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Abstract: We consider the acetogenesis and hy-
drogenotrophic methanogenesis phases of the anaero-
bic digestion model and we include the inhibition of
methanogenics, first by volatile fatty acids (VFAs) then
by acetogenics. We investigate mathematically the dy-
namics of two chemostat models described by systems
of four nonlinear ordinary differential equations. We
established the conditions of existence and stability of
equilibrium points in each of the models with respect
to the dilution rate. The operating diagrams allowed
to reveal the similarities and the differences between
regions of stability of the two models and to present the
consequent transcritical bifurcations between boundary
and positive equilibrium. Models are equivalent for low
inlet substrate concentration and significantly different for
high concentration. When inhibition is by acetogens and
for high concentrations of inlet substrate, the upstream
species tends to eliminate the downstream species from
the vessel.

Keywords: synthetic microbial community, chemostat,
anaerobic digestion, inhibition, stability, operating dia-
gram, bifurcation

I. INTRODUCTION

In recent years, concerns about the availability and
sustainability of traditional energy sources, particularly
fossil fuels, have become more pronounced which led
to invest in diverse energy sources [1]. Methane pro-
duction can indeed be part of the solution to address
energy shortages, particularly in situations where there

is an abundance of organic waste or where natural
gas resources are not accessible. Methane, the primary
component of natural gas, is a potent energy source that
can be produced through anaerobic digestion of organic
materials in controlled environmental conditions such
as the chemostat. This bioreactor allows for precise
control over environmental factors such as temperature,
pH, nutrient availability, and substrate concentration,
to promote the growth and activity of methanogenic
species [2–6].

The microorganisms responsible for producing
methane through anaerobic digestion are primarily
methanogenic archaea, these methanogens often engage
in syntrophic interactions with acetogenic bacteria or
hydrogen-producing microorganisms. In a chemostat,
these syntrophic relationships can be facilitated by co-
culturing methanogens with suitable partner microor-
ganisms, the acetogenic bacteria, that produce acetate
or hydrogen, which can serve as substrates for methano-
genesis by methanogens. These latter microorganisms,
utilize acetate, hydrogen, carbon dioxide, and formate
as substrates to produce methane (CH4) and carbon
dioxide (CO2) through several biochemical pathways
such as hydrogenotrophic methanogenesis [7–9].

The growth of methanogens can be inhibited, either
directly by the excess of acids in the mixture, or
indirectly by competitive growth on the same substrates.
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Indeed, acetogens and methanogens compete for
common substrates such as hydrogen and carbon diox-
ide. Acetogenic bacteria convert these substrates into
acetate, thereby reducing the availability of hydrogen
and carbon dioxide to methanogens, which use them to
produce methane through hydrogenotrophic methano-
genesis. Furthermore, acetogenic bacteria produce a
variety of metabolites, including short-chain fatty acids
(SCFAs) such as acetate, butyrate and propionate. The
accumulation of these acids can lower the pH of
the environment, creating sub-optimal conditions for
methanogens, which generally prefer a pH between 6.7
and 7.2. When acid production exceeds its consumption
in the environment, the resulting pH drop inhibits aceto-
clastic methanogens from utilizing acetic acid, leading
to its accumulation. Although acetoclastic methanogens
depend on acetic acid for growth, their activity is
significantly constrained by pH lowered levels. In the
case of hydrogenotrophic methanogens, pH inhibition
primarily manifests through elevated levels of acetic
acid rather than through the accumulation of all volatile
fatty acids (VFAs), [8, 10].

In a chemostat, several operating parameters can
be controlled and adjusted to maintain the growth of
microbial populations under desired conditions. Some
key operating parameters in a chemostat include the
dilution rate D which represents the rate at which fresh
medium is continuously added to the chemostat vessel
and the rate at which the culture is diluted and removed
from the system and it is typically expressed as the
flow rate of medium (in volume per unit time) divided
by the volume of the vessel, [11]. The other operating
parameters are nutrient concentrations defined as the
concentrations of essential nutrients, such as volatile
fatty acids (VFAs) or hydrogen, in the culture medium.
These parameters can be controlled to support microbial
growth [2, 3, 10, 12–14].

In this work, we focus on the acetogenesis and
hydrogenotrophic methanogenesis phases and we inves-
tigate analytically two chemostat models studied exper-
imentally by Di and Yang, [15]. In the first model, the
evolution of the methanogenic and hydrogenotrophic
bacteria is inhibited by the volatile fatty acids VFA,
that’s what we call later inhibition by substrate. The sec-
ond model deals with inhibition by biomass. That is, the
growth of the methanogenics is inhibited by acetogens.
We refer to biomass inhibition, the process whereby the
density of acetogens negatively influences the growth
or survival of methanogens within the chemostat, and
thereby limiting their growth, which can slow down or
inhibit methane production.

We will represent the operating diagrams for each
case and determine the consequent bifurcations of sta-
bilities of steady states. This study will be useful for
engineering purposes in order to ensure the quantitative
comprehension needed to balance bioreactor stability
with the costs and benefits of introducing innovative
organisms into the chemostat.

This paper is organized as follows: In Section II,
we present the mathematical model that describes both
cases of inhibition and we specify the assumptions for
each of the two cases and we give some properties of
both of models like existence, positivity, uniqueness,
and boundedness of solutions. In Section III we present
the existence and local stability conditions of the steady
states of each of the models, with respect to the dilution
rate D and the concentrations of substrates at the
entrance of the chemostat. In Section IV we illustrate
the operating diagrams, for given growth functions,
and for different values of operating parameters and
biological parameters used in the literature.

In Section V, we depict the transcritical bifurcations
and stability exchange between positive equilibrium and
the boundary ones for each operating diagram. The
study of bifurcations permits to determine especially
stability of its equilibrium points, as the operating
and/or biological parameters are varied. It helps to
understand how small changes in these parameters can
have a significant impact on the behavior of the system,
and can be used to predict and control system behavior
in real-world applications and to predict its long-term
behavior [16]. In Section VI, we identify the similarities
and differences between the two models and we present
discussion and conclusion.

The Appendix contains proofs of propositions given
in previous sections. In Table 21 we have consolidated
all the symbols and notations used throughout the text
to facilitate easier reference and navigation.

II. MATHEMATICAL MODEL

We consider the model of chemostat with two-species
x0, the acetogenic bacteria, and x1, the methanogenic
hydrogenotrophic bacteria, and two substrates s0, and
s1, the VFAs and hydrogen, respectively. The substrate
s0, the VFA, is consumed by acetogens x0 to produce
a second substrate s1, the H2, which in turn, feeds the
methanogens x1. In the first model, methanogens x1
are inhibited by the VFAs s0, see Figure 1a. In the
second model the methanogens x1 are inhibited by the
acetogens x0, see Figure 1b.

The dynamical system of the models of Figures 1a
and 1b takes the form of system (1):
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x x1 0
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(b)

Fig. 1: Two-species model with inhibition: (a) inhibition of x1
by s0, (b) inhibition of x1 by x0. The dashed line represents
inhibition.



ds0
dt

= D
(
sin0 − s0

)
− ϕ0(s0)x0

dx0
dt

= (ϕ0(s0)−D)x0

ds1
dt

= D
(
sin1 − s1

)
− ϕ1(s1, r0)x1 + ϕ0(s0)x0

dx1
dt

= (ϕ1(s1, r0)−D)x1
(1)

where D > 0 denotes the dilution rate, sin0 ≥ 0 and
sin1 ≥ 0 denote the input substrate concentrations, x0
and x1 denote the biomass concentrations, ϕ0 and ϕ1

their growth rates respectively and r0 is such that: r0 =
s0 when the specie x1 is inhibited by substrate sin0 in
the model of Figure 1a and r0 = x0 when the specie x1
is inhibited by the biomass x0 in the model of Figure
1b.

