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Abstract: Stability analysis of nonlinear age-of-infection
and -immunity structured SVLIAR-type model of sus-
ceptible, vaccinated, latent, COVID-19 infected, asymp-
tomatic and recovered sub-classes of population dynamics
is carried out in this paper. The SVLIAR model uses five
age variables – age of vaccine immunity of vaccinated
individuals, age of virus infection in organism during
incubation period of latent individuals, “age” of infectious
disease treatment of infected individuals, age of asymp-
tomatic infectious dis-ease of asymptomatic individuals,
“age” of immunity of organism after recovering of recov-
ered individuals.

Individuals can move from one subclass to another
when these age variables take some fixed values, that is
the processes in sub-classes are adjusted and synchronized
by age variables. The conditions for the existence of
disease-free and unique endemic equilibria and their local
asymptotic stability were obtained.

The local asymptotic stability/instability of endemic
equilibrium of SVLIAR model is defined by criterion,
which relates the demographic characteristics of popu-
lation, infection disease characteristics (disease-induced
death rate, death rate induced by the complications after
disease), characteristics of vaccination (fraction of fully
vaccinated susceptibles per unit of time, vaccination effi-
cacy) and characteristics of age variables (their maximum
values) of sub-classes.

These theoretical results help understand better the
conditions of transmission dynamics of the COVID-19
induced disease.

Keywords: age-structured model, vaccination, reinfec-
tion, adjustment, COVID-19

I. INTRODUCTION

This study is focused on a qualitative analysis of
transmission dynamics of the COVID-19 induced dis-
ease in sub-classes of susceptible, vaccinated, latent,
infected, asymptomatic and recovered individuals of
population. The mostly used methods of theoretical
analysis of transmission dynamics of infectious diseases
in epidemic models are based on the age-structured
models of population dynamics [1–8] which relate the
age-dependent demographic parameters of susceptible,
infected, and recovered sub-classes of population with
characteristics of infection-induced disease transmis-
sion. Be-cause such models use pretty complex and
accurate mathematical methods for simulation, they
help us understand better the features of mechanisms,
risks, dynamics and mitigation of pandemic diseases.

However, the characteristic time scale of many infec-
tious diseases (including COVID-19) is about several
months that is significantly less than the characteristic
time scale of demographic processes of population –
several dozen years. That is why such class of epi-
demic age-structured models neglects the age dependent
modeling of demo-graphic processes and considers the
unstructured equation of susceptible subclass dynamics
and at the same time the age-of-infection structured
equation of infected subclass dynamics [9–11]. The
new independent variable – age-of-infection can play a
role of parameter of accurate adjustment of dynamical
processes in susceptible and infected sub-classes.
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In works [12, 13] authors introduce successfully the
age-of-infection variable in age-structured equations to
describe disease progression through multiple infectious
stages (as in the case of HIV, hepatitis B and hepatitis
C) [12] and for partition of sub-classes of individuals
infected with acute HBV and chronic HBV carriers in
hepatitis B transmission model [13].

Another important aspect of studying the infectious
disease transmission is the modelling of vaccination
of population. Vaccination of susceptible subclass of
population plays a crucial role for disease mitigation
and decreasing of disease activity in practice, including
COVID-19 disease. Such problems are studied the-
oretically in works [14, 15] for epidemic model of
SVLIAR-type based on unstructured equations of sus-
ceptible, vaccinated, latent, infected, asymptomatic and
recovered individuals of population. Authors analyze
the effect of vaccination in an SVLIAR model with
demography by adding a compartment for vaccinated
individuals and considering disease-induced death, im-
perfect and waning vaccination protection as well as
waning infections-acquired immunity.

The new age-of-infection and -immunity structured
SVLIAR-type model studied in this paper is based on
the structured equations of sub-classes dynamics with
introduced 5 in-dependent variables for each subclass
(except subclass of susceptible individuals): a1 – age
of vaccine immunity of vaccinated individuals, a2 –
age of virus infection in organism during incubation
period of latent individuals, a3 – age (time period)
of treatment of infectious disease of infected individ-
uals, a4 – age of asymptomatic infectious disease of
asymptomatic individuals, a5 – age (time period) of
immunity of organism after recovering of recovered
individuals. Each variable ai runs the internal sub-
process that is specific for each particular subclass and
allows us to adjust and synchronize all sub-processes
with each other. Individuals can move from one sub-
class to another when these age variables take the
maximum values, that is the processes in sub-classes
are adjusted and synchronized by age variables. Such
detailed age-structured epidemic model with adjustment
of sub-processes provides the more accurate simulation
of transmission dynamics of infectious disease and can
be a basis for further theoretical analysis and simulation
of different aspects of COVID-19 epidemic in more
complex models.

Local asymptotic stability/instability of disease-free
and endemic equilibria of age-of-infection and -
immunity structured system is defined in the paper
by new derived criteria which relate the maximum

ages of each variable (maximum values of ai) with
demographic characteristics of population (birth and
death rates), disease-induced death rate, death rate
induced by the complications after COVID-19 disease,
fraction of fully vaccinated susceptibles per unit of
time, vaccination efficacy, rate of disease transmission
and the other characteristics of the model.

Age-of-infection and -immunity structured SVLIAR
epidemic model is considered in Section 2. Existence
of disease-free equilibrium and its local asymptotic
stability are studied in terms of the basic reproduction
number in Section 3. Existence of endemic equilibrium
and its local asymptotic stability [7,16–18] are studied
in terms of the basic reproduction number. Conditions
of existence of a unique endemic equilibrium are de-
rived in Sections 4, 5. This means, among other things,
that additional compartment for vaccinated individuals
has no effects on increasing of number of endemic
equilibria but effects on its stability. Several concluding
remarks are given in Section 6. The existence theorem,
explicit recurrent formula for the solution of the age-
structured SVLIAR model and numerical method with
simulations (like in works [1, 2]) are beyond the aim
and scope of this paper due to the complexity of the
model and will be the subject of our further study.

II. THE MODEL

Age-of-infection and -immunity structured SVLIAR
epidemic model considers transmission dynamics of the
COVID-19 virus disease in population which consists
of the following sub-classes (Figure 1):

– susceptible (non-infected),
– vaccinated (people are immune after 1st and 2nd

vaccinations),
– latent (infected individuals without disease symp-

toms when virus develops within its incubation
period),

– infected (ill individuals with explicit symptoms),
– asymptomatic (individuals with symptoms free

form of infectious disease),
– recovered (people are immune after infectious dis-

ease).

The quantity of susceptible individuals is described
by S(t). The age-specific density of vaccinated sub-
classes of individuals is V (a1, t), a1 ∈ [0, a

(1)
d ], t ≥ 0,

where a(1)d is a period of time when vaccination-induced
immunity starts to wain (maximum age of vaccination-
induced immunity). The total number of vaccinated
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individuals is

NV (t) =

a
(1)
d∫

0

V (a1, t)da1.

The age-specific density of latent individuals is
L(a2, t), a2 ∈ [0, a

(2)
d ], t ≥ 0, where a(2)d is a maximum

incubation period of virus infection in organ-ism. The
number of all latent individuals is

NL(t) =

a
(2)
d∫

0

L(a2, t)da2.

The age-specific density of infected individuals, which
have the symptoms of disease, is I(a3, t), a3 ∈ [0, a

(3)
d ],

t ≥ 0, where a(3)d is a maximum period of infectious
disease (or disease treatment). The number of infected
individuals is

NI(t) =

a
(3)
d∫

0

I(a3, t)da3.

