly in the context of social immunity.
As the global community grapples with the mysteries
of the CCD, studies like ours illuminate potential path-
ways to safeguard these vital pollinators.
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