This model is characterized by the following prop-
erties: the system (1) has a solution for any initial
condition, the species x0 grows and develops only if
the nutriment s0 is available. The downstream species
x1 develops only if s1 is available, and its growth is
inhibited by the inlet substrate s0 or by the upstream
species x0. This permits to consider general kinetic
functions ϕ0 and ϕ1 which are of class C1 on R+

and R2
+ respectively, and that satisfy the following

hypothesis:

H1: ϕ0(s0) > 0, ϕ1(s1, r0) > 0 for s0 > 0, s1 > 0
and r0 > 0.

H2: ϕ0(0) = 0 and for all s0 > 0: ϕ0(s0) < +∞.
H3: ϕ1(0, r0) = 0 and for all s1 > 0 and r0 > 0:

ϕ1(s1, r0) < +∞.
H4: For all s0 > 0: ϕ′0(s0) > 0.
H5: For all s1 > 0 and r0 > 0: ∂ϕ1

∂s1
(s1, r0) > 0 and

∂ϕ1

∂r0
(s1, r0) < 0.

We state the following proposition.

Proposition 1. Assume that hypothesis H1 to H5 hold,
system (1) has a unique solution for any positive
initial condition (s0(0), x0(0), s1(0), x1(0)) and any
positive time, R4

+ is positively invariant by (1), the
solution of (1) is positively bounded, and the set
Γ =

{
(s0, x0, s1, x1) ∈ R4

+ : s0 = sin0 − x0 and s1 =
sin1 + x0 − x1

}
is positively invariant and is a global

attractor for (1).

Based on the theory of asymptotically autonomous
dynamical systems, the existence of Γ, allows reducing
the original model (1) to the two dimensional system
(2), called a limiting system of (1), since the solutions
of both systems (1) and (2) have the same behaviour
after sufficiently large time, [17]. Thereafter, the study
of system (2), lets to analysis the asymptotic behaviour
of the solution of system (1) on Γ, since the system (2)
is the restriction of system (1) on the projection of set
Γ on the plane (x0, x1):

dx0
dt

=
(
ϕ0(sin0 − x0)−D

)
x0

dx1
dt

=
(
ϕ1(sin1 + x0 − x1, r0)−D

)
x1

(2)

Notice that, in the case of Figure 1a, r0 = s0 = sin0 −x0
and in the case of Figure 1b, r0 = x0.

We also notice that s0 > 0, s1 > 0, and that
0 ≤ x0 ≤ sin0 and 0 ≤ x1 ≤ sin1 + x0, all this
allows to say that (x0, x1) is always in the set σ ={

(x0, x1) ∈ R2
+ : 0 ≤ x0 ≤ sin0 , 0 ≤ x1 ≤ sin1 + x0

}
.

In what follows, we will study the existence and the
stability of equilibrium points of system (2) in each of
cases r0 = sin0 − x0 and r0 = x0.

We consider in Table 1, some functions and notations
used in this paper. We will say that the graph of a
function f crosses the graph of a function g at a point
with x-axis x0 if and only if f(x0) = g(x0) and there
exists a neighborhood V of x0 such that for any real
number x in V \{x0}, one has f ′(x) < g′(x) or g′(x) <
f ′(x). In any other case, we will say that the graph of
the function f does not cross the graph of the function
g.
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Table 1: Functions, their graphs, and definitions of some
notations used in this paper.

Function Definition domain Graph
ψ0

0(x0) = ϕ0(sin0 − x0) 0 ≤ x0 ≤ sin0 Γ0
0

ψ0
1(x0) = ϕ1(sin1 + x0, r0) 0 ≤ r0 ≤ sin0 Γ0

1

Notation Definition Existence
D0(sin0 ) D0(sin0 ) = ψ0

0(0) Always exists
D1(sin0 , s

in
1 ) D1(sin0 , s

in
1 ) = ψ0

1(0) Exists when
r0 = sin0 − x0

D1(sin1 ) D1(sin1 ) = ψ0
1(0) Exists when

r0 = x0

III. EXISTENCE AND STABILITY OF EQUILIBRIUM
POINTS

A. Equilibrium points of the reduced model (2)

The equilibrium points of model (2) are solutions of
the following nonlinear algebraic system by setting in
the latter the right-hand sides equal to zero:{(

ϕ0(sin0 − x0)−D
)
x0 = 0(

ϕ1(sin1 + x0 − x1, r0)−D
)
x1 = 0

(3)

thus {
x0 = 0 or ϕ0(sin0 − x0) = D

x1 = 0 or ϕ1(sin1 + x0 − x1, r0) = D
(4)

Hence, system (2) has at most the four equilibrium
points E0, E1, E2, and E3 defined as follows:
• E0 = (0, 0), the washout equilibrium.
• E1 = (x̃0, 0) where x̃0 ∈ (0, sin0 ] is solution, if it

exists, of ϕ0(sin0 − x0) = D.
• E2 = (0, x̃1) where x̃1 ∈ (0, sin1 ] is solution, if it

exists, of ϕ1(sin1 −x1, δsin0 ) = D, where δ = 1 if
r0 = sin0 − x0 and δ = 0 if r0 = x0.

• E3 = (x∗0, x
∗
1) such that (x∗0, x

∗
1) ∈

(0, sin0 ]x(0, sin1 ] is solution, if it exists, of
ϕ0(sin0 −x0) = D and ϕ1(sin1 +x0−x1, r0) = D.

Remark 1. If r0 = sin0 −x0, we notice, according to H4

and H5, that function ψ0
0 is decreasing and function ψ0

1

is increasing, therefore curve Γ0
0 crosses Γ0

1 if and only
if D1(sin0 , s

in
1 ) < D0(sin0 ), let’s assume in this case

that x12 is the solution, in (0, sin0 ], of equation ψ0
0(x) =

ψ0
1(x) and let D1

2(sin0 , s
in
1 ) = ψ0

0(x12) = ψ0
1(x12).

If r0 = x0, let us assume that the graph Γ0
0 crosses Γ0

1

p times, p ≥ 1, for x ∈ (0, sin0 ], one has x12, x22,. . ., xp2
are the solutions, in (0, sin0 ], of equation ψ0

0(x) = ψ0
1(x)

such that x12 < x22 < . . . < xp2.
One denotes Dj

2(sin0 , s
in
1 ) = ψ0

0(xj2) = ψ0
1(xj2), j =

1, . . . , p. Since the function ψ0
0 is decreasing, we get

D1
2(sin0 , s

in
1 ) > D2

2(sin0 , s
in
1 ) > . . . > Dp

2(sin0 , s
in
1 ) ≥

0. Since ψ0
0(sin0 ) = 0 and ψ0

1(sin0 ) > 0, we notice that:

• p is even if and only if D0(sin0 ) < D1(sin1 ),
• p is odd if and only if D1(sin1 ) < D0(sin0 ).

B. Existence and stability of equilibrium points of sys-
tem (2) when s0 inhibits the growth of x1

Assume that hypothesis H1 to H5 hold, the following
proposition gives the conditions of existence and stabil-
ity of the equilibrium points of (2) when x1 is inhibited
by s0. The proofs are in the Appendix.

Proposition 2. The washout equilibrium E0 always
exists and is locally asymptotically stable if and only if
D > max(D0(sin0 ), D1(sin0 , s

in
1 )).

Equilibrium E1 exists if and only if D < D0(sin0 ),
and is locally asymptotically stable if D1(sin0 , s

in
1 ) <

D1
2(sin0 , s

in
1 ) < D < D0(sin0 ).

Equilibrium E2 exists if and only if D <
D1(sin0 , s

in
1 ), and is locally asymptotically stable if

D0(sin0 ) < D < D1(sin0 , s
in
1 ).

The positive equilibrium E3 exists if and only if
D < min(D0(sin0 ), D1(sin0 , s

in
1 )) or D1(sin0 , s

in
1 ) <

D < D1
2(sin0 , s

in
1 ) < D0(sin0 ), and is locally asymp-

totically stable whenever it exists.

C. Existence and stability of equilibrium points of
system (2) when x0 inhibits the growth of x1

Assume that hypothesis H1 to H5 hold, we state the
following propositions of existence and stability of the
equilibrium points of (2) when x1 is inhibited by x0.
The proofs are in the Appendix.