The age-specific density of asymptomatic individuals,
which are infected, sick and do not have the symptoms
of disease, is A(a4, t), a4 ∈ [0, a

(4)
d ], t ≥ 0, where

a
(4)
d is a maximum period of asymptomatic infectious

disease. The number of asymptomatic individuals is

NA(t) =

a
(4)
d∫

0

A(a4, t)da4.

The age-specific density of recovered individuals is
R(a5, t), a5 ∈ [0, a

(5)
d ], t ≥ 0, where a(5)d is a period

when disease-induced immunity of individuals starts to
wain after recovering (maximum age of disease-induced
immunity). The number of recovered individuals is
defined as

NR(t) =

a
(5)
d∫

0

R(a5, t)da5.

We will assume further that a(2)d + a
(5)
d > a

(1)
d , that

is the sum of infection incubation period and period
of disease-induced immunity waning in recovered in-
dividuals is bigger than period of vaccination-induced
immunity waning in vaccinated individuals. The series
of buster vaccinations and cases with new COVID-
mutations for which the current vaccine is not efficient
are not considered in this study.

Fig. 1: Schematic structure of SVLIAR model.

We arrive to the autonomous SVLIAR age-structured
epidemic model

dS(t)

dt
= −(µ−b+q+f(t))S(t)+V(a

(1)
d , t)+R(a

(5)
d , t),

(1)

∂V(a1, t)

∂t
+
∂V(a1, t)

∂a1
= −(µ+ (1− σ)f(t))V(a1, t),

(2)
∂L(a2, t)

∂t
+
∂L(a2, t)

∂a2
= −µL(a2, t), (3)

∂I(a3, t)

∂t
+
∂I(a3, t)

∂a3
= −(µ+ γ)I(a3, t), (4)

∂A(a4, t)

∂t
+
∂A(a4, t)

∂a4
= −µA(a4, t), (5)

∂R(a5, t)

∂t
+
∂R(a5, t)

∂a5
= −(µ+ v)R(a5, t), (6)

where µ is a natural death rate, b is a birth rate, γ is
a disease-induced death rate, v is a death rate induced
by the complications after disease, q is a fraction of
fully vaccinated susceptibles per unit of time, σ is
a vaccination efficacy. Vaccinated individuals become
susceptibles when they lost immunity after vaccina-
tion at age of vaccination a

(1)
d . Recovered individuals

become susceptibles when they lost immunity after
full treatment at the maximum age of after-disease
immunity a(5)d . The force of infection is defined as:

f(t) = β(NI(t) + ηNA(t)), (7)
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where β > 0 is a rate of transmission, η > 0 is
a modification of transmission for asymptomatic [14].
Eqs. (1)–(6) are completed by the non-negative initial
values:

S(0) = S0, V (a1, 0) = 0,

L(a2, 0) = L0(a2), I(a3, 0) = I0(a3),

A(a4, 0) = 0, R(a5, 0) = 0. (8)

Density of newly vaccinated individuals V (0, t) is the
sum of the number of vaccinated arrivals and suscepti-
bles per unit of time:

V (0, t) = qS(t). (9)

Density of new latent individuals L(0, t) is defined
through the sum of the number of infected susceptibles
and infected vaccinated individuals with low immunity
due to the weak efficacy of vaccine:

L(0, t) = f(t)(S(t) + (1− σ)NV (t)). (10)

Density of just infected individuals I(0, t) is a (1−ρ)–
fraction of a density of latent individuals which have
the symptoms of disease after the incubation period of
infection:

I(0, t) = (1− ρ)L(a
(2)
d , t). (11)

Density of new asymptomatic individuals A(0, t) is a
ρ-fraction of density of latent individuals which do
not have the symptoms of disease after the incubation
period of infection:

A(0, t) = ρL(a
(2)
d , t). (12)

Density of new recovered individuals R(0, t) is the sum
of densities of fully treated infected individuals and
recovered asymptomatic individuals:

R(0, t) = I(a
(3)
d , t) +A(a

(4)
d , t). (13)

When system (1)–(13) degenerates to the system of
nonlinear ODE, it becomes:

Ṡ(t) = −(µ− b+ q + f(t))S(t) + V (a
(1)
d , t)

+R(a
(5)
d , t), (14)

ṄV (t) = −(µ+ (1− σ)f(t))NV (t) + qS(t)

− V (a
(1)
d , t), (15)

ṄL(t) = −µNL(t) + f(t)(S(t) + (1− σ)NV (t))

− L(a
(2)
d , t), (16)

ṄI(t) = −(µ+ γ)NI(t) + (1− ρ)L(a
(2)
d , t)

− I(a
(3)
d , t), (17)

ṄA(t) = −µNA(t) + ρL(a
(2)
d , t)

−A(a
(4)
d , t), (18)

ṄR(t) = −(µ+ v)NR(t) + I(a
(3)
d , t) +A(a

(4)
d , t)

−R(a
(5)
d , t). (19)

Summarizing Eqs. (14)–(19) yields the balance equa-
tion for the system (1)–(13):

Ṡ(t) + ṄV (t) + ṄL(t) + ṄI(t) + ṄA(t) + ṄR(t)

= bS(t)− γNI(t)− vNR(t)− µ
(
S(t) +NV (t)

+NL(t) +NI(t) +NA(t) +NR(t)
)
. (20)

Thus, the change in total population size over the
given time period is due to the difference between new-
born individuals and those who died during COVID-19
illness, died from complication after suffering COVID-
19 illness and died of natural causes (or other, non-
COVID-19 disease) over the given time period.

III. TRIVIAL AND DISEASE-FREE EQUILIBRIA

It is easy to verify that trivial equilibrium of the
system (1)–(13) always exists. The disease-free equi-
librium (DFE):

S∗0 > 0, V ∗0 (a1) ≥ 0, L∗0(a2) = 0,

I∗0 (a3) = 0, A∗0(a4) = 0, R∗0(a5) = 0,

N∗L0 = 0, N∗I0 = 0, N∗A0 = 0, N∗R0 = 0,

N∗V 0 =

a
(1)
d∫

0

V ∗0 (a1)da1 > 0,

satisfies the system:

0 = −(µ− b+ q)S∗0 + V ∗0 (a
(1)
d ), (21)

dV ∗0 (a1)

da1
= −µV ∗0 (a1), (22)

V ∗0 (0) = qS∗, (23)

which has a solution:

V ∗0 (a1) = qS∗0 exp(−µa1),

V ∗0 (a
(1)
d ) = S∗0 (µ− b+ q).

(24)

Plugging V ∗0 (a
(1)
d ) from the second equation into the

first one yields:

S∗0
(
µ− b+ q(1− exp(−µa(1)d ))

)
= 0.

Thus, we arrive at Statement 1.
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Statement 1. If coefficients of stationary system (21)–
(23) satisfy condition

R0 =
b

µ+ q
(

1− exp
(
− µa(1)d

)) = 1 (25)

there exists the disease-free equilibrium of the system
(1)–(13):

S∗0 = S0, V
∗
0 (a1) = qS0 exp

(
− µa1

)
, L∗0(a2) = 0,

I∗0 (a3) = 0, A∗0(a4) = 0, R∗0(a5) = 0,

N∗L0 = 0, N∗I0 = 0, N∗A0 = 0, N∗R0 = 0,

N∗V 0 =
qS0

µ

(
1− exp

(
− µa(1)d

))
. (26)

It is easy to verify that DFE (26) is a particular
stationary solution of system (1)–(13) with initial values
L0(a2) = 0, I0(a3) = 0.

