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Abstract: This article proposes a model for a ligand
molecule binding inside of a protein macromolecule. The
model considers peculiarities of the ligand access to a
buried binding center of the protein. The number of the
ligand molecule possible trajectories inside of an access
channel leading to the binding center is limited by the
channel. Therefore average velocity of the ligand molecule
translocation inside of an access channel increase with the
decreasing of its inner diameter. Thus during overcoming
of the activation barrier between neighboring balanced
positions inside of the channel, the ligand molecule should
dissipate certain amount of its energy. In other words
it should also overcome a drag barrier of activation,
which is thus a component of the activation barrier. Our
calculation showed that the drag barrier of activation is
proportional to the temperature and to the squared ratio
of the ligand diameter and the distance-averaged channel
diameter. Due to possible gradient of the channel inner
diameter the drag barriers of activation for the forward
and backward ligand translocations inside of the channel
may not equal one another. It follows from this that the
binding constant depends also on the channel shape.

Keywords: binding center, binding constant, ligand,
protein, protein access channel

I. INTRODUCTION

All vital proteins are able to selectively bind dif-
ferent molecules called ligands. This ability enables
proteins to fulfill different functions [1]. For example,
hemoglobin located in erythrocytes binds and carries
O2 from lungs to all tissues by the blood stream and
in the same time it binds and carries CO2 in the

opposite direction [2,3]. Myoglobin the other important
hemoprotein located in muscle cells stores O2 and
facilitates its diffusion [4, 5]. Protein transmembrane
channels and pumps transport different ions through
biological membranes correspondingly passively and
actively. In this way they play key roles in different
vital cell physiological processes such as electric trans-
membrane potential, neural impulse et cetera [1,6]. Due
to the ligand binding the proteins catalyze almost all
known biochemical reactions [1, 7]. Protein receptors
accepting hormone signal transmit it to the protein
switches, which change physiological activity of a
whole cell [1, 8]. The binding of proteins actin and
myosin causes muscle contraction, active cell move-
ment and organelles traffic. Protein antibodies are able
to specifically bind different antigens on surfaces of
pathogenic viruses and bacteria for preventing their
growth and development in an organism [1]. Thus
clear understanding of ligands binding processes with
proteins is necessary for the advancement of medicine.

If specific binding sites for certain ligands are located
on the protein surface, they are accessible for the ligand
molecules of all possible sizes [1]. When the binding
sites are buried inside of proteins internal cavities, they
are accessible mostly for ligand molecules consider-
ably smaller than the protein ones. Thus in the latter
case small ligands should get to the protein binding
center via networks of crevices and cavities created by
the foldings of the polypeptide chains. Because such
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crevices and cavities are constructed by more or less
rigor polypeptide backbone the ligands pathways to and
out of protein intramolecular binding sites are relatively
stable.

Mentioned crevices or cavities connected in a chain
are called ligand channel [9]. The cavities connected
by the crevices into a net are called ligand migration
network [10] or channels network [11]. In the case,
when a ligand binded by a protein simultaneously is a
substrate of certain biochemical reaction catalyzed by
this protein the ligand pathways are called substrate
channels [9] or substrate tunnels [12]. From among
4,306 enzymes analyzed 86.8% of them contained
channels longer than 5 Å, while over 64% had two or
more channels longer than 15 Å. The channels studied
average length exceeded 25 Å. In other words majority
of the channels are considerably longer than sizes of
correspondent ligands [7].

It was shown that hemoglobin and myoglobin have
a system of ligand migration networks allowing O2,
CO2 and other ligands freely access to the buried
binding sites [10]. All transmembrane protein channels
and pumps have corresponding ligand channels for the
transmembrane transport [1,6,13–15]. Analogically one
can say the same about receptor proteins. For example
G-protein-coupled receptor has a ligand tunnel of con-
siderable length within 20 - 35 Å [8]. It was stated that
the channels play a key role in the substrate affinity of
enzymes [7,12]. Therefore, their structure and dynamics
have been extensively studied lately [7, 10–12].

It is clear that inside of an access channel the number
of ligand molecule possible trajectories is smaller in
comparison with the ligand in an unbound medium, see
Fig. 1.