Proposition 3. The existence conditions of E0, E1, E2,
and E3 of system (2) are provided in Table 2.

Proposition 4. The stability conditions of E0, E1, E2,
and E3 are given in Table 3.

D. Equilibrium points of model (1)

System (1) has four equilibrium points E∗0 , E∗1 , E∗2 ,
and E∗3 , they correspond, respectively, to the equilib-
rium points E0, E1, E2, and E3 of system (2) defined
in Section III-A:
• E∗0 = (sin0 , 0, s

in
1 , 0), the washout equilibrium.

• E∗1 = (sin0 − x̃0, x̃0, s
in
1 + x̃0, 0) where x̃0 ∈

(0, sin0 ].
• E∗2 = (sin0 , 0, s

in
1 − x̃1, x̃1) where x̃1 ∈ (0, sin1 ].

• E∗3 = (sin0 − x∗0, x
∗
0, s

in
1 + x∗0 − x∗1, x

∗
1) where

(x∗0, x
∗
1) ∈ (0, sin0 ]x(0, sin1 ], the coexistence equi-

librium.
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Proposition 5. The existence and stability conditions
of equilibrium points E∗0 , E∗1 , E∗2 , and E∗3 of model
(1) are the same of those of system (2) and they are
given in Propositions 2, 3, and 4.

IV. OPERATING DIAGRAMS

In this section, we summarize the results of Propo-
sitions 2, 3 and 4 in Tables 4, 5 and 7 that provide
the conditions of existence and stability of each steady
state, in respect to the dilution rate D, the inlet substrate
concentrations sin0 and sin1 , and according to the number
of intersection points of curves Γ0

0 and Γ0
1, then we

plot some operating diagrams (ODs) corresponding to
several values of biological and operating parameters.
These ODs allow us to distinguish the differences
between the two cases of inhibition: inhibition by
substrate r0 = s0 and inhibition by biomass r0 = x0.

For seek of simplicity, we will denote D0(sin0 ) and
Di

2(sin0 , s
in
1 ), i = 1, 2 by D0 and Di

2, i = 1, 2,
respectively. D1 denotes D1(sin1 ) or D1(sin0 , s

in
1 ) if

r0 = s0 or r0 = x0, respectively. S denotes locally
asymptotically stable. U denotes unstable. No letter
means that the steady state doesn’t exist.

In what follows, we will consider the kinetics func-
tions ϕ0 of Monod type and ϕ1 of Monod type with
inhibition satisfying properties assumed in hypothesis
H1 to H5:

ϕ0 : s0 7→
m0s0
K0 + s0

ϕ1 : (s1, x0) 7→ m1s1
K1 + s1

1

1 + r0/L0

(5)

where mi and Ki, i = 1, 2 denote the maximum
specific growth rate and the half-saturation constant of
species xi, respectively. In the case r0 = s0, L0 denotes
the inhibition constant of species x1 by s0 and in the
case r0 = x0, L0 denotes the inhibition constant of
species x1 by x0.

Figures 2 and 3 illustrate some possible intersections
of curves Γ0

0 and Γ0
1 in the cases r0 = sin0 − x0 and

r0 = x0, with respect to values of D0 , D1, and Di
2 ,

i = 1, 2, 3.
The biological parameters are fixed depending on

substrates and micro-organisms that will be introduced
continuously in the chemostat. Since it is not easy to
interpret the operating diagrams in three-dimensional
space (D, sin0 , s

in
1 ), [18], we will simply plot the ODs

by considering cuts in two-dimensional planes (sin0 , D)
and (sin1 , D). For this end, we will firstly fix sin1 and
plot the diagrams in the (sin0 , D) plane then we will
fix sin0 and plot the operating diagrams in the (sin1 , D)

plane. We define in Tables 10 and 15, the boundaries
of the areas in the ODs of Figures 11, 8, and 6. The
colors used to paint the different regions of the ODs
are given in Table 9.

A. Operating diagrams in the (sin0 , D) plane

Table 8 holds the values of operating and biological
parameters used to draw the boundaries and the ODs
of Figures 4,. . .,11.

Tables 11, 12, and 13 summarize the conditions
of stability of each steady state in ODs of Figures
4b, 6, 8b, and 11, respectively. s̄1 and s̄2 denote the
concentrations of sin0 for which Γ0

0 and Γ0
1 are tangent.

s0 denotes the concentration of sin0 for which D0 = D1

and s1 denotes the concentration of sin0 such that
D1

2 = D1.

B. Operating diagrams in the (sin1 , D) plane

In order to visualize the effect of the inlet substrate
sin1 on the ODs, we will, in what follows, fix the value
of operating parameter sin0 and plot the operating dia-
grams in the (sin1 , D) plane. The values of the biological
parameters and those of the operating parameters used
to represent the diagrams are given in Table 14. The
curves γ∗i , i = 0, 1, 2 and γi∗3 , i = 1, 2 the boundaries
of the regions of the ODs of Figures 12b, 13b, 14b,
15b, and 17 and are defined in Table 15. The regions
are colored according to Table 9.

The results are summarized in Tables 16, 17, 18
and 9. Notice that s0 is defined in Section IV-A.
s̄i∗, i = 1, 2 represent the concentrations of sin1 such
that D1

2(sin0 , s
in
1 ) = D2

2(sin0 , s
in
1 ) which means that Γ0

1

and Γ0
0 are tangent.

V. BIFURCATIONS

Bifurcation study permits to analyze, identify and
describe the qualitative changes in the behavior of
the model as its operating parameters change. It helps
in understanding the dynamic evolution of microbial
populations in the chemostat, which permits to optimize
the behavior of chemostat systems, leading to improved
control, efficiency, and productivity in microbial biopro-
cesses [16].

Proposition 6. All bifurcations of the equilibrium
points of system (1) are transcritical and they are given
in Table 20.
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Table 2: Existence conditions of equilibrium points of (2).

E0 Always exists
E1 D < D0(sin0 )
E2 D < D1(sin1 )

E3

Case 1: Curve Γ0
0 doesn’t cross Γ0

1:
(
D < D0(sin0 ) < D1(sin1 )

)
.

Case 2: Curve Γ0
0 crosses Γ0

1 only one time:
(
D1(sin1 ) < D0(sin0 )

)
and

(
D < D1

2(sin0 , s
in
1 )
)
.

Case 3: Curve Γ0
0 crosses Γ0

1 two times:
(
D0(sin0 ) < D1(sin1 )

)
and

(
D1

2(sin0 , s
in
1 ) < D < D0(sin0 ) or D < D2

2(sin0 , s
in
1 )
)
.

Case 4: Curve Γ0
0 crosses Γ0

1 p times, p ≥ 3 :
•
(
D1(sin1 ) < D0(sin0 )

)
and(

D < Dp
2(sin0 , s

in
1 ) or D2j+2

2 (sin0 , s
in
1 ) < D < D2j+1

2 (sin0 , s
in
1 )
)
, j = 0, . . . , (p− 3)/2.

•
(
D0(sin0 ) < D1(sin1 )

)
and(

D1
2 < D < D0(sin0 ) or D < Dp

2(sin0 , s
in
1 ) or D2j+1

2 (sin0 , s
in
1 ) < D < D2j

2 (sin0 , s
in
1 )
)
, j = 1, . . . , (p− 2)/2.

Table 3: Stability conditions of equilibrium points of (2).

E0 D > max
{
D0(sin0 ), D1(sin1 )

}

E1

Case 1: Curve Γ0
0 crosses Γ0

1 only one time:
(
D1(sin1 ) < D0(sin0 )

)
and

(
D1

2(sin0 , s
in
1 ) < D < D0(sin0 )

)
.

Case 2: Curve Γ0
0 crosses Γ0

1 p times, p ≥ 2 :
•
(
D0(sin0 ) < D1(sin1 )

)
and(

there exists j = 0, . . . , (p− 2)/2 such that D2j+2
2 (sin0 , s

in
1 ) < D < D2j+1

2 (sin0 , s
in
1 )
)
.

