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Abstract: Arterial stenosis is the thickening of the
arterial wall due to the growth of aberrant tissues that
prevent adequate blood flow in the human circulatory
system and induces cardiovascular diseases. Mild stenosis,
may lead to serious or permanent damage if remains
uncured. There are differences in the curvature response
and material composition between the outer layers and the
core. There are several locations in blood vessels where
they are curved, which affects the blood flow and shear
stress. The Navier-Stokes equation in the cylindrical polar
coordinate system has been extended by incorporating
curvature term in two-layered blood flow along the axial
direction with appropriate boundary conditions. Math-
ematical expressions for hemodynamic parameters such
as velocity profile, volumetric flow rate, pressure drop,
and shear stress have been calculated analytically in the
case of a curve artery with stenosis. Moreover, we have
analyzed the effect of stenosis on different hemodynamic
parameters with the variation of core and peripheral-layer
viscosity and curvature. Flow quantities are affected by
the habitancy of stenosis and stipulate different blood flow
behavior in both layers in the case of curved artery. This
modeling technique may help researchers in medicine,
mathematical biology, and bio-engineering.

Keywords: arterial stenosis, velocity profile, volumetric
flow rate, pressure drop, shear stress, two layered, curved
artery

I. INTRODUCTION

Stenosis is the development of a thick, hard coating
in the inner wall of an artery as a result of the infiltration
and growth of fatty particles like cholesterol [1–3].
Most often, nutrition and chemistry play a major role
in the development of atherosclerosis, and genetics
may also have a significant role [4]. Initiating early in
life, Stenosis tends to exacerbate with age, impeding
circulatory function and causing issues like cerebral
strokes, heart failure, and paralysis [4–7]. It frequently
manifests in the curved part of the coronary, carotid,
abdominal, and pelvic arteries, which often occurs at
low shear rates and at high viscosity [8, 9]. Blood
pressure increases as stenosis develops to maintain the
blood supply [5, 10]. The main factors affecting blood
flow in the stenosed portion of the artery include the
deformability of erythrocytes, wall shear stress, and
viscosity of the blood [6, 11].

In the beginning blood flow was studied by treating
it as a single layer, but due to the presence of an inner
core layer of erythrocytes and an outer viscous layer
of plasma, it is realized that the blood flow can be
explained better by using two-layer model [4, 12, 13].
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The material composition of the core and outer layers
differ and the curvature responds differently in each
layer [14]. Since velocity, viscosity, and shear stress
fluctuate differently in the core and peripheral layer,
the two-layer approach is better suited to determine the
flow characteristics. Blood vessels exhibit curvature in
several different places, which changes their velocity
and shear stress and affects the blood flow [15].

Local variations in curvatures over time and space
impact the velocity profile, contributing to a range of
flow patterns, such as constant and phasic flow, within
the curved portion of the artery [16, 17]. Stenosis is
more likely in curved vessel segments, emphasizing the
need for a two-layer blood flow model that incorporates
curvature effects to better describe blood flow through
stenosis.

Lee and Fung [4] studied the one layer model in
a cylindrical coordinate system of the Navier-Stokes
equations. Nosovitsky et al. [16] studied the impact of
curvature on wall shear stress.

Pokharel et al. [18] used Navier-Stokes equations in
a cylindrical polar coordinate system and studied the
blood flow parameters by considering the flow is steady,
axially symmetrical, fully developed, and laminar.

Dhange et al. [19] investigated, tangent stress pres-
sure is created by a stenotic blood vessel, which reduces
the arterial side and generates an aneurysm.

Misra and Chakravarty [20] examined the blood flow
in a stenotic portion of an artery by modeling the
artery as an initially stressed orthotropic elastic tube
filled with a viscous, incompressible fluid. According
to Padmanabhan and Jayaraaman [21] due to the com-
bination of stenosis and curvature, there are a number
of remarkable fluid mechanical phenomena.

Kafle et al. [6] examined the relationship between
curvature and viscosity, pressure drop, velocity distri-
bution, and shear stress ratio when the flow is along
z-axis.

Dash et al. [14] derived an appropriate analytic solu-
tion to the problem of blood flow through a catheterized
artery with a small curvature and mild stenosis, and
shown that the effect of curvature is important in blood
flow system.

Ponalagusamy and Manchi [7] analyzed the effects
of mild stenosis in a two-layered blood flow model,
considering various geometries. Musad [1] has calcu-
lated the effect of wall shear stress in peripheral and
core layer separately in two-layer flow model.

Two-layer pulsatile blood flow model have been
studied by Devjyoti and Chakravarty [22] to calculate
radius of the stenosed artery, wall shear stress, volume

flow rate, viscosity, and pressure drop taking core layer
as a Bingham plastic.

Singh et al. [13] have used a two-layer model to
determine the volumetric flow rate, pressure, shear
stress, and flow resistance.

Chaturani and Kaloni [23] described the two-layer
model with couple stress at the core layer taking blood
as incompressible fluid.

Srivastava and Rastogi [24] examined the impact of
a non-symmetrical shape of stenosis on a two-phase
macroscopic flow model.

Bugliarello and Sevilla [12] had shown experimen-
tally that the velocity profile substantially reduces near
the inner wall when the diameter is smaller than 50 µm.

Ponalagusamy and Manchi [7] have studied the mild
stenosis using two-layer model with geometry for each
of the six categories.

Ponalagusami [15] has investigated a mathematical
model for blood flow in stenosed arteries with variable
slip at the wall and axially variable peripheral layer
thickness. The peripheral and core layer viscosities
µp and µc take (1.4, 1.5, 1.6, 1.7) gram mm−1 s−1

and (3.0, 3.5, 4.0, 4.5) gram mm−1 s−1 receptively, but
this value changes according to other hemodynamic
conditions [25]. The model consists of a peripheral
layer around a core, with the assumption that the
fluids in both regions have different viscosities and are
Newtonian in nature.

This article integrates the curvature term into the mo-
mentum balance equation along the z-axis to examine
blood flow characteristics under different positions and
heights of stenosis. The two-layer model, accounting for
curvature effects, explores velocity profiles, volumetric
flow rates, pressure drops, and shear stresses in various
scenarios involving stenosis, curvature, and viscosity.