Translocation of the particles via limited number of
possible trajectories has an important peculiarity: the
value of average velocity of the translocation ẋav is
not negligible. ẋav is proportional to the relation of the
ligand molecule volume Vm and the volume, which is
free accessible for the particles Vac [16]:

ẋav 6= 0, ẋav ∝
Vm
Vac

. (1)

Thus due to the friction and to (1) a ligand equilibrial
translocation inside of an access channel is always
connected with energy dissipations. According to (1)
and that the drag force depends on the velocity, it
is obvious that the value of such energy dissipations
depends on the ligand and channel shapes and sizes.

For the movement of a small molecule through any
condensed matter (excluding only superfluids) includ-
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Fig. 1: Schematic representation of a ligand molecule translo-
cation. Solid arrows mark some possible trajectories of the
ligand inside of a protein access channel. Dashed arrows mark
some possible trajectories in the case, when the ligand moves
in an unbound medium. 1 is the protein access channel, 2 is
the ligand molecule.

ing native proteins and carbon nanotubes, such a small
molecule should periodically “jump up” the activation
barriers [10,17]. The activation barrier usually is char-
acterized by the Gibbs free energy of activation, ∆G‡,
which has to be overcome by a molecule to take a
new balanced position in neighbor free volume [17].
The molecule overcomes the activation barrier only at
a part of the distance between both balanced positions.
Further without the fluctuation force intervention the
molecule moves only within the new balanced position.
Thus taking into account mentioned in the previous
paragraph we can state that the activation barrier for
the ligand diffusion inside of a protein access channel
is higher than ∆G‡ (which does not evaluate any fric-
tion processes) due to the dissipation. The dissipation
amount necessary for one mole of the ligand molecules
to overcome ∆G‡ barrier let us call by a drag barrier
of activation.

As it was shown the protein channels often have inner
diameter gradient [1, 10, 14]. Due to it we can assume
that the drag barriers of activation for the forward and
backward ligand movement in such channels may not
equal one another, see Fig. 2.

Thus it may generate spontaneous directional motion
of ligand molecules inside of a protein channel with
the inner diameter gradient without resorting to any
active driving source, such as temperature, electrical or
chemical gradients. Analogical spontaneous directional
motion of water molecules was shown in single-walled
carbon nanotubes with a stiffness gradient [18]. It is
clear that such a phenomenon impacts on the protein
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ligand binding capability.
As it is known the ligand binding capability is charac-

terized by the binding constant. Usually it is calculated
under the conditions of 1) equilibrium, 2) zero average
velocities of the ligand equilibrial translocation to and
out of the binding center. In an unbound medium
the latter condition emerges from the first one. Thus
according to the Gibbs distribution [19] the binding
constant is calculated in such a way [20]:

Kbin ≡
[L · P ]

[L] · [P ]
= exp

(
− ∆G

R · T

)
,

∆G ≡ GL·P −GL+P ,

(2a)

where [L], [P ] and [L · P ] are equilibrium concentra-
tions of the ligand, protein and ligand-protein complex
respectively, T is the temperature, R is the molar gas
constant, GL·P is the Gibbs free energy of the ligand-
protein complex, GL+P is the Gibbs free energy of the
solution of separated ligand and protein molecules. The
Gibbs free energies difference ∆G for a ligand binding
with a protein in formula (2a) can also be written in a
form:

∆G = −
N−1∑
n=1

∆(∆G‡n),

∆(∆G‡n) ≡ ∆G‡fn −∆G‡bn,

(2b)

where ∆G‡fn,∆G
‡
bn are the Gibbs free energies of acti-

vation of the ligand moving from n-th balanced position
to n + 1-th one (in the direction from the binding
center, where let n = 1) and backward correspondingly,
N is the number of the balanced positions for the
ligand molecule inside of the channel. As a function
of thermodynamic state, the Gibbs free energy does not
take into account the friction and hence the drag barrier
[19]. But the drag barriers should also be a part of the
diffusion activation energy.