•
(
D1(sin1 ) < D0(sin0 )

)
and(

D1
2 < D < D0(sin0 ) or there exists j = 1, . . . , (p− 1)/2 such that D2j+1

2 (sin0 , s
in
1 ) < D < D2j

2 (sin0 , s
in
1 )
)
.

E2 D0(sin0 ) < D
E3 Locally asymptotically stable if it exists

Table 4: Existence and stability of steady states in respect of
dilution rate D when D0 < D1 and Γ0

0 does not cross Γ0
1.

The results in this Table are common to both of cases r0 = s0
and r0 = x0.

D E0 E1 E2 E3

D0 < D1 < D S
D0 < D < D1 U S
D < D0 < D1 U U U S

Table 5: Existence and stability of steady states in respect of
dilution rate D when D1 < D0 and Γ0

0 crosses Γ0
1 once. The

results are common to both cases r0 = s0 and r0 = x0.

D E0 E1 E2 E3

D1 < D0 < D S
max

{
D1, D

1
2

}
< D < D0 U S

D1 < D < D1
2 < D0 U U S

D < min
{
D1

2, D1

}
< D0 U U U S

Table 6: Existence and stability of steady states in respect of
dilution rate D when D1 < D0 and Γ0

0 crosses Γ0
1 once. This

result is specific to the case r0 = x0.

D E0 E1 E2 E3

D1
2 < D < D1 < D0 U S U

Table 7: Existence and stability of steady states in respect of
dilution rate D when D0 < D1 and Γ0

0 crosses Γ0
1 twice in

the case of inhibition by biomass (r0 = x0).

D E0 E1 E2 E3

D0 < D1 < D S
D0 < D < D1 U S
D2

2 < D < D1
2 < D0 U S U

D1
2 < D < D0 or D < D2

2 < D1
2 U U U S

Table 8: Values of parameters used in Figures 4,. . .,11.

m0 m1 K0 K1 L0 sin1 Figure
8 10 2 1 1 0.51 4, 5, and 6
8 10 2 1 1 0.7 7
8 10 2 1 1 2 8
8 10 2 1 1 4 9
8 15 2 1 1 0.54 10, 11

Table 9: Definitions of regions R1 . . . R6 and J1 . . . J6 of
ODs and their associated colors.

Region E0 E1 E2 E3 Color
R1 and J1 S Red
R2 and J2 U S Yellow
R3 and J3 U S U Yellow
R4 and J4 U S Magenta
R5 and J5 U U U S Green
R6 and J6 U U S Green
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Table 10: Boundaries of the ODs and their plot colors in
Figures 4,. . . ,11. sin1 is fixed according to table 8. δ = 1 if
r0 = s0 = sin0 − x0, and δ = −1 if r0 = x0. Notice that x12,
x22 and x32 are defined in Remark 1.

Boundaries Color

γ0 =
{

(sin0 , ϕ0(sin0 )) : sin0 > 0
}

Blue

γ1 =
{

(sin0 , ϕ1(sin1 , r0 + δx0)) : sin0 > 0 Red

and x0 ∈ (0, sin0 ]
}

γ1
2 =

{
(x12, ψ

0
1(x12)) : sin0 > 0

}
Magenta

γ2
2 =

{
(x22, ψ

0
1(x22)) : sin0 > 0 and sin1 is fixed

}
Green

γ3
2 =

{
(x32, ψ

0
1(x32)) : sin0 > 0 and sin1 is fixed

}
Blue

D0

D1

Γ0
0

Γ0
1

sin
0

D1
2

x1
2

4

0 1 2

(a)

D0

D1
Γ0

0

Γ0
1

sin
00

5

9

1 2 3

(b)

Γ0
0

Γ0
1

D

D

0

1

s0
in

2

1

0 0.2 0.4 0.6 0.8

(c)

Γ0
1

Γ0
0D1

D0

s0
in

x1
2

D2
1

1 2 30

(d)

Fig. 2: Intersections of Γ0
0 and Γ0

1. (a) and (b): case where
r0 = sin0 − x0. (c) and (d): case where r0 = x0.

Γ0
1

Γ0
0

D1

D0

s0
in

x1
2 x2

2

D2
2

8

4

0 1 2 3

(a)

sin
0

2

x1
2

x2
2 x3

2

Γ0
0Γ0

1

2

D3
2

D2

D1

(b)

Fig. 3: Case where r0 = x0. (a) Γ0
0 crosses Γ0

1 two times. (b)
Γ0
0 crosses Γ0

1 three times.

D

γ
1

γ
0

2
γ1

s0 sin
0

4

2

0 2 3

(a)

1 2 30

2 R4

R1

R2

R5

sin
0

D

R6

4

(b)

Fig. 4: OD in the (sin0 , D) plane when r0 = sin0 − x0 in
the case where Γ0

0 crosses Γ0
1 at most one time. (a) The

boundaries γi, i = 0, 1 and γ1
2 with parameters set in Table

8. (b) OD corresponding to Figure 4a.

D
γ0

γ1

sin
0

γ1
2

s0 s1

4

2

0 10.2

(a)

γ

γ0

γ1
2

sin
0

1

3.1

3.4

D

3.7

1.5 1.7 1.9

(b)

Fig. 5: Boundaries of the OD in the (sin0 , D) plane when
r0 = x0 , case where Γ0

0 crosses Γ0
1 at most one time. (a)

The boundaries γi, i = 0, 1 and γ1
2 with parameters set in

Table 8. (b) Zoom in of Figure 5a where sin0 ∈ [s0, s1].
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sin
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4
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(a)

D
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R6 R3
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3.1
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(b)

Fig. 6: (a) The OD associated to Figure 5a. (b) The OD
associated to Figure 5b.
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(b)

Fig. 7: The OD in the (sin0 , D) plane when r0 = x0 in
the case where Γ0

0 crosses Γ0
1 at most one time. (a) The

boundaries γi, i = 0, 1 and γ1
2 with parameters set in Table

8. (b) The corresponding OD.

D γ
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γ
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(a)

D
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Fig. 8: OD in the (sin0 , D) plane when r0 = x0 in the case
where Γ0

0 crosses Γ0
1 at most two times. (a) The boundaries

γi, i = 0, 1 and γi
2, i = 1, 2 with parameters set in Table 8.

(b) The corresponding OD.

0

2

4

6

8

2 4 6

D

s1 0sin

2γ
1

2γ
2

0
γ

γ
1

(a)
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R5
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(b)

Fig. 9: OD in the (sin0 , D) plane when r0 = x0 in the
case where Γ0

0 does not cross Γ0
1 or croses it twice. (a) The

boundaries γi, i = 0, 1 and γi
2, i = 1, 2 with parameters set

in Table 8. (b) The corresponding OD.
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γ
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γ
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¯
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0
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2
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4.8
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D

5.4

(b)

Fig. 10: Boundaries of the OD in the (sin0 , D) plane when
r0 = x0 in the case where Γ0

0 crosses Γ0
1 at most three times.

(a) The boundaries γi, i = 0, 1, 2 and γi
2, i = 1, 2, 3 with

parameters set in Table 8. (b) Zoom in of Figure 11a where
sin0 ∈ [3.6, 4.4].

D

sin
0

R4

R1  

R5

2R

R3

1

4

6

4

2
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(a)

D

5.4
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5.1

3.85 4 4.15 0sin
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Fig. 11: (a) The OD in the (sin0 , D) plane, corresponding to
Figure 10a. (b) The OD corresponding to Figure 10b.

Table 11: Regions of the ODs of Figures 4 and 6 in respect of
sin0 and D. It should be noted that regions R1, R2, R4 . . . R6

appear in both cases of inhibitions r0 = s0 and r0 = x0.
The region R3 appears only in the case r0 = x0, when the
downstream species x1 is inhibited by upstream species x0.

Region sin0 D
R1 D > max{D0, D1 }
R2 sin0 > s0 max{D1, D

1
2} < D < D0

R3 s1 < sin0 D1
2 < D < D1

R4 sin0 < s0 D0 < D < D1

R5
sin0 < s0 D < D0 < D1

sin0 > s0 D < min{D1
2, D1}

R6 s0 < sin0 < s̃0 D1 < D < D1
2

Table 12: Regions of the ODs of Figure 8 and 9 (r0 = x0)
in respect of sin0 and D.