Condition R0 < 1 holds if birth rate is relatively
small b < µ+ q

(
1− exp(−µa(1)d )

)
, that is susceptible

subclass is extinguishing and system has only trivial
equilibrium. While condition R0 > 1 holds if birth rate
is relatively large b > µ+ q

(
1− exp(−µa(1)d )

)
, that is

susceptible subclass is a growing population.
Linearizing system (1)–(6) at the DFE:

S∗0 = S0 > 0, V ∗0 (a1) ≥ 0, N∗V 0 > 0,

L∗0(a2) = 0, N∗L0 = 0, I∗0 (a3) = 0, N∗I0 = 0,

A∗0(a4) = 0, N∗A0 = 0, R∗0(a5) = 0, N∗R0 = 0,

we arrive at the system for perturbations:
• for S∗0 :

ξ̄s0(t) = ξs0 exp(λt)

• for V ∗0 (a1) and N∗V 0:

ψ̄v0(a1, t) = ψv0(a1) exp(λt)

ξ̄v0(t) =

a
(1)
d∫

0

ψ̄v0(a1, t)da1 = ξv0 exp(λt)

• for L∗0 and N∗L0:

ψ̄l0(a2, t) = ψl0(a2) exp(λt)

ξ̄l0(t) =

a
(2)
d∫

0

ψ̄l0(a2, t)da2 = ξl0 exp(λt)

• for I∗0 and N∗I0:

ψ̄i0(a3, t) = ψi0(a3) exp(λt)

ξ̄i0(t) =

a
(3)
d∫

0

ψ̄i0(a3, t)da3 = ξi0 exp(λt)

• for A∗0 and N∗A0:

ψ̄a0(a4, t) = ψa0(a4) exp(λt)

ξ̄a0(t) =

a
(4)
d∫

0

ψ̄a0(a4, t)da4 = ξa0 exp(λt)

• for R∗0 and N∗R0:

ψ̄r0(a5, t) = ψr0(a5) exp(λt)

ξ̄r0(t) =

a
(5)
d∫

0

ψr0(a5, t)da5 = ξr0 exp(λt)

Then:

0 = −(λ+ µ− b+ q)ξs0 − β(ξi0 + ηξa0)S0

+ ψv0(a
(1)
d ) + ψr0(a

(5)
d ), (27)

dψv0(a1)

da1
= −(1− σ)β(ξi0 + ηξa0)V ∗0 (a1)

− (λ+ µ)ψv0(a1) (28)
dψl0(a2)

da2
= −(λ+ µ)ψl0(a2) (29)

dψi0(a3)

da3
= −(λ+ µ+ γ)ψi0(a3) (30)

dψa0(a4)

da4
= −(λ+ µ)ψa0(a4) (31)

dψr0(a5)

da5
= −(λ+ µ+ v)ψr0(a5) (32)

Eqs. (27)–(32) are completed by the following boundary
conditions:

ψv0(0) = qξs0 (33)
ψl0(0) = β(S0 + (1− σ)N∗V 0)(ξi0 + ηξa0) (34)

ψi0(0) = (1− ρ)ψl0(a
(2)
d ) (35)

ψa0(0) = ρψl0(a
(2)
d ) (36)

ψr0(0) = ψi0(a
(3)
d ) + ψa0(a

(4)
d ) (37)

Characteristic equation of stationary system (27)–(37)
derived in Appendix A is:

R1(λ) = βS0

(
1 +

(1− σ)q

µ

(
1− exp

(
− µa(1)d

)))
× exp

(
− (λ+ µ)a

(2)
d

)(
ρη

1− exp
(
− (λ+ µ)a

(4)
d

)
λ+ µ

+ (1− ρ)
1− exp

(
− (λ+ µ+ γ)a

(3)
d

)
λ+ µ+ γ

)
= 1. (38)
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Since ∂R1(λ)
∂λ < 0 for all λ ≥ 0, Eq. (38) does not

have non-negative real roots if R1(0) < 1, and has a
real positive or trivial root if R1(0) ≥ 1. We arrive at
Statement 2.

Statement 2. If R1(0) < 1, the disease-free equilib-
rium of system (1)–(13) is locally asymptotically stable,
whereas if R1(0) ≥ 1 it is unstable.

IV. EXISTENCE OF ENDEMIC EQUILIBRIUM

Endemic equilibrium of system (1)–(13):

S∗, V ∗(a1), L∗(a2), I∗(a3), A∗(a4), R∗(a5),

N∗V =

a
(1)
d∫

0

V ∗(a1)da1, N
∗
L =

a
(2)
d∫

0

L∗(a2)da2,

N∗I =

a
(3)
d∫

0

I∗(a3)da3, N
∗
A =

a
(4)
d∫

0

A∗(a4)da4,

N∗R =

a
(5)
d∫

0

R∗(a5)da5,

satisfies the stationary system:

0 = −(µ− b+ q + f∗)S∗ + V ∗(a
(1)
d ) +R∗(a

(5)
d ),

(39)
dV ∗(a1)

da1
= −(µ+ (1− σ)f∗)V ∗(a1), (40)

dL∗(a2)

da2
= −µL∗(a2), (41)

dI∗(a3)

da3
= −(µ+ γ)I∗(a3), (42)

dA∗(a4)

da4
= −µA∗(a4), (43)

dR∗(a5)

da5
= −(µ+ v)R∗(a5), (44)

f∗ = β(N∗I + ηN∗A), (45)

with boundary conditions:

V ∗(0) = qS∗, (46)
L∗(0) = f∗(S∗ + (1− σ)N∗V ), (47)

I∗(0) = (1− ρ)L∗(a
(2)
d ), (48)

A∗(0) = ρL∗(a
(2)
d ), (49)

R∗(0) = I∗(a
(3)
d ) +A∗(a

(4)
d ). (50)

The formal solution of the stationary problem (39)–(50)
is given by:

S∗ = (µ− b+ q + f∗)−1
(
V ∗(a

(1)
d ) +R∗(a

(5)
d )
)
,
(51)

V ∗(a1) = qS∗ exp(−(µ+ (1− σ)f∗)a1), (52)
L∗(a2) = f∗(S∗ + (1− σ)N∗V ) exp(−µa2), (53)

I∗(a3) = (1− ρ)L∗(a
(2)
d ) exp(−(µ+ γ)a3), (54)

A∗(a4) = ρL∗(a
(2)
d ) exp(−µa4), (55)

R∗(a5) = (I∗(a
(3)
d ) +A∗(a

(4)
d )) exp(−(µ+ v)a5).

(56)

Substituting expressions for V ∗(a
(1)
d ), I∗(a

(3)
d ),

A∗(a
(4)
d ), R∗(a(5)d ), into the system (51)–(56) we arrive

at the equations:

N∗V = qS∗(µ+ (1− σ)f∗)
−1

× (1− exp(−(µ+ (1− σ)f∗)a
(1)
d )), (57)

N∗L = L∗(a
(2)
d ) exp(µa

(2)
d )µ−1(1− exp(−µa(2)d )),

(58)

N∗I = (1− ρ)L∗(a
(2)
d )(µ+ γ)

−1

× (1− exp(−(µ+ γ)a
(3)
d )) = CIL

∗(a
(2)
d ), (59)

CI = (1− ρ)(µ+ γ)
−1

× (1− exp(−(µ+ γ)a
(3)
d )) > 0, (60)

N∗A = ρL∗(a
(2)
d )µ−1(1− exp(−µa(4)d ))

= CAL
∗(a

(2)
d ), (61)

CA = ρµ−1(1− exp(−µa(4)d )) > 0, (62)

f∗ = CfL
∗(a

(2)
d ), Cf = β(CI + ηCA) > 0, (63)

R∗(a
(5)
d ) = CRL

∗(a
(2)
d ), (64)