Thus analogically with (2b) we can supplement for-
mula (2a) in such a form:

Kbin = exp

(
−∆G+

∑N−1
n=1 ∆(∆Γ‡n)

R · T

)
,

∆(∆Γ‡n) ≡ ∆Γ‡fn −∆Γ‡bn,

(2c)

where ∆Γ‡fn,∆Γ‡bn are the drag barriers of activation
for the ligand molecule moving from n-balanced po-
sition to n + 1 one (in the direction from the binding
center, where let n = 1) and backward correspondingly
(Fig. 2). The condition of zero average velocities of the
ligand translocation to and out of the binding center
does not have to be fulfilled for validity of formula (2c).
Therefore formula (2c) is more suitable for the binding
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Fig. 2: Schematic representation of an energetic profile of a
system during a ligand molecule activation jumping from n-
th balanced position to n+1-th one and backward inside of a
protein access channel. A – energetic profile in a cylindrical
channel. B – energetic profile in an expanding channel. Red
lines mark the Gibbs free energy of the system. Blue lines
mark average dissipation energy amount of one mole of
the ligand molecules (the drag barrier) moving from n-th
balanced position (with coordinate xn) to the threshold point
xtn. Green lines mark the drag barrier for the ligand moving
from n + 1-th balanced position (with coordinate xn+1) to
the threshold point xtn. 1 is the protein access channel, 2
is the ligand molecule, 3 is the free volume, ∆G‡

fn and
∆G‡

bn are the Gibbs free energies of activation for the forward
and backward ligand movement correspondingly, ∆Γ‡

fn and
∆Γ‡

bn are the drag barriers of activation for the forward and
backward ligand movement respectively.
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constant calculations for a protein with a buried binding
site. As it was already mentioned the drag barriers of
activation depend on the channel shape.

Thus as the ligand channels play an important role
in the protein functioning [7,10], we can easily assume
that their geometries can also considerably impact on
the binding constant as formula (2c) shows. This would
allow various natural effectors [4, 21] to more effec-
tively regulate protein functions changing also access
channels shape and size. Let us try to clarify this ques-
tion considering in the details: 1) a ligand movement
inside of an access channel, 2) a ligand overcoming of
the diffusional activation barrier inside of the channel.

II. MODEL DESCRIPTION

Let us consider the movement of a spherical ligand
molecule inside of a protein access channel. Because
the curvature of most of such channels is not so high
[9–12] let us consider the model channel as an axial
symmetric one. The channel’s endpoints are the binding
center and the adsorption center on the protein surface
(Fig. 3).

The stochastic motion of a ligand molecule along
the channel symmetry axis x can be described by the
Langevin equation [22]:

mẍ+ hẋ+ F (x) = A(t), (3)

where m and h are the ligand mass and friction coeffi-
cient correspondingly, ẋ and ẍ are the ligand molecule
velocity and acceleration respectively, F (x) and A(t)
are the potential and fluctuation forces correspondingly.
Assume that the channel medium can be modelled
as a Newtonian fluid so that h is independent from
time, coordinate and velocity. The friction coefficient
h depends on the ligand diameter as well on protein
intramolecular organization and dynamics.

Now let us integrate equation (3) with respect to
coordinate and then average it with respect to the en-
semble of a multitude of identical systems analogically
to the proposed [16, 23]. In the state of equilibrium
according to the law of equipartition, the average kinetic
energy of the particle

Ek =
mẋ

2

2
=

1

2
kbT,

is independent from coordinate, ẋ is the average ve-
locity of the ligand translocation. kb is the Bolzman
constant, T is thermodynamic temperature.

Taking all that into account, we obtain:

I(x1, x2) = P (x2)− P (x1)− Γ(x1, x2), (4)

where
I(x1, x2) ≡

∫ x2

x1

A(x)dx

is the average work done by the fluctuation force for
translocation of the ligand molecule from point x1 to
point x2, A(x) is the mean fluctuation force, also

Γ(x1, x2) ≡ −h ·
∫ x2

x1

ẋ(x)dx

is the average work done by the drag force during the
translocation of the ligand molecule from point x1 to
point x2, P (x1) and P (x2) are the ligand potential
energies in points x1 and x2 respectively.