II. EXTENDED MODEL EQUATION FOR
TWO-LAYERED BLOOD FLOW IN A CURVED ARTERY

We are taking into consideration steady flow in
an axially symmetrical stenosed artery. The artery is
considered as an inelastic circular tube. The radial flow
is neglected and blood is assumed as incompressible
and Newtonian. Let R and R0 denote the radii with and
without stenosis, respectively. Let r be the radial dis-
tance, p pressure, and vr, vθ, and vz are the velocities
the radial, perpendicular, and along axial direction. The
system can be expressed in cylindrical polar coordinate
form (r, θ, z). The equation of continuity and momen-
tum with the curvature effect in z-axis are [26, 27]:

∂vr

∂r
+
vr

r
+

1

r

∂vθ

∂θ
+
∂vz

∂z
= 0, (1)
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ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+
vθ

r

∂vr

∂θ
− (vθ)2

r
+ vz

∂vr

∂z

)
= −∂p

∂r
+ µ

(
1

r

∂

∂r

( ∂
∂r

(rvr)
)

+
1

r2
∂2vr

∂θ2
− 2

r2
∂vθ

∂θ
+
∂2vr

∂z2

)
, (2)

ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+
vθ

r

∂vθ

∂θ
+
vrvθ

r
+ vz

∂vθ

∂z

)
= −1

r

∂p

∂θ
+ µ

(
1

r

∂

∂r

( ∂
∂r

(rvθ)
)

+
1

r2
∂2vθ

∂θ2
+

2

r2
∂vr

∂θ
+
∂2vθ

∂z2

)
, (3)

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+
vθ

r

∂vz

∂vθ
+ vz

∂vz

∂z

)
= −∂p

∂z
+ µ

(
1

r

∂

∂r

(
r
∂vz

∂r
+
κP

16µ

(
R2 − r2

)2)
+

1

r2
∂2vz

∂θ2
+
∂2vz

∂z2

)
, (4)

where κ is the dynamic curvature along the axial
direction. We assume that in the axisymmetric flow we
have vθ = 0. For the steady flow of blood, viscosity
µ and density ρ are considered to be constant. Then,
mass balance and momentum balance equation (1)-(4)
are reduced to:

1

r

∂

∂r
(rvr) +

∂

∂z
(vz) = 0 (5)

ρ
(
vr
∂vr

∂r
+ vz

∂vr

∂z

)
= −∂p

∂r
+ µ

(∂2vr
∂r2

+
∂2vr

∂z2

+
1

r

∂vr

∂r
− vr

r2

)
(6)

ρ
(
vr
∂vz

∂r
+ vz

∂vz

∂z

)
= −∂p

∂z
+ µ

(
∂2vz

∂r2
+
∂2vz

∂z2

+
1

r

∂

∂r

(
vz +

κP

16µ
(R2 − r2)2

))
. (7)

We have considered axially symmetrical flow along
z-axis only, so vr = 0 and vz = v(r), which are
velocity component parallel to z-axis, then equations
(5)-(7) become:
∂v

∂z
= 0, 0 = −∂p

∂r
,

0 = −∂p
∂z

+ µ
(∂2v
∂r2

+
1

r

∂v

∂r
− κP

4µ
(R2 − r2)

)
. (8)

Suppose pressure drop term as P = −∂p/∂z, then
equation (8) reduces to:

− P r
µ

=
∂

∂r

(
r
∂v

∂r
+
κP

16µ

(
R2 − r2

)2)
. (9)

Here blood is represented by two-layered, inner core
and outer peripheral layer with different hemodynamic
parameters. Suppose Rps is the radius of artery in
peripheral layer and Rcs is the radius of artery in the
core layer in presence of stenosis such that Rcs = βRps ,
Rc0 = βRp0, where Rp0 and Rc0 are the radius of
peripheral and core layer of normal artery respectively
and β is the ratio of core radius to peripheral radius
which is called scaling model parameter.

For two-layered model, we divide whole region into
peripheral layer as Rcs ≤ r ≤ Rps and core region as 0 ≤
r ≤ Rcs. Assume µp and µc are viscosity of peripheral
and core layer respectively. More precisely two-layered
viscosity µ is defined as:

µ =

{
µp, at Rcs ≤ r ≤ Rps ,
µc, at 0 ≤ r ≤ Rcs.

Suppose δp and δc are the maximum height of stenosis
in the peripheral and core layer such that δc = βδp. The
geometry of the stenosis in peripheral layer is given by
[10]:

Rps =

{
Rp0 −

δp
2 (1 + cosπzz0 ) at |z| ≤ z0,

Rp0 at |z| > z0.

Similarly, the geometry of the stenosis in core layer as
given by [10]:

Rcs =

{
Rc0 − δc

2 (1 + cosπzz1 ) at |z| ≤ z1,
Rc0 at |z| > z1.

The equation (9) for peripheral and core layer, respec-
tively, can be rewritten as:

−P r

µp
=

∂

∂r

(
r
∂vp
∂r

+
κP

16µp

(
(Rps)

2 − r2
)2)

, (10)

−P r

µc
=

∂

∂r

(
r
∂vc
∂r

+
κP

16µc

(
(Rcs)

2 − r2
)2)

, (11)

with boundary conditions [10, 27, 28]:

vp =

{
vc, at r = Rcs,

0, at r = Rps ,

and ∂vp
∂r = 0, ∂vc∂r = 0 at r = 0.

A. Two-layered velocity profile of blood flow in curved
artery

1) Peripheral layered velocity: Let vp be the periph-
eral velocity (i.e., region Rcs ≤ r ≤ Rps), the equation
(10) becomes:

−P r

µp
=

∂

∂r

(
r
∂vp
∂r

+
κP

16µp

(
(Rps)

2 − r2
)2)

.
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Fig. 1: Sketch of two-layer blood flow in curved stenosed artery.

On integration:

−Pr
2

2µp
+A(z) = r

∂vp
∂r

+
κP

16µp

(
(Rps)

2 − r2
)2
.

Using boundary conditions ∂vp
∂r = 0 at r = 0, we get:

∂vp
∂r

= − Pr
2µp

+
κP (Rps)

2r

8µp
− κPr3

16µp
.

Again integration:

vp = −Pr
2

4µp
+
κP (Rps)

2r2

16µp
− κPr4

64µp
+B(z).

After simplification and using boundary conditions
vp = 0 at r = Rps , we receive:

B(z) =
P (Rps)

2

4µp
− 3κP (Rps)

4

64µp
.