CR = ((1− ρ) exp(−(µ+ γ)a
(3)
d ) + ρ exp(−µa(4)d ))

× exp(−(µ+ v)a
(5)
d ), 0 < CR < 1, (65)

N∗R = CRL
∗(a

(2)
d )(µ+ v)

−1

× (exp((µ+ v)a
(5)
d )− 1). (66)

Substituting Eqs. (63) in Eq. (53) taken at a(2)d , and
substituting Eq. (57) in the obtained expression, after a
little algebra, we arrive at the equation:

qS∗ exp(−(µ+ (1− σ)CfL
∗(a

(2)
d ))a

(1)
d )

= qS∗ − (µ+ (1− σ)CfL
∗(a

(2)
d ))

× (exp(µa
(2)
d )− CfS∗)((1− σ)Cf )

−1
. (67)

Substituting V ∗(a(1)d ) from (52), Eqs. (63) and (64)

Biomath 13 (2024), 2404266, https://doi.org/10.55630/j.biomath.2024.04.266 6/15

https://doi.org/10.55630/j.biomath.2024.04.266


Vitalii V. Akimenko, SVLIAR age-of-infection and -immunity structured epidemic model of COVID-19 dynamics

in Eq. (51) we have:

qS∗ exp(−(µ+ (1− σ)CfL
∗(a

(2)
d ))a

(1)
d )

= (µ− b+ q + CfL
∗(a

(2)
d ))S∗ − CRL∗(a(2)d ). (68)

Equating the right sides of Eqs. (67) and (68), after
a little algebra we arrive to the linear equation for S∗

and L∗(a(2)d ):

S∗ = CL(L∗(a
(2)
d ) + C0), (69)

CL = (1− σ)(exp(µa
(2)
d )− CR)

× (σµ+ (1− σ)b)
−1

> 0, (70)

C0 = µ((1− σ)Cf (1− exp(−µa(2)d )CR))
−1

> 0.
(71)

Substituting Eq. (69) in Eq. (68) yields the transcen-
dental equation for L∗(a(2)d ) > 0:

y1(L∗(a
(2)
d )) = y2(L∗(a

(2)
d )), (72)

where:

y1(L∗(a
(2)
d )) = L∗(a

(2)
d ) + C0, (73)

y2(L∗(a
(2)
d )) = p(L∗(a

(2)
d ))g(L∗(a

(2)
d )), (74)

p(L∗(a
(2)
d )) = CfL

∗2(a
(2)
d ) + (µ− b+ q)C0

+(µ− b+ q + CfC0 − CRC−1L )L∗(a
(2)
d ), (75)

g(L∗(a
(2)
d )) = q−1 exp

(
a
(1)
d

× (µ+ (1− σ)CfL
∗(a

(2)
d ))

)
. (76)

We can also derive another valuable expression for
the endemic equilibrium. Plugging Eqs. (57), (64), (65)
into Eq. (39) yields:

S∗ = exp
(
− (µ+ ν)a

(5)
d

)
L∗(a

(2)
d )×(

ρ exp
(
− µa(4)d

)
+ (1− ρ) exp

(
− (µ+ γ)a

(3)
d

))
×(

µ− b+ q(1− exp(−(µ+ (1− σ)f∗)a
(1)
d )) + f∗

)−1
(77)

On the other hand, plugging Eqs. (52), (54), (55),
(56) into Eq. (39) yields:

S∗
(
µ− b+ q(1− exp(−(µ+ (1− σ)f∗)a

(1)
d )) + f∗

)
= (S∗ + (1− σ)N∗V ) exp

(
− µa(2)d − (µ+ ν)a

(5)
d

)
× f∗

(
(1− ρ) exp(−(µ+ γ)a

(3)
d ) + ρ exp(−(µ)a

(4)
d )
)

(78)

Plugging Eqs. (57), (63), (69), (70), (71), (77) into
Eq. (78), after a little algebra we arrive to the final
equation for endemic equilibrium S∗ and f∗ which is

analogous of Eq. (38) for disease free equilibrium (we
introduce here new parameter R2):

R2(0) = βS∗
(

1 +
(1− σ)q

(µ+ (1− σ)f∗)
exp

(
− µa(2)d

)
×
(

1− exp
(
− (µ+ (1− σ)f∗)a

(1)
d

)))
×
(

(1− ρ)
1− exp

(
− (µ+ γ)a

(3)
d

)
µ+ γ

+ ρη
1− exp

(
− µa(4)d

)
µ

)
= 1. (79)

Thus, we arrive at Theorem 1.

Theorem 1. If R0 > 1, transcendental Eq. (72) has a
unique real positive root L∗(a(2)d ) > 0 and the system
(1)–(13) possesses a unique endemic equilibrium. If
R0 ≤ 1, Eq. (72) does not have real positive roots and
the system (1)–(13) does not have endemic equilibria.
Endemic equilibrium is a stationary solution of system
(1)–(13):

S∗, V ∗(a1), L∗(a2), I∗(a3), A∗(a4), R∗(a5),

N∗V , N
∗
L, N

∗
I , N

∗
A, N

∗
R,

which is defined uniquely through the root of transcen-
dental Eq.(72) and Eqs. (51)–(66), (69)–(71).

Proof of Theorem 1 is given in Appendix B.

V. LOCAL ASYMPTOTIC STABILITY OF ENDEMIC
EQUILIBRIUM

Linearizing system (1)–(6) in the vicinity of endemic
equilibrium:

S∗ > 0, V ∗(a1) ≥ 0, L∗(a2) ≥ 0,

I∗(a3) ≥ 0, A∗(a4) ≥ 0, R∗(a5) ≥ 0,

N∗V > 0, N∗L > 0, N∗I > 0, N∗A > 0, N∗R > 0,

we arrive at the system for perturbations:

• for S∗:

ξ̄s(t) = ξs exp(λt)

• for V ∗(a1) and N∗V :

ψ̄v(a1, t) = ψv(a1) exp(λt)

ξ̄v(t) =

a
(1)
d∫

0

ψ̄v(a1, t)da1 = ξv exp(λt)

Biomath 13 (2024), 2404266, https://doi.org/10.55630/j.biomath.2024.04.266 7/15

https://doi.org/10.55630/j.biomath.2024.04.266


Vitalii V. Akimenko, SVLIAR age-of-infection and -immunity structured epidemic model of COVID-19 dynamics

• for L∗(a2) and N∗L:

ψ̄l(a2, t) = ψl(a2) exp(λt)

ξ̄l(t) =

a
(2)
d∫

0

ψ̄l(a2, t)da2 = ξl exp(λt)

• for I∗(a3) and N∗I :

ψ̄i(a3, t) = ψi(a3) exp(λt)

ξ̄i(t) =

a
(3)
d∫

0

ψ̄i(a3, t)da3 = ξi exp(λt)

• for A∗(a4) and N∗A:

ψ̄a(a4, t) = ψa(a4) exp(λt)

ξ̄a(t) =

a
(4)
d∫

0

ψ̄a(a4, t)da4 = ξa exp(λt)

• for R∗(a5) and N∗R:

ψ̄r(a5, t) = ψr(a5) exp(λt)

ξ̄r(t) =

a
(5)
d∫

0

ψr(a5, t)da5 = ξr exp(λt)

Then:

0 = −(λ+ µ− b+ q + f∗)ξs − β(ξi + ηξa)S∗

+ ψv(a
(1)
d ) + ψr(a

(5)
d ), (80)

dψv(a1)

da1
= −(λ+ µ+ (1− σ)f∗)ψv(a1)