In an unbound fluid due to multiplicity of possible
translocation trajectories of a ligand we have ẋ = 0 for
all x ∈ [x1, x2]. According to (4), the average work
of the fluctuation force, which should be made for the
ligand translocation between points x1 and x2, equals
the difference of the ligand potential energies in both
points.

The channel limits the number of the possible trajec-
tories (Fig. 1). According to [16], ligand translocation
velocity ẋav , averaged with respect to the ensemble
of identical systems and coordinates, in the internal
volume of the channel, which is the accessible volume
for the ligand molecule, can be calculated as:

ẋav ≡
1

x2 − x1

∫ x2

x1

ẋ(x)dx ∼ x2 − x1
|x2 − x1|

Vm
Vac
· ν,

ν ∼ D

d
, D =

kb · T
h

, (5)

where ν is the mean velocity of the ligand on the dis-
tance close to its dimensions, d is the ligand diameter,
D is the coefficient of diffusion of the ligand.

Let us evaluate the quantity Γ(x1, x2) in formula (4)
using formula (5). Thus we obtain:

Γ(x1, x2) = ẋav · (x1 − x2) · h

∼ −Vm · |x2 − x1|
Vac · d

· kb · T.
(6)

Formula (6) demonstrates that average work done
by the drag force during an equilibrial translocation of
the ligand inside of an access channel is independent
from peculiarities of protein intramolecular dynamics
(in other words it is independent from h). Taking into
account formula (4), the same can be said about average
work done by the fluctuation force I , which is always
connected with Γ.

For a spherical ligand we have:

Vm =
1

6
· π · d3. (7a)
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Fig. 3: Schematic representation of binding of a ligand molecule with a protein macromolecule. A, B, C are different stages
of the binding. 1 is the protein globular macromolecule, 2 is the binding center, 3 is the adsorption center, 4 is the protein
access channel, 5 is the ligand molecule.

For an axially symmetric channel we have:

Vac =
1

4
π

∫ x2

x1

d2c(x)dx, (7b)

where dc(x) is the channel inner diameter in the point
x. According to (7a) and (7b) we can rewrite formula
(6) as:

Γ(x1, x2) ∼ − 2 · d2

3 · d̃2c(x1, x2)
· kb · T, (8a)

d̃2c(x1, x2) =
1

x2 − x1

∫ x2

x1

d2c(x)dx, (8b)

where d̃2c(x1, x2) is the mean square diameter of the
channel.

Thus, according to (8a) and (8b) for a ligand equi-
librial translocation inside of the channel, on a distance
not less than the ligand diameter, the drag force should
always do work. The value of such work Γ is indepen-
dent from the translocation distance and direction. It is
proportional to the temperature, and to the squared ratio
of the ligand diameter, and the distance-averaged inner
channel diameter.

According to the law of the symmetry of movement
under time reversal transformation, for the forward
and backward average velocities of ligand equilibrial
translocations, in each point inside of the channel
(ẋf (x) and ẋb(x) respectively) we always have:

ẋf (x) = −ẋb(x). (9)

Thus, taking into account (5), (7a), (7b) we can approxi-
mate the velocities modules as unambiguous coordinate

functions:

|ẋf (x)| = |ẋb(x)| ≈ 1

|x2 − x1|
· 2 · d2

3 · d2c(x)
· kb · T

h
.

(10)
According to (5) and (10), approximation (8a) may be
improved, where we get instead of (8b):

d̃2c = (x2 − x1) ·
(∫ x2

x1

d−2c (x)dx

)−1
. (11)

A. The role of the drag barrier of activation in a ligand
diffusion inside of a protein access channel. Appearance
of a drag pseudopotential inside of the channel.

All diffusion processes in usual condensed matter
are always characterized by the activation energy. The
value of the activation energy usually is characterized
by the Gibbs free energy of activation ∆G‡, required
for one mole of molecules to overcome an energetic
barrier between two neighbor balanced positions [17],
see Fig. 2.

Moving through the whole channel the ligand
molecule should gradually go via N balanced positions.
Locations of such balanced positions may clearly cor-
relate with the locations of certain amino acid residues
of the channel, as it was shown by Diamantis et al.
[10] for hemoglobin, and by Pfeffermann et al. [17] for
aquaporin. But such a correlation is not compulsory,
as it was shown by Nonner and Eisenberg [14] for
L-Type of Ca2+-channels. For the ligand molecule
to overcome the barrier between n-th and (n + 1)-th
balanced positions, it is enough to move only a part of
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the distance between the positions (to cross over the
threshold point, which we mark by xtn, see Fig. 2).