Substituting the value of B(z):

vp =
P

4µp

(
(Rps)

2 − r2
)

+
κP

64µp

(
4r2(Rps)

2 − 3(Rps)
4 − r4

)
. (12)

2) Core layered velocity: Let vc be the core layered
velocity, i.e., region 0 ≤ r ≤ Rcs. Then, from equation
(11):

−P r

µc
=

∂

∂r

(
r
∂vc
∂r

+
κP

16µc

(
(Rcs)

2 − r2
)2)

.

On integration:

−Pr
2

2µc
+ C(z) = r

∂vc
∂r

+
κP

16µc

(
(Rcs)

2 − r2
)2
.

Using boundary conditions ∂vc
∂r = 0 at r = 0, then it

becomes:
∂vc
∂r

= − Pr
2µc

+
κP (Rcs)

2r

8µc
− κPr3

16µc
.

Again integration:

vc = −Pr
2

4µc
+
κP (Rcs)

2r2

16µc
− κPr4

64µc
+D(z).

Using boundary conditions vc = vp at r = Rcs, then:

D(z) =
P

4µp

(
(Rps)

2 − r2
)

+
P (Rcs)

2

4µc
− 3κP (Rcs)

4

64µc

+
κP

64µp

(
4r2(Rps)

2 − 3(Rps)
4 − r4

)
.

After substitution of the value of D(z) and simplifica-
tion, the core-layer velocity becomes:

vc =
P

4µc

(
µ̄(Rps)

2 + (Rcs)
2 − (1 + µ̄)r2

+
κ

16

(
4r2
(
(Rcs)

2 + µ̄(Rps)
2
)

− 3
(
µ̄(Rps)

4 + (Rcs)
4
)
− (1 + µ̄)r4

))
, (13)

where µ̄ = µc

µp
.

B. Two-layered volumetric flow rate in curved artery

1) Peripheral layer: Let us consider volumetric flow
rate in peripheral layer to be Qp [26, 27]:

Qp =

∫ Rp
s

Rc
s

2πrvpdr.
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Substituting vp from (12), then integration, and after
simplification:

Qp =
πP

8µp

((
(Rps)

2 − (Rcs)
2
)2

+
κ

24

(
(Rcs)

6

− 4(Rps)
6 + 9(Rps)

4(Rcs)
2 − 6(Rps)

2(Rcs)
4
))

.

Using the geometry of stenosis and then applying the
binomial expansion, moreover the maximum height of
stenosis is at z = 0, and after simplification:

Qp =
πP (Rp0)4

8µp

(
1− 4

δp
Rp0

+ β4
(

1− 4
δc
Rc0

)
− 2β2

(
1− 2

δp
Rp0
− 2

δc
Rc0

+ 4
δpδc
Rp0R

c
0

)
+
κ(Rp0)2

24

(
β6
(

1− 6
δc
Rc0

)
− 4
(

1− 6
δp
Rp0

)
+ 9β2

(
1− 2

δc
Rc0
− 4

δp
Rp0

+ 8
δpδc
Rp0R

c
0

)
− 6β4

(
1− 4

δc
Rc0
− 2

δp
Rp0

+ 8
δpδc
Rp0R

c
0

)))
. (14)

2) Core layered volumetric flow rate: Let Qc be the
volumetric flow rate in core layered. Then:

Qc =

∫ Rc
s

0

2πrvcdr.

Substituting vc from (13), then integration, and after
simplification:

Qc =
πP

8µc

(
2µ̄(Rps)

2(Rcs)
2 + 2(Rcs)

4 − (1 + µ̄)(Rcs)
4

+
κ

24

(
6(Rcs)

4
(

(Rcs)
2 + µ̄(Rps)

2
)
− (1 + µ̄)(Rcs)

6

− 9(Rcs)
2
(
µ̄(Rps)

4 + (Rcs)
4
)))

.

Using the geometry of stenosis and then applying the
binomial expansion, moreover the maximum height of
stenosis at z = 0, we have:

Qc =
πP (Rp0)4

8µc

(
2µ̄β2

(
1− 2δp

Rp0
− 2δc
Rc0

+
4δpδc
Rp0R

c
0

)
+ (1− µ̄)β4

(
1− 4

δc
Rc0

)
+
κ(Rp0)2

24

(
6µ̄β4

(
1− 4

δc
Rc0
− 2

δp
Rp0

+ 8
δpδc
Rp0R

c
0

)
− (4 + µ̄)β6

(
1− 6

δc
Rc0

)
− 9µ̄β2

(
1− 4

δp
Rp0
− 2

δc
Rc0

+ 8
δpδc
Rp0R

c
0

)))
. (15)

C. Two-layered pressure drop in curved artery

1) Pressure drop in peripheral layer: Pressure drop
across stenosis in peripheral region is:

(∆P )ps =

∫ z0

−z0
Pdz.

We use equation (14):

(∆P )ps =

∫ z0

−z0

8µpQpdz

π(Rp0)4(. . . )
,

where (. . . ) is the biggest bracket from (14).
After integration:

(∆P )ps =
16µpQpz0
π(Rp0)4(. . . )

, (16)

where (. . . ) is again the biggest bracket from (14).
2) Core layer pressure drop: The pressure drop

across the stenosis in core region is:

(∆P )cs =

∫ z1

−z1
Pdz.

Substituting the value of P from equation (15):

(∆P )cs =

∫ z1

−z1

8µcQcdz

π(Rp0)4(. . . )
,

where (. . . ) is the biggest bracket from (15).
After integration:

(∆P )cs =
16µcQcz1
π(Rp0)4(. . . )

, (17)

where (. . . ) is again the biggest bracket from (15).

D. Two-layered shear stress in curved artery

1) Peripheral layered shear stress: The shear stress
on surface of peripheral layer across stenosis at r = Rps
is given by [27]:

τps =
(
− µp

∂vp
∂r

)
=
(

(−µp)(−P )
r

2µp

)
r=Rp

s

=
(PRps

2

)
.

Substituting the value of P from equation (14):

τps =
4µpQpR

p
s

π(Rp0)4(. . . )
,

where (. . . ) is the biggest bracket from (14).
After simplification:

τps =
4µpQp

(
1− δp

Rp
0

)
π(Rp0)3(. . . )

, (18)

where (. . . ) is the biggest bracket from (14).
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2) Shear stress in core layer: The shear stress in the
core layer at r = Rcs is:

τ cs =
(
− µc

∂vc
∂r

)
=
(

(−µc)(−P )
r

2µc

)
r=Rc

s

=
(PRcs

2

)
.