− (1− σ)β(ξi + ηξa)V ∗(a1), (81)
dψl(a2)

da2
= −(λ+ µ)ψl(a2), (82)

dψi(a3)

da3
= −(λ+ µ+ γ)ψi(a3), (83)

dψa(a4)

da4
= −(λ+ µ)ψa(a4), (84)

dψr(a5)

da5
= −(λ+ µ+ v)ψr(a5). (85)

Eqs. (81)–(85) are completed by the following
boundary conditions:

ψv(0) = qξs, (86)
ψl(0) = β(S∗ + (1− σ)N∗V )(ξi + ηξa)

+ f∗(ξs + (1− σ)ξv), (87)

ψi(0) = (1− ρ)ψl(a
(2)
d ), (88)

ψa(0) = ρψl(a
(2)
d ), (89)

ψr(0) = ψi(a
(3)
d ) + ψa(a

(4)
d ). (90)

Derivation of characteristic equation for stationary
system (80)–(90) is given in Appendix C. Thus, char-
acteristic equation for λ is:

Q(λ) = Z(λ), (91)

Q(λ) =
(
w1(λ)− w2(λ)f∗

)
w4(λ)w5(λ), (92)

Z(λ) = −w3(λ) + w2(λ)(S∗ + (1− σ)N∗V ). (93)

Here:

w1(λ) =
exp

(
λ(a

(2)
d + a

(5)
d )
)

1 + (1− σ)qÎv2(a
(1)
d , λ)

(
λ+ µ− b+ f∗

+ q
(
1− exp

(
− (λ+ µ+ (1− σ)f∗)a

(1)
d

)))
,

(94)

w2(λ) =
(

(1− ρ) exp
(
− (λ+ µ+ γ)a

(3)
d

)
+ ρ exp

(
− (λ+ µ)a

(4)
d

))
× exp

(
− µa(2)d − (µ+ ν)a

(5)
d

)
, (95)

w3(λ) =
(1− σ)

2
S∗Îv3(a

(1)
d , λ) exp

(
λ(a

(2)
d + a

(5)
d )
)

1 + (1− σ)qÎv2(a
(1)
d , λ)

× βq
(
λ+ q

(
1− exp

(
− (λ+ µ+ (1− σ)f∗)a

(1)
d

))
+ µ− b+ f∗

)
+ βS∗

(
exp

(
λ(a

(2)
d + a

(5)
d )
)

+ (1− σ)q exp
(
λ(a

(2)
d + a

(5)
d − a

(1)
d )
)

× exp
(
− (µ+ (1− σ)f∗)a

(1)
d

)
Iv1(a

(1)
d , λ)

)
,

(96)
w4(λ) = 1−R2(λ), (97)

R2(λ) = βS∗ exp
(
− (λ+ µ)a

(2)
d

)
×
(

1 +
(1− σ)q

µ+ (1− σ)f∗

×
(

1− exp
(
− (µ+ (1− σ)f∗)a

(1)
d

)))
×
(

(1− ρ)
1− exp

(
− (λ+ µ+ γ)a

(3)
d

)
λ+ µ+ γ

+ ρη
1− exp

(
− (λ+ µ)a

(4)
d

)
λ+ µ

)
, (98)

w5(λ) =
(
(1− ρ)Ii(a

(3)
d , λ) + ηρIa(a

(4)
d , λ)

)−1
× exp

(
(λ+ µ)a

(2)
d

)
, (99)
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Iv1(a1, λ) =

a1∫
0

exp(λη)dη =
exp(λa1)− 1

λ
> 0,

(100)

Îv2(a
(1)
d , λ) =

a
(1)
d∫

0

exp(−(λ+ µ+ (1− σ)f∗)a1)da1

=
1− exp(−(λ+ µ+ (1− σ)f∗)a

(1)
d )

λ+ µ+ (1− σ)f∗
> 0, (101)

Îv3(a
(1)
d , λ) =

a
(1)
d∫

0

exp(−(λ+ µ+ (1− σ)f∗)a1)

× Iv1(a1, λ)da1 =
1− exp(−(µ+ (1− σ)f∗)a

(1)
d )

λ(µ+ (1− σ)f∗)

−
1− exp(−(λ+ µ+ (1− σ)f∗)a

(1)
d )

λ(λ+ µ+ (1− σ)f∗)
> 0, (102)

Ii(a
(3)
d , λ) =

a
(3)
d∫

0

exp(−(λ+ µ+ γ)a3)da3

=
1− exp(−(λ+ µ+ γ)a

(3)
d )

λ+ µ+ γ
> 0, (103)

Ia(a
(4)
d , λ) =

a
(4)
d∫

0

exp(−(λ+ µ)a4)da4

=
1− exp(−(λ+ µ)a

(4)
d )

λ+ µ
> 0. (104)

The criterion of local asymptotic stability of endemic
equilibrium is given by the following Theorem 2.

Theorem 2. If Z(0) < 0, endemic equilibrium S∗,
V ∗(a1), L∗(a2), I∗(a3), A∗(a4), R∗(a5), N∗V , N∗L,
N∗I , N∗A, N∗R (Eqs. (33)–(48), (51)–(53)) is locally
asymptotically stable, whereas if Z(0) ≥ 0 it is un-
stable.

Proof of Theorem 2 is given in Appendix D.

Remark 1. Using Eq. (93), we can obtain the criterion
of asymptotic stability of endemic equilibrium Z(0) <
0 in unfolded form:

1− CR exp(−µa(2)d ) + (1− σ)
q

(µ+ (1− σ)f∗)

×
(

(1 + (µ+ (1− σ)f∗)a
(1)
d )

× exp(−(µ+ (1− σ)f∗)a
(1)
d )− CR exp(−µa(2)d )

)

+ (1− σ)
2
qÎv3(a

(1)
d , 0)f∗CR exp(−µa(2)d )

+ (1− σ)
3
q2Îv3(a

(1)
d , 0)Îv2(a

(1)
d , 0)

× f∗CR exp(−µa(2)d ) > 0, (105)

where CR ∈ (0, 1) is a dimensionless constant given
by Eq. (65),

Îv2(a
(1)
d , 0) =

1− exp
(
− (µ+ (1− σ)f∗)a

(1)
d

)
µ+ (1− σ)f∗

> 0,

Îv3(a
(1)
d , 0) =

(
1− (1 + (µ+ (1− σ)f∗)a

(1)
d )

(µ+ (1− σ)f∗)
2

× exp
(
− (µ+ (1− σ)f∗)a

(1)
d

))
> 0.

VI. DISCUSSION AND CONCLUSIONS

This article is focused on the qualitative analysis
of age-of-infection and -immunity structured SVLIAR-
type model with 5 independent age variables for incu-
bation period of COVID-19, period of vaccine immu-
nity, period of COVID-19 disease treatment, period of
asymptomatic COVID-19 disease and period of immu-
nity after recovering. Either, there is only the disease-
free equilibrium when the basic reproduction number
equals to one R0 = 1, or unique positive endemic
equilibrium exists when the basic reproduction number
is bigger than one R0 > 1 [1, 6, 8, 18].

The criterion of local asymptotic stability of disease-
free equilibrium which controls the transition of system
to the endemic or trivial equilibrium when disease-
free equilibrium is unstable is derived. We proved that
system has at most one endemic equilibrium when
R0 > 1.