The ligand molecule, which has already overcome
the threshold point, without an intervention of the
fluctuation force moves only within the new position.
The same can be said about the backward movement.
Thus, the ability of the ligand molecule to translocate
between the balanced positions is determined by its
ability to cross over the threshold points xtn. The Gibbs
free energy is a state function independent from friction
processes [19]. Therefore, according to the previous
section in the article, inside of the channel the value
of the ligand diffusion activation energy EAfn should
be higher than ∆G‡fn:

EAfn = ∆G‡fn + ∆Γ‡fn, ∆Γ‡fn > 0. (12)

Let us call ∆Γ‡fn a drag barrier of activation. It equals
the modulus of the work, which should be done by the
drag force for translocation of one mole of the ligand
molecules from n-th balanced position with coordinate
xn to a threshold point xtn:

∆Γ‡fn ≡ NA · |Γ(xn, xtn)|,

where NA is the Avogadro constant.
According to formulas (4) and (8a) ∆Γ‡fn has a fluc-

tuation nature. The ligand diffusion activation energy
EAfn, which is the sum of ∆G‡fn and ∆Γ‡fn (12),
equals certain value of energy, which should be given
to one mole of the ligand molecules from heat bath
for overcoming the activation barrier between n-th and
(n+1)-th balanced positions. Note that according to the
written after formula (2c), the first balanced position is
the nearest to the binding center.

Under the gradient of the channel inner diameter,
according to (8a), (11), the drag barriers of activation
for the ligand forward and backward translocations
between n-th and (n + 1)-th balanced positions may
not equal one another (Fig. 2):

∆Γ‡fn 6= ∆Γ‡bn, (13a)

where ∆Γ‡bn is the drag barrier of activation for the
backward equilibrial translocation of one mole of the
ligand molecules:

∆Γ‡bn ≡ NA · |Γ(xn+1, xtn)|.

Although the works of the drag force during the
forward and backward equilibrial translocations always
equal one another: Γ(xn, xn+1) = Γ(xn+1, xn), but
these quantities do not determine all possibilities of the
forward and backward translocations. It is ∆G‡fn with

∆Γ‡fn and ∆G‡bn with ∆Γ‡bn correspondingly, which
determine such possibilities.

As it was already mentioned, ∆Γ‡fn and ∆Γ‡bn are
determined by formulas (8a) and (11), where integrating
margins are xn, xtn and xn+1, xtn respectively:

∆Γ‡fn ∼
2 · d2 ·

∫ xtn

xn
d−2c (x)dx

3 · (xtn − xn)
·R · T,

∆Γ‡bn ∼
2 · d2 ·

∫ xtn

xn+1
d−2c (x)dx

3 · (xtn − xn+1)
·R · T.

(13b)

Let the channel inner diameter depend linearly on
coordinate x on the interval between both balanced
positions xn and xn+1:

dc(x) = δ + anx, an 6= 0, dc(x) > d. (14a)

In the case when the channel diameter increases with
the coordinate increasing, we have:

an > 0, δ > d− an · inf{xn, xn+1}. (14b)

If it decreases with the coordinate increasing, then we
get:

an < 0, δ > d− an · sup{xn, xn+1}. (14c)

Let us write the difference of the drag barriers of
activation for the ligand forward and backward translo-
cations between n-th and (n+ 1)-th balanced positions
in such a form:

∆(∆Γ‡n) ≡ ∆Γ‡fn −∆Γ‡bn. (15)

According to formulas (13b), (14a) and (15) we have
∆(∆Γ‡n) 6= 0, which confirms formula (13a). It allows
us to input new quantity – the drag pseudopotential
of the ligand in n-th balanced position inside of the
channel, Γp(n). The difference of the drag pseudopo-
tentials of (n+1)-th and n-th balanced positions equals
∆(∆Γ‡n):

∆(∆Γ‡n) = Γp(n+ 1)− Γp(n). (16a)

Now let us find ∆(∆Γ‡n). Define:

bn ≡
xtn − xn
xn+1 − xn

, cn ≡
xn+1 − xn
dc(xn)

, en ≡
d

dc(xn)
.