Substituting the value of P from equation (15):

τ cs =
4µcQcR

c
s

π(Rp0)4(. . . )
,

where (. . . ) is the biggest bracket from (15).
After simplification the final result for shear stress

is:

τ cs =
4µcQcR

c
0

(
1− δc

Rc
0

)
π(Rp0)4(. . . )

, (19)

where (. . . ) is the biggest bracket from (15).

III. RESULTS AND DISCUSSION

In this section, we briefly discuss about velocity
profile, volumetric flow rate, pressure drop, and shear
stress at peripheral and core-layer in the stenosed region
of an artery.

A. Two-layered velocity profile of blood flow through a
curved stenotic artery

1) Peripheral-layer velocity profile with variation of
curvature and viscosity: Figure 2A shows the periph-
eral layer velocity distribution with radial distance r
for various values of curvature. Curvature κ takes the
values (0.5, 1.0, 1.5, 2.0) mm−1s. Radius r in the region
of stenosis along the peripheral layer ranges from 0.6
mm to 1.0 mm. The velocity vp at r = 0.6 mm are 9.77
mm s−1, 9.224 mm s−1, 8.674 mm s−1, and 8.125 mm
s−1, for the curvature 0.5 mm−1 s, 1.0 mm−1 s, 1.5
mm−1 s, and 2.0 mm−1 s respectively. The velocity vp
at r = 1 mm are zero for the curvature 0.5 mm−1 s, 1.0
mm−1 s, 1.5 mm−1 s, and 2.0 mm−1 s respectively. It
is observed that the velocity increases as the curvature
decreases.

Figure 2B shows peripheral layer velocity distri-
bution with radial distance r for various values of
peripheral layer viscosity. Viscosity coefficient µp takes
the values (1.4, 1.5, 1.6, 1.7) gram mm−1 s−1. Radii in
the region of stenosis along the peripheral layer has
been taken the value of Rps = 0.6 mm to 1 mm.
The velocity vp at r = 0.6 mm are 12.35 mm s−1,
11.47 mm s−1, 10.71 mm s−1, and 10.04 mm s−1,
for the peripheral layer viscosity 1.4 gram mm−1 s−1,
1.5 gram mm−1 s−1, 1.6 gram mm−1 s−1, and 1.7
gram mm−1 s−1 respectively. It is also observed that

velocities are zero at r = 1 mm for different values of
viscosity.

Figure 2E, describes the distribution of velocity
for different values of peripheral viscosity and ra-
dius of peripheral artery. Viscosity µp takes values
(1.4, 1.5, 1.6, 1.7) gram mm−1 s−1. Radius of an artery
has values (0.6, 0.7, 0.8, 0.9, 1) mm. The velocity vp at
r = 0.6 mm and µp1 = 1.4 gram mm−1 s−1 is 5.433
mm s−1. As the radius increases the velocity decreases
for the same viscosity and becomes 0 at r = 1 mm.
The velocity at r = 0.6 mm is 4.482 mm s−1 for the
viscosity 1.7 gram mm−1 s−1 and becomes 0 at r = 1
mm for the same viscosity.

The velocities at r = 0.6 mm are (5.433, 5.08, 4.762,
4.482) mm s−1 for the viscosity (1.4, 1.5, 1.6, 1.7)
gram mm−1 s−1 respectively. The velocities are 0 at
r = 1 mm for the viscosities (1.4, 1.5, 1.6, 1.7) gram
mm−1 s−1 respectively. It is found that the blood
velocity gradually diminishes with increasing radius of
an artery and viscosity i.e the flow velocity becomes
smaller and smaller and finally zero at inner wall of an
artery. For equal amount of increases in viscosity and
radius of an artery, the velocity at r = 0.6 mm has
maximum and in the inner wall of an artery has zero.

These results indicate that blood velocity increases
with decreasing curvature and viscosity, and the pe-
ripheral layer velocity adheres to the no-slip condition.
Once more, this demonstrates that a peripheral artery’s
velocity decreases as its radius and viscosity increase.

2) Core-layer velocity profile with variation of cur-
vature and viscosity: Figure 2C depicts core layer
velocity distribution with radial distance r at vari-
ous values of curvature. Curvature κ takes values
(0.5, 1.0, 1.5, 2.0) mm−1s. Radii in the region of steno-
sis along the core layer has the value Rcs = 0.0 to 0.6
mm. The velocity vc at r = 0 are 14.39 mm s−1, 13.32
mm s−1, 12.25 mm s−1, and 11.17 mm s−1, for the
curvature 0.5 mm−1 s, 1.0 mm−1 s, 1.5 mm−1 s, and
2.0 mm−1 s respectively. It is observed that the velocity
in the core layer decreases with increasing curvature.

The velocity vc at r = 0.6 mm are 6.789 mm s−1,
6.319 mm s−1, 5.85 mm s−1, and 5.38 mm s−1 for the
curvature 0.5 mm−1 s, 1.0 mm−1 s, 1.5 mm−1 s, and
2.0 mm−1 s respectively. Thus the behaviour of blood
flow in the core region with the radial co-ordinates
for different values of curvature is studied and, it is
found that the blood velocity gradually diminishes with
increasing r, i.e. the flow velocity becomes smaller and
smaller as one proceeds away from the center.

For equal amount of increase in curvature the veloc-
ity in the peripheral layer decreases from 9.77 mm s−1
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Figure 1: Variation of Peripheral and core Layer Velocity with radial distance for different A, C:
curvature, B, D: viscosity
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C D

E F

1

Fig. 2: Variation of peripheral and core layer velocity with radial distance for different curvature (A,C), viscosity (B,D).

to 8.125 mm s−1, but in core layer for equal amount of
increase in curvature the velocity decreases from 14.39
mm s−1 to 11.17 mm s−1. Curvature takes the values
(0.5, 1.0, 1.5, 2.0). The increment velocity in peripheral
and core layer are 47.28%, 44.40%, 41%, and 37%, this
shows that the effect of curvature is more in peripheral
layer velocity.