Criterion of local asymptotic stability of such equi-
librium is pretty complex, contains all coefficients of
the model and relates the demographic characteristics
of population (birth and death rates) with maximums of
all age variables: a(1)d (period of time when vaccination-
induced immunity starts to wain (maximum age of
vaccination-induced immunity)), a(2)d (maximum incu-
bation period of COVID-19 infection in organism),
a
(3)
d (maximum period of infectious disease (or disease

treatment)), a(4)d (maximum period of asymptomatic
infectious disease), a(5)d is a period when disease-
induced immunity of individuals starts to wain after re-
covering (maximum age of disease-induced immunity),
disease-induced death rate, death rate induced by the
complications after COVID-19 disease, fraction of fully
vaccinated susceptibles per unit of time, vaccination
efficacy, rate a coefficient of modification of disease
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transmission and fraction of asymptomatic individuals
without disease symptoms.

This result is a direct extension of similar results
for unstructured epidemic SVLIAR model [14,15]. Our
results show that efficacy of vaccination and fraction
of vaccinated susceptibles play a crucial role in sta-
bilization of COVID-19 disease transmission among
population. Thus, similarly to unstructured epidemic
SVLIAR models, vaccination can cause asymptotic
stability of endemic equilibrium.
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APPENDIX A. CHARACTERISTIC EQUATION OF DISEASE-FREE EQUILIBRIUM

System (27)–(37) is reduced to the homogeneous system of linear algebraic equations for perturbations:

(λ+ µ− b+ q)ξs0 = −βS0(ξi0 + ηξa0) + ψv0(a
(1)
d ) + ψr0(a

(5)
d ) (106)

ψv0(a1) = q exp(−(λ+ µ)a1)ξs0 − (1− σ)βqS0 exp(−(λ+ µ)a1)Iv1(a1, λ)(ξi0 + ηξa0) (107)

Iv1(a1, λ) =

a1∫
0

exp(λη)dη =
exp(λa1)− 1

λ
> 0

ξv0 = qIv2(a
(1)
d , λ)ξs0 − (1− σ)βqS0Iv3(a

(1)
d , λ)(ξi0 + ηξa0) (108)

Iv2(a
(1)
d , λ) =

a
(1)
d∫

0

exp(−(λ+ µ)a1)da1 =
1− exp(−(λ+ µ)a

(1)
d )

λ+ µ
> 0

Iv3(a
(1)
d , λ) =

a
(1)
d∫

0

exp(−(λ+ µ)a1)Iv1(a1, λ)da1 =
1

λ

(1− exp(−µa(1)d )

µ
−

1− exp(−(λ+ µ)a
(1)
d )

λ+ µ

)
> 0

ψl0(a2) = exp(−(λ+ µ)a2)β(S0 + (1− σ)N∗V 0)(ξi0 + ηξa0) (109)

ψi0(a3) = exp(−(λ+ µ+ γ)a3) exp(−(λ+ µ)a
(2)
d )(1− ρ)β(S0 + (1− σ)N∗V 0)(ξi0 + ηξa0) (110)

ξi0 = Ii(a
(3)
d , λ) exp(−(λ+ µ)a

(2)
d )(1− ρ)β(S0 + (1− σ)N∗V 0)(ξi0 + ηξa0) (111)

Ii(a
(3)
d , λ) =

a
(3)
d∫

0

exp(−(λ+ µ+ γ)a3)da3 =
1− exp(−(λ+ µ+ γ)a

(3)
d )

λ+ µ+ γ
> 0

ψa0(a4) = exp(−(λ+ µ)a4) exp(−(λ+ µ)a
(2)
d )ρβ(S0 + (1− σ)N∗V 0)(ξi0 + ηξa0) (112)

ξa0 = Ia(a
(4)
d , λ) exp(−(λ+ µ)a

(2)
d )ρβ(S0 + (1− σ)N∗V 0)(ξi0 + ηξa0) (113)

Ia(a
(4)
d , λ) =

a
(4)
d∫

0

exp(−(λ+ µ)a4)da4 =
1− exp(−(λ+ µ)a

(4)
d )

λ+ µ
> 0

ψr0(a5) = exp(−(λ+ µ+ ν)a5)((1− ρ) exp(−(λ+ µ+ γ)a
(3)
d ) + ρ exp(−(λ+ µ)a

(4)
d ))

× exp(−(λ+ µ)a
(2)
d )(S0 + (1− σ)N∗V 0)(ξi0 + ηξa0) (114)

Plugging Eqs. (25), (107), (114) into Eq. (106) we arrive to the equation for ψs0:

λξs0 = S0(−β(1 + (1− σ)q exp(−(λ+ µ)a
(1)
d )Iv1(a

(1)
d , λ)) + η exp(−(λ+ µ+ ν)a

(5)
d )

× exp(−(λ+ µ)a
(2)
d )((1− ρ) exp(−(λ+ µ+ γ)a

(3)
d ) + ρ exp(−(λ+ µ)a

(4)
d ))

× (1 + (1− σ)
q

µ
(1− exp(−µa(1)d ))))(ξi0 + ηξa0). (115)

Since Eqs. (107), (109), (110), (112), (114), (115) depend linearly, without singularities from linear combination
of perturbations (ξi0 + ηξa0), it is sufficient to analyze here only equations (111) and (113). Multiplying Eq.
(113) by constant η > 0 and summarizing it with Eq. (111), after a little algebra we arrive to the characteristic
equation of DFE:

R1(λ) = βS0

(
1 + (1− σ)

q

µ
(1− exp(−µa(1)d ))

)
exp(−(λ+ µ)a

(2)
d )

×
(

(1− ρ)
1− exp(−(λ+ µ+ γ)a

(3)
d )

λ+ µ+ γ
+ ρη

1− exp(−(λ+ µ)a
(4)
d )

λ+ µ

)
= 1. (116)
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APPENDIX B. PROOF OF THEOREM 1
1. If R0 > 1, we have (µ− b+ q)q−1 exp(µa

(1)
d ) < 1 and y1(0) > y2(0) (Eqs. (74), (75)), where:

y1(0) = C0, (117)

y2(0) = (µ− b+ q)q−1 exp(µa
(1)
d )C0. (118)

From the properties of elementary algebraic functions, we get the following properties of y1(x), y2(x):

lim
x→−∞

y1 = −∞, lim
x→∞

y1 =∞, (119)

lim
x→−∞

y2 = 0, lim
x→∞

y2 =∞, (120)

lim
x→∞

y1(x)

y2(x)
= 0. (121)

On the other hand,

y
′

1(L∗(a
(2)
d )) = 1, (122)

y
′

2(L∗(a
(2)
d )) = p′(L∗(a

(2)
d ))g(L∗(a

(2)
d )) + p(L∗(a

(2)
d ))g′(L∗(a

(2)
d )) (123)

= (F1L
∗2(a

(2)
d ) + (F2 + F3)L∗(a

(2)
d ) + F4)q−1(1− σ)a

(1)
d Cf exp((µ+ (1− σ)CfL

∗(a
(2)
d ))a

(1)
d ),

where:

F1 = Cf , (124)

F2 = µ− b+ q + CfC0 − CRC−1L , (125)

F3 = 2((1− σ)a
(1)
d )
−1
, (126)

F4 = F2((1− σ)a
(1)
d F1)

−1
. (127)

Equation y
′

2(L∗(a
(2)
d )) = 0 has two roots L̄∗1,2(a

(2)
d ):

L̄∗1(a
(2)
d ) = (2F1)

−1
(
− F2 − F3 −

√
F 2
2 + F 2

3

)
, (128)

L̄∗2(a
(2)
d ) = (2F1)

−1
(
− F2 − F3 +

√
F 2
2 + F 2

3

)
. (129)

Since F3 > 0, the first root is always negative L̄∗1(a
(2)
d ) < 0. The second root is negative L̄∗2(a

(2)
d ) < 0 if F2 > 0,

and it is non-negative L̄∗2(a
(2)
d ) ≥ 0 if F2 ≤ 0. From Eq. (120) it follows that function y2(L∗(a