Region sin0 D
R1 D > max

{
D0, D1

}
R2 sin0 > s0 D1 < D < D0

R3
s̄1 < sin0 < s0 D2

2 < D < D1
2

sin0 > s0 D < D1
2

R4 sin0 < s0 D0 < D < D1

R5

sin0 < s̄1 D < D0 < D1

s̄1 < sin0 < s0 D1
2 < D < D0 or D < D2

2

sin0 > s0 D < D1
2
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Table 13: Regions of the OD of Figure 11 (r0 = x0) in respect
of sin0 and D.

Region sin0 D
R1 D > max{D0, D1}

R2
sin0 > s̄1 D1 < D < D0

s0 < sin0 < s̄1 D1 < D1
2 < D < D0

R3

s̄2 < sin0 < s0 D < D2
2 < D < D1

2

s0 < sin0 < s̄1 D3
2 < D < min{D2

2, D1)}
sin0 > s̄1 D < D1

2

R4 sin0 < s0 D0 < D < D1

R5

sin0 < s̄2 D < D0 < D1

s̄2 < sin0 < s0 D1
2 < D < D0 or D < D2

2

s0 < sin0 < s̄1 D2
2 < D < D1 or D < D3

2

sin0 > s̄1 D < D1
2

R6 s0 < sin0 < s̄1 max{D2
2, D1} < D < D1

2

Table 14: Values of parameters used in ODs of Figures
12,. . . ,17.

m0 m1 K0 K1 L0 sin0 Figure
5 4 1 2 2 0.3 13
8 5 2 1 1 4 14
8 10 2 1 1 4 15
8 15 2 1 1 4 12, 16, and 17

Table 15: Boundaries of the ODs and their plot colors in
Figures 12,. . . ,17. sin0 is fixed according to Table 14. Notice
that x12, x22 and x32 are defined in Remark 1. δ = 1 if r0 =
s0 = sin0 − x0, and δ = −1 if r0 = x0.

Boundaries in Figures 14a and 15a Colors

γ∗
0 =

{
(sin1 , ϕ0(sin0 )), sin1 > 0

}
Blue

γ∗
1 =

{
(sin1 , ϕ1(sin1 , r0 + δx0)), Red

x0 ∈ (0, sin0 ] and sin1 > 0
}

γ1∗
2 =

{
(x12, ψ

0
1(x12)) : sin1 > 0

}
Magenta

γ2∗
2 =

{
(x22, ψ

0
1(x22)) : sin1 > 0

}
Green

γ3∗
2 =

{
(x32, ψ

0
1(x32)) : sin1 > 0

}
Blue

D

γ
1
∗
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1∗

s1
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γ
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(a)
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(b)

Fig. 12: OD in the (sin1 , D) plane when r0 = sin0 − x0,
case where Γ0

0 crosses Γ0
1 only one time. (a) The boundaries

γ∗
0 , γ∗

1 , and γ1∗
2 with parameters set in Table 14. (b) The

corresponding OD.
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Fig. 13: OD in the (sin1 , D) plane when r0 = sin0 − x0, case
where Γ0

0 crosses Γ0
1 at most one time. (a) The boundaries

γ∗
0 , γ∗

1 , and γ1∗
2 with parameters set in Table 14. (b) The

corresponding OD.
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Fig. 14: OD in the (sin1 , D) plane when r0 = x0, case where
Γ0
0 crosses Γ0

1 only one time. (a) The boundaries γ∗
0 , γ∗

1 , and
γ1∗
2 with parameters set in Table 14. (b) The corresponding

OD.
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Fig. 15: OD in the (sin1 , D) plane when r0 = x0, case where
Γ0
0 crosses Γ0

1 one or two times. (a) The boundaries γ∗
i , i =

1, 2 and γi∗
2 , i = 1, 2 with parameters set in Table 14. (b)

The corresponding OD.
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Fig. 16: The boundaries of OD in the (sin1 , D) plane when
r0 = x0, case where Γ0

0 crosses Γ0
1 at most three times.

(a) The boundaries γ∗
i , i = 0, 1 and γi∗

2 , i = 1, 2 with
parameters set in Table 14. (b) Zoom in of the framed area
of Figure 16a.
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Fig. 17: a) OD corresponding to Figure 16a. b) OD corre-
sponding to Figure 16b.

Table 16: Definitions of the regions of the ODs of Figures 13b
and 14b in respect of sin1 and D. BC means that the definition
of the region is the same in both cases of inhibition: r0 = s0
and r0 = x0.

Reg. sin1 D Inhib.
J1 D > max{D0, D1} BC

J2
sin1 < s0

max{D1, D
1
2} < D < D0

BC
sin1 > s0 r0 = x0

J3 sin1 > s1∗ D1
2 < D < D1 r0 = x0

J4 sin1 > s1∗ D0 < D < D1 r0 = s0
J5 D < min{D1, D

1
2} < D0 BC

J6 sin1 < s1∗ D1 < D < D1
2 BC

Table 17: Definitions of the regions of the OD of Figure 15b
in respect of sin1 and D.

Region sin1 D
J1 D > max{D0, D1}
J2 sin1 < s0 max{D1, D

1
2} < D < D0

J3
s1∗ < sin1 < s0 D1

2 < D < D1

sin1 > s0 D2
2 < D < D1

2

J4 sin1 > s0 D0 < D < D1

J5
sin1 < s0 D < min{D1

2, D1}
sin1 > s0 D < D2

2 or D1
2 < D < D0

J6 sin1 < s1∗ D1 < D < D1
2
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Fig. 18: Boundaries of ODs for growing values of sin0 when
m0 = 5, m1 = 4, K0 = 1, K1 = 2, and L0 = 2. a)
Case where r0 = sin0 − x0 and sin0 = 0.3. b), c,) d), e), and
f): Cases where r0 = x0 and sin0 = 0.3, 1, 1.5, 2, and 2.2
respectively.

Table 18: Definitions of the regions of the OD of Figure 17
in respect of sin1 and D.

Reg. sin1 D
J1 D > max{D0, D1}

J2
sin1 < s̄1∗ max{D1, D

1
2} < D < D0

s̄1∗ < sin1 < s0 D1 < D < D2
2 or

D1
2 < D < D0

J3

s1∗ < sin1 < s̄1∗ D1
2 < D < D1

s̄1∗ < sin1 < s0
D3

2 < D < max{D2
2, D1}

or D1
2 < D < D0

s0 < sin1 D2
2 < D < D1

2

< s̄2∗ < s0

J4 sin1 > s0 D0 < D < D1

J5

sin1 < s̄1∗ D < min{D1
2, D1}

s̄1∗ < sin1 < s0 D < D3
2 or D2

2 < D < D1

s0 < sin1 < s̄2∗ D < D2
2 or D1

2 < D < D0

s̄2∗ < sin1 D < D0

J6
sin1 < s1∗ D1 < D < D1

2

s̄1∗ < sin1 < s0 max{D1, D
2
2} < D < D1

2
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Fig. 19: Boundaries of ODs for growing values of sin0 when
r0 = x0, m0 = 9, m1 = 20, K0 = 2, K1 = 1, and L0 = 1.
a) Case where sin0 = 4.3. b) Case where sin0 = 4.1. c) Case
where sin0 = 4. d) Case where sin0 = 3.5.

Table 19: Transcritical bifurcations according to regions of
OD of Figures 8 and 15. TB denotes Transcritical bifurcations.

Bound- Conditions Transition Bifurcation
ary

γ0
sin0 < s0 R1 to R2 TB: E0 = E2

sin0 > s0 R1 to R4 TB: E0 = E1
γ∗
0 sin1 < s0 J1 to J4
γ2 sin0 > s0 R4 to R5 TB: E1 = E3
γ∗
2 sin1 < s0 J4 to J5
γ1
3 R3 to R6

TB: E2 = E3
γ2
3 sin0 > s0

γ1∗
3 sin1 > s̄1

J3 to J6
γ2∗
3 s̄1 < sin1 < s0

Table 20: Transcritical bifurcations according to regions of
operating diagrams of Figures 11 and 17. TB denotes Trans-
critical bifurcations.