Figure 2D shows the core velocity distribution
with radial distance r for various values of core
layer viscosity. Viscosity coefficient µc takes values
(3.0, 3.5, 4.0, 4.5) gram mm−1 s−1. Radii in the region
of stenosis along the core layer has been taken the value

of Rcs = 0.0 to 0.6 mm. It is observed that velocity
distribution in the core layer at r = 0 is the maximum
at least value of viscosity coefficient µc1 =3.0 gram
mm−1 s−1 which is equal to 13.27 mm s−1, and the
velocity is minimum for the viscosity µc4 = 4.5 gram
mm−1 s−1 which is equal to 10.51 mm s−1. when
the viscosity coefficient increases uniformly the core
velocity decreases. It is also noted that the flow velocity
becomes smaller and smaller as one proceed away from
the axis regarding its variation with viscosity.

Figure 2F, describes the distribution of velocity
for different values of core viscosity and radius of
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Fig. 3: Single-layer versus two-layer with and without curva-
ture.

Table 1: Single-layer and two-layer velocity with and without
curvature.

Velocity/Radius 0.0 0.2 0.6 0.9
1-layer with curvature 9.52 9.147 5.564 0
2-layer with curvature 11.71 11.06 5.615 0

1-layer without curvature 13.06 12.38 7.188 0
2-layer without curvature 15.46 14.55 7.258 0

core artery. Viscosity µc takes values (3.0, 3.5, 4.0, 4.5)
gram mm−1 s−1. Radius of an artery has values
(0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) mm. The velocity vc at
r = 0.0 and µc1 = 3.0 gram mm−1 s−1 is 14.54 mm
s−1. As the radius increases the velocity decreases for
the same viscosity and becomes 7.031 at r = 0.6 mm.
The velocity at r = 0.0 mm is 9.696 mm s−1 for the
viscosity 4.5 gram mm−1 s−1 and becomes 4.687 at
r = 0.6 mm for the same viscosity.

The velocities at r = 0.0 are (14.54, 12.46, 10.88,
9.696) mm s−1 for the viscosity (3.0, 3.5, 4.0, 4.5)
gram mm−1 s−1 respectively. The velocities are
(7.031, 6.025, 5.273, 4.687) at r = 0.6 mm for the
viscosities (3.0, 3.5, 4.0, 4.5) gram mm−1 s−1 respec-
tively.

It is found that the blood velocity diminishes with in-
creasing artery radius and viscosity, reaching minimum
at r = 0.6 mm. For equal increases in viscosity and
radius, the velocity is maximum at r = 0 and minimum
at r = 0.6 mm. Once more, artery’s core layer velocity
decreases with increasing core viscosity and radius.

3) Comparison of velocity profile between single
and two-layer with and without curvature: In table 1,
we have examined the velocity profile in both single-

layer and two-layer models, considering cases with and
without curvature, for various stenosis heights. The
results demonstrate that the velocity decreases in both
layers as the stenosis height increases, regardless of
the presence of curvature. Additionally, the velocity
is lower in an artery with curvature compared to one
without curvature in both scenarios. This illustrates
the impact of curvature and highlights the differences
between the velocities in single-layer and two-layer
models. Furthermore, the analysis underscores the sig-
nificance of curvature in the two-layer model. In the
second-last column of our results, all velocities are
zero at the inner wall of the artery due to the no-slip
condition applied in this model.

Figure 3 shows a comparison of velocity profiles
in single-layer and two-layer blood flow with and
without curvature as radial distance r varies from 0.0
mm to 0.9 mm. We have taken κ = 1.75 mm−1

s, peripheral layer viscosity= 1.55 gram mm−1 s−1,
core layer viscosity 3.75 gram mm−1 s−1 and average
viscosity for single-layer is 1.55 gram mm−1 s−1. At
a radial distance of r = 0, two-layer velocity with and
without curvature are 11.71 mm s−1, 15.46 mm s−1

respectively. Similarly in single layer velocity with and
without curvature are 9.592 mm s−1, 13.01 mm s−1

respectively. In both of these cases it is observed that
the velocity is smaller in case of a curved artery. The
findings reveal that curvature predominantly influences
peripheral layer velocity than the core layer velocity.
From this we conclude that the velocity is reduced by
curvature and more realistic result can be seen in two-
layer curvature model.

B. Two-layered volumetric flow rate through a curved
stenotic artery

1) Peripheral-layer volumetric flow rate with vari-
ation of curvature and viscosity: Figure 4A de-
picts the volumetric flow rate (Qp) of blood in a
curved artery across stenosis with height 0 to 0.1
mm. Curvature κ takes the values (0.5, 1.0, 1.5, 2.0)
mm−1 s, the volumetric flow rate at δp = 0 are
(7.31, 6.831, 6.351, 5.872) mm3 s−1 respectively. The
height of stenosis increases the volumetric flow rate
decreasing linearly and becomes closer and closer at
δp = 0.1 mm for different values of curvature. Fig-
ure 4B depicts peripheral layer volumetric flow rate Qp
for different values of viscosity coefficient µp.

Viscosity takes the values (1.4, 1.5, 1.6, 1.7) gram
mm−1 s−1, the volumetric flow rate are 6.766 mm3

s−1,6.315 mm3 s−1, 5.921 mm3 s−1, and 5.572 mm3

s−1 respectively at δp = 0 mm. The volumetric
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flow rate are (2.729, 2.548, 2.388, 2.248) mm3 s−1 at
δp = 0.1 for different values of peripheral layer of
viscosity. It concludes that the flow rate decreases with
an increase in the viscosity coefficient, and as the height
of the stenosis increases, the volumetric flow rate also
decreases.

2) Core-layer volumetric flow rate with variation of
curvature and viscosity: Figure 4C depicts the vol-
umetric flow rate (Qc) of blood in an curved artery
across stenosis with different heights ranging from 0
to 0.1 mm. Flow rate is minimum for κ4 = 2.0
mm−1 s and decreases gradually as the height of the
stenosis increases and becomes minimum when the
thickness becomes 0.1 mm. Volumetric flow rate de-
creases gradually with increasing curvature and it also
decreases linearly as the stenosis thickness increases.
When κ1 = 0.5 mm−1 s, and κ4 = 2.0 mm−1 s, the
corresponding volumetric flow rates are 9.136 mm3s−1

and 7.845 mm3s−1 at δc = 0 respectively. This figure
shows that the volumetric flow rate increases with the
decreased curvature. When we measure the values at
δp = 0, δc = 0, in peripheral layer the volumetric flow
rate is decreases by 1.438 mm3s−1, but in the core layer
the volumetric flow rate decreases by 1.291 mm3s−1,
this again shows the effect of curvature is more in the
peripheral layer.