(2)
d )) has a relative

maximum at L̄∗1(a
(2)
d ) < 0 and a relative minimum at L̄∗2(a

(2)
d ). If L̄∗2(a

(2)
d ) < 0 derivative y

′

2(L∗(a
(2)
d )) > 0 for

all L∗(a(2)d ) ≥ 0. If L̄∗2(a
(2)
d ) ≥ 0 derivative y

′

2(0) ≤ 0, y
′

2(L∗(a
(2)
d )) ≥ 0 for all L∗(a(2)d ) ≥L̄∗2(a

(2)
d ). Thus, from

Eq. (121) it follows that if y1(0) > y2(0), in all cases (L̄∗2(a
(2)
d ) < 0 or L̄∗2(a

(2)
d ) ≥ 0) functions y1(L∗(a

(2)
d ))

and y2(L∗(a
(2)
d )) always intersect only one time at some positive point L∗(a(2)d ) > 0, characteristic Eq.(73) has a

unique real positive root L∗(a(2)d ) > 0, and system (1)–(13) possesses a unique endemic equilibrium S∗, V ∗(a1),
L∗(a2), I∗(a3), A∗(a4), R∗(a5), N∗V , N∗L, N∗I , N∗A, N∗R defined uniquely through the root of transcendental
Eq.(73) and Eqs. (52)–(67), (70)–(72).

2. If R0 ≤ 1, then (µ − b + q)q−1 exp(µa
(1)
d ) ≥ 1 and y1(0) ≤ y2(0). We can show that in this case

y
′

2(0) ≥ y′

1(0) = 1:

y
′

2(0) = (µ− b+ q + CfC0 − CRC−1L + (µ− b+ q)CfC0(1− σ)a
(1)
d )q−1 exp(µa

(1)
d ) > 1, (130)

or
µ− b+ q(1− exp(−µa(1)d )) + CfC0 − CRC−1L + (µ− b+ q)CfC0(1− σ)a

(1)
d > 0. (131)

Using Eqs. (122), (123) and (61), (63), (64), (66), (71), (72), after a little algebra we can transform inequality
(130) (or (131)) to:

g1(µ) < g2(µ) + g3(µ), (132)
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where

g1(µ) = (1 + (1− σ)µ−1q(1− exp(−µa(1)d )))((1− ρ) exp(−(µ+ γ)a
(3)
d ) + ρ exp(−µa(1)d )), (133)

g2(µ) = (1 + (1− σ)a
(1)
d q exp(−µa(1)d )) exp(µa

(2)
d + (µ+ γ)a

(5)
d ), (134)

g3(µ) = (µ− b+ q(1− exp(−µa(1)d )))(1− σ)(a
(1)
d + µ−1) exp(µa

(2)
d + (µ+ γ)a

(5)
d ). (135)

If R0 = 1, then µ− b+ q(1− exp(−µa(1)d )) = 0, function g3(µ) = 0. We have:

lim
µ→0

g1(µ) = (1 + (1− σ)qa
(1)
d )((1− ρ) exp(−γa(3)d ) + ρ), (136)

lim
µ→0

g2(µ) = (1 + (1− σ)qa
(1)
d ) exp(γa

(5)
d ). (137)

Since 0 < ρ < 1, we have limµ→0 g1(µ) < limµ→0 g2(µ). On the other hand, from µa
(2)
d + (µ+ γ)a

(5)
d ≥ µa

(1)
d ,

g
′

1(µ) < 0, g
′

2(µ) > 0 for all µ > 0 follows inequality (132), (130) and y
′

2(0) ≥ y′

1(0) = 1.
If R0 < 1, then µ − b + q(1 − exp(−µa(1)d )) > 0, g3(µ) > 0, and, we arrive to inequality (132), (130) and

y
′

2(0) ≥ y′

1(0) = 1.
Thus, since y

′

2(0) ≥ 1 root L̄∗2(a
(2)
d ) < 0, and F2 = µ − b + q + CfC0 − CRC−1L > 0. From Eq. (123) it

follows, that in this case y
′

2(L∗(a
(2)
d )) > y

′

2(0) ≥ y′

1(0) = 1 for all L∗(a(2)d ) > 0. Since y1(0) ≤ y2(0), functions
y1(L∗(a

(2)
d )) and y2(L∗(a

(2)
d )) never intersect at positive point L∗(a(2)d ) > 0, characteristic Eq. (73) does not

have real positive roots, and system (1)–(13) does not have endemic equilibrium. Theorem 1 is proved.

APPENDIX C. CHARACTERISTIC EQUATION OF ENDEMIC EQUILIBRIUM

System (80)–(90) is reduced to the homogeneous system of linear algebraic equations for perturbations:

(λ+ µ− b+ q + f∗)ξs = −βS∗(ξi + ηξa) + ψv(a
(1)
d ) + ψr(a

(5)
d ) (138)

ψv(a1) = q exp(−(λ+ µ+ (1− σ)f∗)a1)ξs

− (1− σ)βqS∗ exp(−(λ+ µ+ (1− σ)f∗)a1)Iv1(a1, λ)(ξi + ηξa) (139)

ξv = qÎv2(a
(1)
d , λ)ξs − (1− σ)βqS∗Îv3(a

(1)
d , λ)(ξi + ηξa) (140)

Iv1(a1, λ) is the same as in Appendix A

Îv2(a
(1)
d , λ) =

a
(1)
d∫

0

exp(−(λ+ µ+ (1− σ)f∗)a1)da1 =
1− exp(−(λ+ µ+ (1− σ)f∗)a

(1)
d )

λ+ µ+ (1− σ)f∗
> 0

Îv3(a
(1)
d , λ) =

a
(1)
d∫

0

exp(−(λ+ µ+ (1− σ)f∗)a1)Iv1(a1, λ)da1

=
1− exp(−(µ+ (1− σ)f∗)a

(1)
d )

λ(µ+ (1− σ)f∗)
−

1− exp(−(λ+ µ+ (1− σ)f∗)a
(1)
d )

λ(λ+ µ+ (1− σ)f∗)
> 0

ψl(a2) = exp(−(λ+ µ)a2)(β(S∗ + (1− σ)N∗V )(ξi + ηξa) + f∗(ξs + (1− σ)ξv)) (141)

ψi(a3) = exp(−(λ+ µ+ γ)a3) exp(−(λ+ µ)a
(2)
d )(1− ρ)(β(S∗ + (1− σ)N∗V )

× (ξi + ηξa) + f∗(ξs + (1− σ)ξv)) (142)

ξi = Ii(a
(3)
d , λ) exp(−(λ+ µ)a

(2)
d )(1− ρ)(β(S∗ + (1− σ)N∗V )(ξi + ηξa) + f∗(ξs + (1− σ)ξv)) (143)

ψa(a4) = exp(−(λ+ µ)a4) exp(−(λ+ µ)a
(2)
d )ρ(β(S∗ + (1− σ)N∗V )(ξi + ηξa) + f∗(ξs + (1− σ)ξv)) (144)
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ξa = Ia(a
(4)
d , λ) exp(−(λ+ µ)a

(2)
d )ρ(β(S∗ + (1− σ)N∗V )(ξi + ηξa) + f∗(ξs + (1− σ)ξv)) (145)

Ii(a
(3)
d , λ) is the same as in Appendix A

Ia(a
(4)
d , λ) is the same as in Appendix A

ψr(a5) = exp(−(λ+ µ+ ν)a5)((1− ρ) exp(−(λ+ µ+ γ)a
(3)
d ) + ρ exp(−(λ+ µ)a

(4)
d ))