Bound- Conditions Transition Bifurcation
ary
γ0 sin0 > s0 R1 to R2 TB: E0 = E1
γ∗
0 sin1 < s0 J1 to J2
γ0 sin0 < s0 R4 to R5 TB: E2 = E3
γ∗
0 sin1 > s0 J4 to J5
γ1 sin0 < s0 R1 to R2 TB: E0 = E2
γ∗
1 sin1 > s0 J1 to J4

γ1
2

s0 < sin0 < s̄1
R2 to R6

TB: E1 = E3

s1 < sin0 < s̄1

s̄2 < sin0 < s1

R3 to R5

sin0 > s̄1

γ2
2

s0 < sin0 < s̄1

s̄2 < sin0 < s0

γ3
2 s0 < sin0 < s̄1

γ2∗
2 s̄1∗ < sin1 < s2∗

J2 to J6

γ1∗
2

s̄1∗ < sin1 < s0

sin1 < s1∗

s0 < sin1 < s̄2∗

J3 to J5
s1∗ < sin1 < s̄1∗

γ2∗
2

s̄2∗ < sin1 < s0

s0 < sin1 < s̄2∗

γ3∗
2 s̄1∗ < sin1 < s0
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Table 21: The different notations used in this paper, their definitions, and their first occurrences.

Notation Definition First occurrence

D Dilution rate [h−1] Model 1, p.3

s0 and s1 Substrate concentrations [mg/L] Model 1, p.3

sin0 and sin1 Inlet substrate concentrations [mg/L] Model 1, p.3

x0 and x1 Biomass concentrations [mg/L] Model 1, p.3

ϕ0 and ϕ1 Growth rates of biomass Model 1, p.3

Γ Γ = {(s0, x0, s1, x1) ∈ R4
+ : s0 = sin0 − x0 and s1 = sin1 + x0 − x1} Proposition 1, p.3

σ σ =
{

(x0, x1) ∈ R2
+ : 0 ≤ x0 ≤ sin0 , 0 ≤ x1 ≤ sin1 + x0

}
p.3

ψ0
0 ψ0

0(x0) : x0 7→ ϕ0(sin0 − x0) Table 1, p.4

ψ0
1 ψ0

1(x0) : x0 7→ ϕ1(sin1 + x0, r0), r0 = x0 or r0 = s0 Table 1, p.4

Γ0
0 and Γ0

1 Graphs of functions ψ0
0 and ψ0

1 , respectively Table 1, p.4

D0 := D0(sin0 ) D0(sin0 ) = ψ0
0(0) Table 1, p.4

D1 := D1(sin1 ) D1(sin1 ) = ψ0
1(0) for r0 = x0 Table 1, p.4

D1 := D1(sin0 , s
in
1 ) D1(sin0 , s

in
1 ) = ψ0

1(0) for r0 = s0 = sin0 − x0 Table 1, p.4

x̃0 Solution, if it exists in (0, sin0 ], of ϕ0(sin0 − x0) = D p.4

x̃1 Solution, if it exists in (0, sin1 ], of ϕ1(sin1 − x1, δs
in
0 ) = D, δ = 1 if

r0 = sin0 − x0 and δ = 0 if r0 = x0
p.4

(x∗0, x
∗
1) Solution, if it exists in σ, of ϕ0(sin0 −x0) = D and ϕ1(sin1 +x0−x1, r0) =

D
p.4

xi2, i = 1, . . . , p Solutions, in (0, sin0 ], of equation ψ0
0(x) = ψ0

1(x) Remark 1, p.4

Di
2 := Di

2(sin0 , s
in
1 ),

i = 1, . . . , p
Di

2(sin0 , s
in
1 ) = ψ0

0(xi2) Remark 1, p.4

K0 and K1 Half-saturation constants [mg/L] p.5

L0 Inhibition constant [mg/L] p.5

m0 and m1 Maximum specific growth rate of cells [h−1] p.5

γ0, γ1, and γi
2, i =

1, 2, 3
Boundaries of the ODs in the (sin0 , D) plane Table 10, p.7

Ji i = 1, . . . , 6 Regions of the ODs in the (sin1 , D) plane Table 9, p.6

Ri i = 1, . . . , 6 Regions of the ODs in the (sin0 , D) plane Table 9, p.6

s0 The value of sin0 for which D0 = D1 p.5

s1 The value of sin0 for which D1
2 = D1 p.5

s̄1 and s̄2 The values of sin0 for which Γ0
0 and Γ0

1 are tangent p.5

γ∗
0 , γ∗

1 , and γi∗
2 , i =

1, 2, 3
Boundaries of the ODs in the (sin1 , D) plane Table 15, p.9

s̄1∗ The concentrations of sin1 for which Γ0
0 and Γ0

1 are tangent p.5

G G : x0 7→ x0 + sin1 −M1(D, r0), for x0, r0 ∈ [0, sin0 ] p.13

ΓG The graph of G in the (x0, x1) plane p.13

ΓF The vertical line x0 = x̃0 in the (x0, x1) plane p.13
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VI. DISCUSSION AND CONCLUSION

In this paper, we presented a complete mathematical
analysis of two chemostat models where two species
are continuously fed by two nutriments in such a
way that the downstream biomass x1, (methanogenic
hydrogenotrophic bacteria), is inhibited by the volatile
fatty acids used as a nutriment of biomass x0 in the first
model, and it is inhibited by the upstream biomass x0,
(acetogenic bacteria), in the second model. Both models
are presented by a four-dimensional system of nonlinear
ordinary differential equations involving a large class
kinetics.

We established the conditions of existence and sta-
bility of steady states, of each model, in respect to the
dilution rate D and the input substrate concentrations
sin0 and sin1 .

We proved that in both models we have four steady
states, the washout equilibrium E0, where the two
species vanish, two boundary steady states E1 and E2

where only one species persists, and a fourth steady
state E3, which we have named the positive equilibrium
and in which the two biomasses coexist.

We proved that, in the case of inhibition by biomass
x0, the conditions of existence of the steady state E3

and those of stability of E1 depend closely on the
kinetic functions of the model.

The representation of operating diagrams of both of
models revealed that the effects of the two inhibitions
on stability of steady states, and consequently on the
quantity of methane generated, are equivalent for low
concentrations of inlet substrate sin0 (see Figure 18),
and these effects are extremely different for highest
concentrations of sin0 (see Figures 4, 5, and 19).

Indeed, for sin0 = 0.3, the regions of stability in
both models are almost identical, and for sin0 ≥ 1
we noticed that, in the case of inhibition by biomass,
the coexistence regions (the green ones) are becoming
increasingly narrow when sin0 becomes more and more
larger, and the yellow region, corresponding to the exis-
tence of only the upstream biomass, becomes more and
more large, which mean that the more concentration of
VFAs sin0 is great, the more concentration of acetogens
x0 is important and the more its inhibition effect on
methanogens x1 is important.

This leads to the diminution of concentration of x1
and allows x0 to grow freely and this is why we
need to compensate the decrease in methanogens x1
by introducing sin1 at a higher concentration.

The investigation of the model where the downstream
species x1 is inhibited by both substrate sin0 and up-
stream species x0 is underway. The perspective of this

work is to highlight the effect of pH increases, due to
VFAs, and H2 level decreases, consumed by acetogens,
on the growth of methanogens and therefore on the
production of methane.

VII. APPENDIX

Remark 2. According to H5, there exists a function M1

such that for s1 ≥ 0, r0 ≥ 0 and y ∈ [0, ϕ1(+∞, r0)[,
y = ϕ(s1, r0) is equivalent to s1 = M1(y, r0). When
s1 = sin1 + x0 − x1, ϕ1(sin1 + x0 − x1, r0) = D is
equivalent to x1 = x0 + sin1 −M1(D, r0) for x0, r0 ∈
[0, sin0 ] and D ∈ [0, ϕ1(+∞, r0)[.