Figure 4D depicts flux Qc in the core layer for differ-
ent values of viscosity coefficient µc. When µc changes
from (3.0− 4.5) gram mm−1 s−1, flux decreases up to
1.906 mm3 s−1. It concludes that the flux is inversely
proportional to the viscosity. Qc attains maximum value
when δc = 0 mm which is 9.581 mm3s−1 and 7.675
mm3s−1 when δc = 0.1 mm. The volumetric flow
rate decreases rapidly at first and then slowly when the
viscosity coefficients are (3.0− 4.5) gram mm−1 s−1.
In both layers, the volumetric flow rate decreases with
increasing curvature and viscosity.

C. Two-layered pressure drop through a curved stenotic
artery

1) Peripheral-layer pressure drop with variation of
curvature and viscosity: Figure 5A depicts the pe-
ripheral layer pressure drop with height of stenosis δp
for various values of curvature. Curvature κ takes the
values (0.5, 1.0, 1.5, 2.0) mm−1s. Thickness δp in the
region of stenosis along the peripheral layer ranges from
0.0 to 0.1 mm. The pressure drop (∆P )ps at δp = 0
are 62.38 mm Hg, 66.86 mm Hg, 72.02 mm Hg, and
78.04 mm Hg for the curvature 0.5 mm−1 s, 1.0 mm−1

s, 1.5 mm−1 s, and 2.0 mm−1 s respectively. In the
stenotic region, we see a uniform change in pressure

drop and the line is almost parabolic. Pressure drop
changes from 62.38 mm Hg to about 140.10 mm Hg,
when the stenosis increases from 0 to 0.1 mm for the
curvature κ1 = 0.5 mm−1 s. It is observed that the
pressure drop increases with both increasing curvature
and height of stenosis.

Figure 5B depicts the pressure drop in curved arteries
with different height of stenosis and for different values
of peripheral viscosity µp. Viscosity coefficient µp takes
the values (1.4, 1.5, 1.6, 1.7) gram mm−1 s−1. Thick-
ness of stenosis δp ranges from 0.0 to 0.1 mm. The
pressure drop at δp = 0 are 53.01 mm Hg, 60.87 mm
Hg, 69.95 mm Hg, and 80.55 mm Hg, for the viscosity
(1.4, 1.5, 1.6, 1.7) gram mm−1 s−1 respectively. The
pressure drop increases with the height of stenosis in the
curved artery. Additionally, as curvature and viscosity
rise, the pressure drop also increases.

Table 2 describes the relationship between increas-
ing stenosis and pressure drop for different values of
curvature. Height of the stenosis increases gradually
from 0.0 to 0.1 mm and viscosity is kept constant
(1.55 gram mm−1 s−1). For each value of curvature
pressure drop at 0.0 and at 0.1 mm are compared. When
curvature is 0.5 mm−1s, the pressure drop increases
by 124.59%. As the curvature increases the pressure
drop percentage decreases gradually, which is shown in
the table. The increment percentage decreases gradually
by 10% approximately, and it seems uniform. When
curvature increases from 0.5 mm−1s to 2.0 mm−1s,
the pressure drop increases by 77.04%, but in case of
viscosity the pressure drop is increased by 79.55%, at
δp = 0. In this case effect of viscosity and curvature
are almost equal. Similarly at the lower part of the
table shows relationship between increasing stenosis
and pressure drop for different values of viscosity. In
this case the curvature to keep constant (1.75 mm−1s).
For each value of viscosity pressure drop at 0.0 and
at 0.1 mm are compared. When the viscosity is 1.4
gram mm−1 s−1 the percentage increment in pressure
drop is 120.37% which decreases gradually by 10%
approximately, as the viscosity increases by 0.1 gram
mm−1 s−1.

2) Core-layer pressure drop with variation of cur-
vature and viscosity: Figure 5C demonstrates pressure
drop for different curvature and for different height of
stenosis is explained. In this case the pressure drop
increases for increasing curvature. Curvature κ takes
the values (0.5, 1.0, 1.5, 2.0) mm−1s, the pressure drop
at δc = 0 are 81.60 mm Hg, 88.08 mm Hg, 95.68
mm Hg, and 104.70 mm Hg, respectively. Thus the
pressure drop increases when the curvature and height
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Table 2: Peripheral-layer pressure drop with curvature and viscosity for different height of stenosis.

δp (mm) 0.0 0.02 0.04 0.06 0.08 0.1 % (∆P )ps κ
(∆P )ps 62.38 70.21 80.27 93.7 112.5 140.1 124.59 0.5
(∆P )ps 66.86 74.91 85.18 98.71 117.4 144 115.37 1.0
(∆P )ps 72.02 80.3 90.74 104.3 122.6 148.1 105.63 1.5
(∆P )ps 78.04 86.52 97.07 110.5 128.4 152.4 95.28 2.0

δp (mm) 0.0 0.02 0.04 0.06 0.08 0.1 % (∆P )ps µp

(∆P )ps 53.01 59.55 67.92 79.03 94.49 116.9 120.37 1.4
(∆P )ps 60.87 68.08 77.23 89.22 105.6 128.8 111.59 1.5
(∆P )ps 69.95 77.85 87.76 100.6 117.7 141.4 102.14 1.6
(∆P )ps 80.55 89.13 99.75 113.9 131 154.7 92.05 1.7

Table 3: Core-layer pressure drop with curvature and viscosity for different height of stenosis.

δc (mm) 0.0 0.02 0.04 0.06 0.08 0.1 % (∆P )cs κ
(∆P )cs 81.86 85.1 88.92 93.1 97.69 102.7 25.45 0.5
(∆P )cs 88.08 91.87 96.01 100.5 105.5 110.9 25.90 1.0
(∆P )cs 95.68 99.82 104.3 109.3 114.7 120.6 26.04 1.5
(∆P )cs 104.7 109.3 114.2 119.7 125.7 132.1 26.17 2.0

δc (mm) 0.0 0.02 0.04 0.06 0.08 0.1 % (∆P )cs µc

(∆P )cs 66.64 70.64 75.15 80.27 86.14 92.79 39.24 3.0
(∆P )cs 82.34 88.89 91.97 97.69 104.2 111.4 35.29 3.5
(∆P )cs 101.4 106.5 112.1 118.3 125.3 132.8 30.96 4.0
(∆P )cs 124.8 130.2 136.1 142.6 149.8 157.5 26.20 4.5

Table 4: Peripheral-layer shear stress with curvature and viscosity for different height of stenosis.