× exp(−(λ+ µ)a
(2)
d )(β(S∗ + (1− σ)N∗V )(ξi + ηξa) + f∗(ξs + (1− σ)ξv)) (146)

Plugging Eqs. (139), (146) into Eq. (138), after a little algebra we have:(
λ+ µ− b+ q(1− exp(−(λ+ µ+ (1− σ)f∗)a

(1)
d )) + f∗

)
(ξs + (1− σ)ξv)

−
(
λ+ µ− b+ q(1− exp(−(λ+ µ+ (1− σ)f∗)a

(1)
d )) + f∗

)
(1− σ)ξv

=
(
− βS∗(1 + (1− σ)q exp(−(λ+ µ+ (1− σ)f∗)a

(1)
d )Iv1(a

(1)
d , λ)) + exp(−(λ+ µ+ ν)a

(5)
d )

× exp(−(λ+ µ)a
(2)
d )((1− ρ) exp(−(λ+ µ+ γ)a

(3)
d ) + ρ exp(−(λ+ µ)a

(4)
d ))β(S∗ + (1− σ)N∗V )

)
(ξi + ηξa)

+ exp(−(λ+ µ+ ν)a
(5)
d ) exp(−(λ+ µ)a

(2)
d )f∗(ξs + (1− σ)ξv)

×
(

(1− ρ) exp(−(λ+ µ+ γ)a
(3)
d ) + ρ exp(−(λ+ µ)a

(4)
d )
)
. (147)

Eq. (140) can be transformed to the linear equation:

ξv =
qÎv2(a

(1)
d , λ)

1 + (1− σ)qÎv2(a
(1)
d , λ)

(ξs + (1− σ)ξv)−
(1− σ)βqS∗Îv3(a

(1)
d , λ)

1 + (1− σ)qÎv2(a
(1)
d , λ)

(ξi + ηξa). (148)

Equations (143), (145) give the linear equation:(
((1− ρ)Ii(a

(3)
d , λ) + ηρIa(a

(4)
d , λ)) exp(−(λ+ µ)a

(2)
d )f∗

)
(ξs + (1− σ)ξv) = (1−RS1 (λ))(ξi + ηξa). (149)

After linear transformations of Eqs. (147), (148) and using Eq. (149), we arrive to the linear system for
perturbations (ξs + (1 − σ)ξv) and (ξi + ηξa). Since all perturbations can be defined through (ξs + (1 − σ)ξv)
and (ξi + ηξa), the characteristic equation is deriving for such linear system:

(w1(λ)− w2(λ)f∗)(ξs + (1− σ)ξv) + (w3(λ)− w2(λ)β(S∗ + (1− σ)N∗V ))(ξi + ηξa) = 0, (150)
w4(λ)f∗(ξs + (1− σ)ξv)− w5(λ)(ξi + ηξa) = 0, (151)

where:

w1(λ) =

(
λ+ µ− b+ q

(
1− exp(−(λ+ µ+ (1− σ)f∗)a

(1)
d )
)

+ f∗
)

exp
(
λ(a

(2)
d + a

(5)
d )
)

1 + (1− σ)qÎv2(a
(1)
d , λ)

, (152)

w2(λ) = exp
(
− µa(2)d − (µ+ ν)a

(5)
d

)(
(1− ρ) exp(−(λ+ µ+ γ)a

(3)
d ) + ρ exp(−(λ+ µ)a

(4)
d )
)
, (153)

w3(λ) =

(
λ+ µ− b+ q

(
1− exp(−(λ+ µ+ (1− σ)f∗)a

(1)
d )
)

+ f∗
)

exp
(
λ(a

(2)
d + a

(5)
d )
)

1 + (1− σ)qÎv2(a
(1)
d , λ)

× (1− σ)
2
βqS∗Îv3(a

(1)
d , λ) + βS∗

(
exp(λ(a

(2)
d + a

(5)
d ))

+ (1− σ)q exp(λ(a
(2)
d + a

(5)
d − a

(1)
d )) exp(−(µ+ (1− σ)f∗)a

(1)
d )Iv1(a

(1)
d , λ)

)
, (154)

w4(λ) =
(
(1− ρ)Ii(a

(3)
d , λ) + ηρIa(a

(4)
d , λ)

)
exp(−(λ+ µ)a

(2)
d ), (155)

w5(λ) = 1−RS1 (λ). (156)

Equating to zero determinant of this system we obtain finally the characteristic equation of system (80)–(90):

y3(λ) = y4(λ), (157)
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where:

y3(λ) = (w1(λ)− w2(λ)f∗)w5(λ), (158)
y4(λ) = −(w3(λ)− w2(λ)(S∗ + (1− σ)N∗V ))w4(λ)f∗. (159)

APPENDIX D. PROOF OF THEOREM 2

It is easy to verify that supplementary functions satisfy inequalities:

∂Iv1(a1, λ)

∂λ
=

a1∫
0

η exp(λη)dη > 0, (160)

∂Îv2(a
(1)
d , λ)

∂λ
= −

a
(1)
d∫

0

a1 exp(−(λ+ µ+ (1− σ)f∗)a1)da1 < 0, (161)

∂Îv3(a
(1)
d , λ)

∂λ
=

a
(1)
d∫

0

exp(−(µ+ (1− σ)f∗)a1)
∂Iv1(a1, λ)

∂λ
da1 > 0, (162)

∂Ii(a
(3)
d , λ)

∂λ
= −

a
(3)
d∫

0

a3 exp(−(λ+ µ+ γ)a3)da3 < 0, (163)

∂Ia(a
(4)
d , λ)

∂λ
= −

a
(4)
d∫

0

a4 exp(−(λ+ µ)a4)da4 < 0. (164)

From the properties of elementary functions it follows that for all λ ≥ 0: function w1(λ) > 0 and dw1(λ)
dλ > 0,

function w2(λ) > 0 and dw2(λ)
dλ < 0, function w5(λ) > 0 and dw5(λ)

dλ > 0. From Eq. (78) it follows that:

w1(0)− w2(0)f∗ = 0,
d(w1(λ)− w2(λ)f∗)

dλ
> 0 and w1(λ)− w2(λ)f∗ > 0 for all λ > 0.

Since R2(0) = 1 (Eq. (80)), ∂R2(λ)
∂λ < 0 and limλ→∞R2(λ) = 0, function w4(0) = 0, w4(λ) > 0 and dw4(λ)

dλ > 0

for all λ ≥ 0. Thus, Q(0) = 0, dQ(λ)
dλ > 0 for all λ ≥ 0, and limλ→∞Q(λ) = ∞, i.e. Q(λ) is an increasing

from zero to infinity monotonic non-negative function for all λ ≥ 0.
On the other hand, for all λ ≥ 0: function w3(λ) > 0 and dw3(λ)

dλ > 0. Taking into account properties of
w2(λ), equation (78) and inequality a(2)d +a

(5)
d > a

(1)
d we obtain the properties of Z(λ): dZ(λ)

dλ < 0 for all λ ≥ 0
andlimλ→∞ Z(λ) = −∞, i.e. Z(λ) is decreasing to negative infinity monotonic function.

Obviously, that Q(λ) and Z(λ) intersect at some point λ∗ ≥ 0 if and only if Z(0) ≥ Q(0) = 0. In this case λ∗

is a real non-negative root of characteristic equation (91) and endemic equilibrium is unstable. And, vice versa,
if Z(0) < Q(0) = 0, functions Q(λ) and Z(λ) do not intersect at some point λ∗ ≥ 0, characteristic equation
(91) does not have non-negative real root and endemic equilibrium is locally asymptotically stable. Theorem 2
is proved.
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