Let G : x0 7→ x0 + sin1 −M1(D, r0), for x0, r0 ∈
[0, sin0 ].

If r0 = s0 = sin0 − x0 then

ϕ1(sin1 + x0 −G(x0), sin0 − x0) = D

and this implies that

(1−G′(x0))
∂ϕ1

∂s1
(sin1 + x0 −G(x0), sin0 − x0)

−∂ϕ1

∂s0
(sin0 + x0 −G(x0), sin0 − x0) = 0

which implies that

G′(x0) = 1−
∂ϕ1

∂s0
(sin1 + x0 −G(x0), sin0 − x0)

∂ϕ1

∂s1
(sin1 + x0 −G(x0), sin0 − x0)

.

According to H5, one gets: for all x0 in ]0, sin0 [,
G′(x0) > 1.

If r0 = x0 then ϕ1(sin1 + x0 −G(x0), x0) = D and
this implies that

(1−G′(x0))
∂ϕ1

∂s1
(sin1 + x0 −G(x0), x0)

+
∂ϕ1

∂x0
(sin0 + x0 −G(x0), x0) = 0

which implies that

G′(x0) =

∂ϕ1

∂x0
(sin1 + x0 −G(x0), x0)

∂ϕ1

∂s1
(sin1 + x0 −G(x0), x0)

+ 1.

According to H5, one gets: for all x0 in ]0, sin0 [,
G′(x0) < 1.

We denote ΓG the graph of G in the plane (x0, x1).
On another hand one denotes ΓF the vertical line ΓF :
x0 = x̃0.

Lemma 1. If a steady state E3 exists, then steady state
E1 exists too.

Proof: If steady state E3 exists the system 3 has
a solution (x∗0, x

∗
1) in σ. One remarks that the first

equation of 3 implies that E1(x∗0, 0) exists.
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Lemma 2. We denote O(0, 0), B(sin0 , s
in
0 + sin1 ), and

C(0, sin1 ) in the set σ defined previously. The graph ΓG

of G does not cross the boundary [BC].

Proof: Let M(x0, s
in
1 +x0) a point on [BC], if M

belongs to the graph ΓG then sin1 +x0 = G(x0) = x0+
sin1 −M1(D, r0) which is equivalent to M1(D, r0) =
0 which is to say D = ϕ1(0, r0) = 0 but this is in
contradiction with the fact that D > 0.

Lemma 3. E1(x̃0, 0) exists and G(x̃0) > 0 is equiva-
lent to D = ψ0

0(x̃0) < ψ0
1(x̃0)

Proof: We denote r̃0 = sin0 − x̃0 in the case where
r0 = s0 and we denote r̃0 = x̃0 in the case where
r0 = x0. E1 exists if and only if D = ψ0

0(x̃0).
G(x̃0) > 0 is equivalent to sin1 +x̃0−M1(D, r̃0)) > 0

which is to say sin1 + x̃0 > M1(D, r̃0)) and which
means, according to H5, that ϕ1(sin1 + x̃0, r̃0) > D and
this is equivalent, when E1 exists, to say ψ0

1(x̃0) >
D = ψ0

0(x̃0).
Proof of Proposition 2: E0 always exists, since

(0, 0) is a trivial solution of system (2).
E1 exists if and only if equation ψ0

0(x) = D
has a solution in [0, sin0 ] and this is means that line
y = D intercepts the curve Γ0

0 of function ψ0
0 , That is

possible if and only if D < ψ0
0(0) = D0(sin0 ), since,

according to H4, function ψ0
0 is decreasing on [0, sin0 ]

and ψ0
0(sin0 ) = 0.

The same idea applied on the function x1 7→
ϕ1(sin1 −x1, sin0 ), which is decreasing on [0, sin1 ], allows
to say that steady state E1 exists, which is to say that
equation ϕ1(sin1 − x1, sin0 ) = D has a solution, if and
only if D < D1(sin0 , s

in
1 ).

Steady state E3 = (x∗0, x
∗
1) exists if and only if

system 3 has a solution (x∗0, x
∗
1) in σ, which means,

according to Remark 2 and Lemma 2, that ΓG crosses
ΓF inside σ and this is equivalent to say that steady
state E1(x̃0, 0) exists and G(x̃0) > 0, this means,
according to Lemma 3, that curve of function ψ0

1 is
above that of function ψ0

0 .
In the context of Remark 1, one distinguishes the

following cases:
Case 1: The curve Γ0

0 does not cross the curve Γ0
1:

this is possible only if D0(sin0 ) < D1(sin0 , s
in
1 ), see

Figure 2b. In this case, Γ0
1 is always above Γ0

1, which
means that E3 exists for any value of D such that D <
D0(sin0 ) < D1(sin0 , s

in
1 ).

Case 2: The curve Γ0
0 crosses the curve Γ0

1 once:
Since ψ0

0 is decreasing and ψ0
1 is increasing in [0, sin0 ],

Γ0
1 lies over Γ0

0 if and only if D < D1
2(sin0 , s

in
1 ).

In what follows, we will discuss conditions of sta-

bility of steady states. The local asymptotic stability of
an equilibrium point will be determined by the signs of
the real parts of the eigenvalues of the Jacobian matrix
Ji, (i = 0, . . . , 3) evaluated at this equilibrium.

For r0 = sin0 −x0, the Jacobian matrix of system (2)
is given by:

J =

 −ϕ′0x0 + ϕ0 −D 0

∂ϕ1

∂s1
x1 −

∂ϕ1

∂s0
x1 −∂ϕ1

∂s1
x1 + ϕ1 −D


where ϕ0, ϕ′0 and ϕ1 denote ϕ0(sin0 −x0), ϕ′0(sin0 −x0)
and ϕ1(sin1 + x0 − x1, sin0 − x0) respectively.

The Jacobian matrix at E0(0, 0) is:

J0 =

 ϕ0(sin0 )−D 0

0 ϕ1(sin1 , s
in
0 )−D


=

 D0(sin0 )−D 0

0 D1(sin0 , s
in
1 )−D


The eigenvalues are λ0 = D0(sin0 ) − D and λ1 =
D1(sin0 , s

in
1 ) − D. Steady state E0 is asymptotically

stable if and only if D > max(D0(sin0 ), D1(sin0 , s
in
1 )).

The Jacobian matrix at E1 = (x̃0, 0) is given by:

J1 = −ϕ′0(sin0 − x̃0)x̃0 0

0 ϕ1(sin1 + x̃0, s
in
0 − x̃0)−D


Its eigenvalues are λ0 = −ϕ′0(sin0 − x̃0)x̃0 and λ1 =
ϕ1(sin1 +x̃0, s

in
0 −x̃0)−D = ψ0

1(x̃0)−D. According to
hypothesis H4, one has λ0 < 0. On an other hand, one
has λ1 = ψ0

1(x̃0)−D = ψ0
1(x̃0)−ψ0

0(x̃0), thus, the sign
of λ1 is determined by the position of curve Γ0

0 relative
to curve Γ0

1, that is to say, λ1 < 0 and therefore steady
state E1 is stable, if and only if curve Γ0

0 is above Γ0
1 for

x0 in [0, sin0 ]. According to Remark 1, this is possible
only if D1(sin0 , s

in
1 ) < D1

2(sin0 , s
in
1 ) < D < D0(sin0 ),

see Figure 2a.
The Jacobian matrix at E2 is:

J2 =

 ϕ0 −D 0

∂ϕ1

∂s1
x̃1 −

∂ϕ1

∂s0
x̃1 −∂ϕ1

∂s1
x̃1


where ϕ0 and ϕ1 denote ϕ0(sin0 ) and ϕ1(sin1 − x̃1, sin0 )
respectively.