δp (mm) 0.0 0.02 0.04 0.06 0.08 0.1 % (τps ) κ
(τ)ps 31.74 35.11 39.5 45.46 54.01 66.96 110.96 0.5
(τ)ps 33.8 37.22 41.63 47.53 55.84 68.07 101.39 1.0
(τ)ps 36.15 39.6 44 49.80 57.79 69.21 91.45 1.5
(τ)ps 38.85 42.31 46.66 52.3 59.88 70.39 81.18 2.0

δp (mm) 0.0 0.02 0.04 0.06 0.08 0.1 %(τps ) µp

(τ)ps 38.94 42.85 47.87 54.57 63.97 77.73 99.61 1.4
(τ)ps 41.73 45.91 51.29 58.47 68.54 83.29 99.59 1.5
(τ)ps 44.51 48.97 54.71 62.37 73.11 88.84 99.59 1.6
(τ)ps 47.29 52.03 58.13 66.27 77.67 94.39 99.59 1.7

Table 5: Core-layer shear stress with curvature and viscosity for different height of stenosis.

δc (mm) 0.0 0.04 0.08 0.12 0.16 %(τ cs ) κ
(τ)cs 40.24 44.74 51.26 61.74 81.41 102.31 0.5
(τ)cs 41.63 46.33 53.14 64.38 84.91 103.96 1.0
(τ)cs 43.13 48.04 55.18 66.75 88.72 105.70 1.5
(τ)cs 44.73 49.87 57.37 69.57 92.89 107.66 2.0

δc (mm) 0.0 0.04 0.08 0.12 0.16 % (τ cs ) µc

(τ)cs 36.18 40.75 47.58 59.13 82.92 129.11 3.0
(τ)cs 41.27 46.12 53.22 64.86 87.47 111.94 3.5
(τ)cs 46.26 51.36 58.7 70.44 92.24 99.39 4.0
(τ)cs 52.05 57.78 66.04 79.25 103.8 99.42 4.5
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Figure 1: Variation of peripheral and core layer volumetric flow rate with thickness of stenosis for
different A,C: curvature, B,D: viscosity.
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Fig. 4: Variation of peripheral and core layer volumetric flow rate with thickness of stenosis for different curvature (A,C),
viscosity (B,D).

of the stenosis increases. Figure 5D depicts the blood
pressure drop in curved arteries with different heights
of stenosis and for different values of core viscosity µc.
Core viscosity µc takes (3.0, 3.5, 4.0, 4.5) gram mm−1

s−1, the pressure drops at δc = 0 are 66.64 mm Hg,
82.34 mm Hg, 101.40 mm Hg, and 124.8 mm Hg
respectively. It observed that pressure drops increases
for increasing core viscosity.

Table 3 describes the effect of increasing stenosis
and curvature upon the pressure drop. Thickness of
the stenosis increases gradually from 0.0 to 0.1 mm.
For each value of curvature, pressure drop at 0.0 and
0.1 mm are compared with their percentage increment.
Pressure drop increases about 25.45% approximately
for the increment of 0.5 mm−1s curvature. But this
increasing percentage increases gradually due to in-
creasing curvature. The ratio of increment is almost
uniform.

Similarly in the lower part of the table shows re-
lationship between increasing stenosis and pressure

drop for different values of viscosity. In this case the
curvature is kept constant (1.75 mm−1s). For each value
of core viscosity pressure drop at 0.0 and at 0.1 mm are
compared. When the viscosity is 3.0 gram mm−1 s−1

the percentage increment in pressure drop is 39.24%
which decreases gradually by 5% approximately, as the
viscosity increases by 0.5 gram mm−1 s−1.

Pressure drops increase with heightened curvature
and viscosity, particularly impacting stenosis height in
the peripheral layer.

D. Two-layered shear stress through a curved stenotic
artery

1) Peripheral-layer shear stress with variation of
curvature and viscosity: Figure 6A depicts the shear
stress under various conditions of curvature and
height of stenosis. Curvature κ takes the values
(0.5, 1.0, 1.5, 2.0) mm−1 s. Thickness of stenosis along
peripheral layer ranges from 0.0 to 0.1 mm. The shear
stress at δp = 0 are 31.74 gram mm−1 s−2, 33.80 gram
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Figure 1: Variation of peripheral and core layer pressure drop with thickness of stenosis for
different A,C: curvature, B,D: viscosity.
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Fig. 5: Variation of peripheral and core layer pressure drop with thickness of stenosis for different curvature (A,C), viscosity
(B,D).

mm−1 s−2, 36.15 gram mm−1 s−2, and 38.85 gram
mm−1 s−2, for the curvature (0.5, 1.0, 1.5, 2.0) mm−1 s
respectively. This shows that shear stress increases with
increasing curvature. It is also noted that the shear stress
increases gradually with an increase in stenosis height,
This figure tells us that the shear stress is affected by
stenosis height and curvature.

Figure 6B depicts the shear stress in curved arteries
with different height of stenosis and for different values
of peripheral viscosity µp. For µp1 = 1.4 gram mm−1

s−1, the shear stress is 38.94 gram mm−1 s−2 at
δp = 0, and for µp4 = 1.7 gram mm−1 s−1, the shear
stress is nearly 47.29 gram mm−1 s−2 at δp = 0.
As height of the stenosis increases the shear stress
increases gradually. When δp = 0.0, the shear stress are
(38.94, 41.73, 44.51, 47.29) gram mm−1 s−2, for the
viscosity (1.4, 1.5, 1.6, 1.7) gram mm−1 s−1. It means
that when blood reaches the stenosis region initially,
the shear stress is normal as before without the stenosis
region.

Table 4 viscosity is kept constant and curvature is
increased gradually and it is shown that the shear
stress is increasing for increasing height of stenosis and
curvature. The curvature are increased by 0.5 mm−1s
in each step. For this equal increment of curvature,
corresponding shear stress is shown in the table. Again
for each value of curvature shear stress at 0.0 and at
0.1 mm are compared, when curvature is 0.5 mm−1s
the shear stress increases by 110.95%. As the cur-
vature increases the shear stress percentage decreases
gradually, which is shown in the table. The increment
percentage decreases gradually by 10% approximately,
and it seems uniformly.

Similarly at the lower part of the table shows rela-
tionship between increasing stenosis and shear stress for
different values of viscosity. In this case the curvature
to keep constant (1.75 mm−1s). For each value of
viscosity pressure drop at 0.0 and at 0.1 mm are com-
pared. When the viscosity is 1.4 gram mm−1 s−1 the
percentage increment in pressure drop is 99.61% which
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Figure 1: Variation of peripheral and core Layer shear stress with thickness of stenosis for different
A, C: curvature, B, D: viscosity.
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Fig. 6: Variation of peripheral and core Layer shear stress with thickness of stenosis for different curvature (A,C), viscosity
(B,D).

decreases gradually by less than 1% approximately, as
the viscosity increases by 0.5 gram mm−1 s−1.

2) Core-layer shear stress with variation of curva-
ture and viscosity: Figure 6C shows how blood flow
shear stress in a curved artery with different height of
stenosis. In this figure shear stress for different values
of curvature and for different height of stenosis is ex-
plained. Curvature κ takes the values (0.5, 1.0, 1.5, 2.0)
mm−1s. Thickness δc ranges from 0.0 to 0.15 mm. The
shear stress τ cs at δc = 0 are 40.24 gram mm−1 s−2,
41.63 gram mm−1 s−2, 43.13 gram mm−1 s−2, 44.73
gram mm−1 s−2, for the curvature (0.5, 1.0, 1.5, 2.0)
mm−1 s respectively. This shows that in a curved artery
having both curvature and stenosis.

The shear stress increases for increasing stenosis and
curvature. For κ = 0.5 mm−1s, the shear stress is equal
to 81.41 gram mm−1 s−2 when δc = 0.16 mm. For
κ = 2.0 mm−1 s, shear stress is equal to 92.89 gram
mm−1 s−2 when δc = 0.16 mm. As the height of the
stenosis increases shear stress increases gradually.

Figure 6D depicts the blood shear stress in curved
artery with different height of stenosis and for different
values of core viscosity µc. Viscosity takes the values
µc (3.0, 3.5, 4.0, 4.5) gram mm−1 s−1. Thickness δc
along core layer ranges 0.0 to 0.16 mm. The shear stress
at δc = 0 are 36.18 gram mm−1 s−2, 41.27 gram mm−1

s−2, 46.26 gram mm−1 s−2, 52.05 gram mm−1 s−2,
for the core viscosity µc (3.0, 3.5, 4.0, 4.5) gram mm−1

s−1 respectively.
As thickness of the stenosis increases shear stress

increases gradually. At δc = 0.16 mm shear stress is
103.80 gram mm−1 s−2, when viscosity is µc4 = 4.5
gram mm−1 s−1. It is observed that the shear stress
increases with increasing core viscosity and thickness
of stenosis.

Table 5 describes the effect of increasing stenosis
and curvature upon the shear stress. Thickness of the
stenosis increases gradually from 0.0 to 0.16 mm. For
each value of curvature,shear stress at 0.0 and 0.16 mm
are compared with their percentage increment. Shear
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stress increases about 102.31% approximately for 0.5
mm−1s curvature value. But this increasing percentage
increases gradually due to increasing curvature. The
ratio of increment is almost uniform.

Similarly in the lower part of the table shows rela-
tionship between increasing stenosis and shear stress for
different values of viscosity. In this case the curvature
is kept constant (1.75 mm−1s). For each value of
core viscosity shear stress at 0.0 and at 0.1 mm are
compared. When the viscosity is 3.0 gram mm−1 s−1

the percentage increment in shear stress is 129.11%
which decreases gradually by (17.17, 12.5)% and then
increases by 0.03% approximately, as the viscosity
increases by 0.5 gram mm−1 s−1.

Shear stresses exhibit an increase with elevated cur-
vature and viscosity, notably affecting stenosis height
in the peripheral layer as compare to core layer. The
analysis underscores the significance of understanding
blood flow mechanisms in a two-layered model, offer-
ing valuable insights for diagnosing and treating arterial
stenosis. This information has potential applications
for biomedical engineers and medical doctors in the
diagnosis of cardiovascular diseases.

IV. CONCLUSION

This article analyzes steady, laminar, and axisymmet-
ric flow in a curved artery, considering the inner core
layer of red blood cells and the outer peripheral plasma
layer. The model for blood flow in a mildly stenosed-
curved artery has been extended by including an axial
curvature term. Mathematical expressions for a two-
layered velocity profile, volumetric flow rate, pressure
drop, and shear stress are analytically evaluated.

The velocity profile, volumetric flow rate, pressure
drop, and shear stress in the core and peripheral layers
with different values of curvature and viscosity coef-
ficients are considered for result analysis. Maximum
velocity is attended at the center of the artery, and
minimum at the inner wall. In both layers, the velocity
decreases as the curvature and the coefficient of vis-
cosity increases. Curvature primarily impacts peripheral
layer velocity, while viscosity has a greater effect on the
peripheral layer compared to the core layer, collectively
influencing changes in velocity.

A different phenomenon can be seen in case of
volumetric flow rate, the flow rate declines with the rise
of stenotic height. As viscosity and curvature increase
in both layers, the volumetric flow rate experiences a
notable decrease, highlighting the greater influence of
curvature on the peripheral layer. Moreover, in both the
peripheral and core layers, the pressure drop increases

with heightened curvature and viscosity, signifying a
more pronounced impact on stenosis height in the
peripheral layer than in the core layer. As the coefficient
of viscosity and curvature increase in the peripheral and
core layer, shear stress also increases.

In the peripheral layer, curvature has a more sig-
nificant impact on shear stress compared to peripheral
viscosity, while in the core layer, core viscosity exerts
a greater influence than curvature. Additionally, an
increase in the height of stenosis leads to heightened
pressure drop and shear stress in both the peripheral and
core layers, indicating a correlation between stenosis
height and these flow parameters.

The findings of the current analysis underscore the
critical importance of comprehending and applying
the intricacies of blood flow dynamics within a two-
layered model. Moreover, these results furnish pivotal
insights that can significantly advance the diagnosis and
treatment strategies for arterial stenosis. Furthermore,
these insights hold promising potential for biomedical
engineers, offering valuable tools for enhancing the
diagnostic capabilities crucial to medical practitioners
in the realm of cardiovascular disease.
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