Its eigenvalues are λ0 = ϕ0(sin0 )−D = D0(sin0 )−D
and λ1 = −∂ϕ1

∂s1
(sin1 − x̃1, 0)x̃1. According to hypoth-

esis H5, λ1 < 0. λ0 < 0 if and only if D > D0(sin0 ).
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Thus, steady state E2 is stable if and only if D0(sin0 ) <
D < D1(sin0 , s

in
1 ).

The Jacobian matrix at E3 = (x∗0, x
∗
1) is given by:

J3 =

 −ϕ′0x∗0 0

∂ϕ1

∂s1
x∗1 −

∂ϕ1

∂s0
x∗1 −∂ϕ1

∂s1
x∗1


where ϕ′0 and ϕ1 denote ϕ′0(sin0 −x∗0) and ϕ1(sin1 +

x∗0 − x∗1, sin0 − x∗0) respectively.
Its eigenvalues are λ0 = −ϕ′0x∗0 and λ1 = −∂ϕ1

∂s1
x∗1.

According to hypothesis H4 and H5, both of eigenval-
ues are negative, therefore, the steady state E3 is locally
asymptotically stable when it exists.

Proof of Proposition 3: The existence of equi-
librium points E0 and E1 is proved in the proof of
proposition 2.

For the steady state E2, the existence condition is
the same used in proof of proposition 2, applied on the
function x1 7→ ϕ1(sin1 − x1, 0).

Steady state E3 = (x∗0, x
∗
1) exists if and only if

system 3 has a solution (x∗0, x
∗
1) in σ, which means,

according to Remark 2 and Lemma 2, that ΓG crosses
ΓF inside σ and this is equivalent to say that steady
state E1(x̃0, 0) exists and G(x̃0) > 0, this means,
according to Lemma 3, that curve of function ψ0

1 is
above that of function ψ0

0 .
In the context of Remark 1, one distinguishes the

following cases:
Case 1: The curve Γ0

0 does not cross the curve Γ0
1:

this is possible only if D0(sin0 ) < D1(sin1 ) and Γ0
1 is

always above Γ0
1 in [0, sin0 ], this means that E3 exists

for any value of D such that D < D0(sin0 ) < D1(sin1 ),
see Figure 2c.

Case 2: The curve Γ0
0 crosses the curve Γ0

1 once,
see Figure 2d: According to Remark 1, we should have
D1(sin1 ) < D0(sin0 ) and in this case, E3 exists if and
only if D < D1

2(sin0 , s
in
1 ).

Case 3: The curve Γ0
0 crosses the curve Γ0

1 two times:
This is possible only if D0(sin0 ) < D1(sin1 ) and in this
case, E3 exists if and only if D1

2(sin0 , s
in
1 ) < D <

D0(sin0 ) or D < D2
2(sin0 , s

in
1 ), see Figure 3a.

Case 4: The curve Γ0
0 crosses the curve Γ0

1 p times,
where p ≥ 3: The existence of steady state E3

depends on D0(sin0 ) relative to D1(sin1 ). In fact, if
D1(sin1 ) < D0(sin0 ) then Γ0

1 is above Γ0
0 if and only

if D < Dp
2(sin0 , s

in
1 )) or D2j+2

2 (sin0 , s
in
1 ) < D <

D2j+1
2 (sin0 , s

in
1 ) where j = 0, . . . , (p − 3)/2 and if

D0(sin0 ) < D1(sin1 ) then E3 exists if and only if
D1

2(sin0 , s
in
1 ) < D < D0(sin0 ) or D < Dp

2(sin0 , s
in
1 )

or D2j+1
2 (sin0 , s

in
1 ) < D < D2j

2 (sin0 , s
in
1 ) where j =

1, . . . , (p− 2)/2, see Figure 3.

Proof of Proposition 4: Let ϕ0, ϕ′0 and ϕ1

designate ϕ0(sin0 −x0), ϕ′0(sin0 −x0) and ϕ1(sin1 +x0−
x1, x0) respectively. The Jacobian matrix of system (2)
is given by:

J =

 −ϕ′0x0 + ϕ0 −D 0

∂ϕ1

∂s1
x1 +

∂ϕ1

∂x0
x1 −∂ϕ1

∂s1
x1 + ϕ1 −D


The Jacobian matrix at E0(0, 0) is:

J0 =

 ϕ0(sin0 )−D 0

0 ϕ1(sin1 , 0)−D


=

 D0(sin0 )−D 0

0 D1(sin1 )−D


The eigenvalues are λ0 = D0(sin0 ) − D and λ1 =
D1(sin1 ) − D. If D > max(D0(sin0 ), D1(sin1 )) then
λ0 < 0 and λ1 < 0, therefore, E0 is asymptotically
stable. If D < min(D0(sin0 ), D1(sin1 )) then λ0 > 0
and λ1 > 0, hence, E0 is an unstable node. If
D0(sin0 ) < D < D1(sin1 ) or D1(sin1 ) < D < D0(sin0 )
then detJ0 < 0, so E0 is a saddle point.

The Jacobian matrix at E1 = (x̃0, 0) is given by:

J1 =

 −ϕ′0(sin0 − x̃0)x̃0 0

0 ϕ1(sin1 + x̃0, x̃0)−D


Its eigenvalues are λ0 = −ϕ′0(sin0 − x̃0)x̃0 and λ1 =
ϕ1(sin1 + x̃0, x̃0) − D = ψ0

1(x̃0) − D. According to
hypothesis H4, λ0 < 0. One has λ1 = ψ0

1(x̃0) −D =
ψ0
1(x̃0)−ψ0

0(x̃0), therefore, the sign of λ1 is determined
by the position of curve Γ0

0 relative to curve Γ0
1, indeed,

λ1 < 0 if and only if curve Γ0
0 is over Γ0

1 for x0 in
[0, sin0 ], hence, one distinguishes the following cases:

Case 1: Γ0
0 crosses Γ0

1 once. It is straightforward to
see that λ1 < 0 if and only if

(
D1(sin1 ) < D0(sin0 )

)
and

(
D1

2(sin0 , s
in
1 ) < D < D0(sin0 )

)
.

Case 2: Γ0
0 crosses Γ0

1 p times, p ≥ 2, therefore
λ1 < 0 if and only if one of the following sub-cases is
satisfied:

First sub-case:
(
D0(sin0 ) < D1(sin1 )

)
and

(
there ex-

ists j = 0, . . . , (p − 2)/2 such that D2j+2
2 (sin0 , s

in
1 ) <

D < D2j+1
2 (sin0 , s

in
1 )
)
.

Second sub-case:
(
D1(sin1 ) < D0(sin0 )

)
and

(
D1

2 <
D < D0(sin0 ) or there exists j = 1, . . . , (p− 1)/2 such
that D2j+1

2 (sin0 , s
in
1 ) < D < D2j

2 (sin0 , s
in
1 )
)
.
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The Jacobian matrix at E2 is:

J2 =

 ϕ0 −D 0

∂ϕ1

∂s1
x̃1 +

∂ϕ1

∂x0
x̃1 −∂ϕ1

∂s1
x̃1


where ϕ0 and ϕ1 designate ϕ0(sin0 ) and ϕ1(sin1 −x̃1, 0)
respectively.

Its eigenvalues are λ0 and λ1 such that:

λ0 = ϕ0(sin0 )−D = D0(sin0 )−D,

hence, λ0 < 0 if and only if D > D0(sin0 ) and λ1 =
−∂ϕ1

∂s1
(sin1 − x̃1, 0)x̃1 < 0, according to hypothesis H5.

Thus, steady state E2 exists and it is stable if and only
if D0(sin0 ) < D < D1(sin1 ).

The Jacobian matrix at E3 = (x∗0, x
∗
1) is given by:

J3 =

 −ϕ′0x∗0 0

∂ϕ1

∂s1
x∗1 +

∂ϕ1

∂x0
x∗1 −∂ϕ1

∂s1
x∗1


where ϕ′0 and ϕ1 denote ϕ′0(sin0 − x∗0) and ϕ1(sin1 +
x∗0 − x∗1, x∗0) respectively.

According to hypothesis H4 and H5, both of eigen-
values are negative, therefore, the steady state E3 is
locally asymptotically stable when it exists.
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