(16b)
According to (13b), (14a), and (16b) we have:

∆Γ‡fn ≈
2

3
a−1n

e2n
bncn

(
1− (1 + anbncn)

−1
)
·R · T,

(17a)

∆Γ‡bn ≈
2

3
a−1n

e2n
cn(1− bn)

(
(1 + anbncn)

−1

− (1 + ancn)
−1
)
·R · T. (17b)
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According to (15), (17a) and (17b) we have:

∆(∆Γ‡n) ≈ 2e2n
3ancn

·
(

(1 + ancn)−1

1− bn
+ b−1n

− (1− bn)−1 + b−1n

1 + anbncn

)
·R · T.

(18)

Let us clarify the dependence of the function
∆(∆Γ‡n)(an, bn, cn, en) in formula (18) on an, bn, cn,
en.

According to (14a) an is a coefficient of linear
changes of the channel diameter. For protein access
channels we can consider that 0 < |an| < 1/3 for
all balanced positions [10, 14, 24].

According to (16b) bn is the relation of the threshold
point location to the distance between n-th and (n +
1)-th balanced positions, it means that we have 0 <
bn < 1. Real protein structure imposes restrictions on
bn interval [10]. Thus we can assume that: 1/3 < bn <
3/4.

According to (16b) cn is the relation of the distance
between n-th and (n + 1)-th balanced positions to the
channel diameter in the n-th balanced position. Taking
into account real protein structure we can assume that
1/2 ≤ |cn| ≤ 2 [10].

According to (16b) en is the relation of the lig-
and molecule diameter to the channel diameter in the
n-th balanced position. For the specific ligands and
correspondent access channels we can consider that
1/2 ≤ en < 1 [10, 14, 17]. From inequality dc(x) > d
in formula (14a) using the determined from (16b) it
follows that ancn − en > −1.

On mentioned intervals of an, bn, cn, en the function
∆(∆Γ‡n)(an, bn, cn, en) increases with the increasing
of an, bn, cn, en. The sign of ∆(∆Γ‡n) is the same as
the sign of ancn. It means that if the channel between
the n-th and (n +1)-th balanced positions expands
during increasing of n, then ∆(∆Γ‡n) > 0, and when it
narrows, then ∆(∆Γ‡n) < 0. It is also natural to assume
that bn = 1/2 for all balanced positions. Thus formula
(18) transforms to:

∆(∆Γ‡n) ≈ 4e2n
3ancn

·
(

1

1 + ancn
+ 1− 2

1 + 1
2ancn

)
·R · T.

(19a)

Let the channel inner diameter changes in sync with
coordinate, so we have an = a = const for all balanced
positions. Now let us mark the balanced positions again,
so that at the first one the channel has the smallest
diameter. In this case the first balanced position does not

necessarily correspond with the binding center. Thus, let
us mark the difference of the drag barriers of activation
calculated in the proposed way as ∆(∆Γ‡∗n ).

According with the written before formula (19a) we
always have ∆(∆Γ‡∗n ) > 0. For such numbering of the
balanced positions it is natural to assume that dc(x∗1) ∼
d, |c∗1| ∼ 2, e∗1 ∼ 1. Let also (xn+1 − xn) = const for
all balanced positions. Therefore according to (14a) and
(16b) we get:

|c∗n| ∼
2

1 + 2|a|(n− 1)
, e∗n ∼

1

1 + 2|a|(n− 1)
(19b)

and according to (19b) formula (19a) transforms to:

∆(∆Γ‡∗n ) ≈ 2

3|a|(1 + 2(n− 1)|a|)
(19c)

·
(

1

1 + 2|a|
1+2(n−1)|a|

+ 1− 2

1 + |a|
1+2(n−1)|a|

)
·R · T.

Formula (19c) shows that ∆(∆Γ‡∗n ) always decreases
with the increasing of n beginning from 1. Thus, taking
into account formula (19c) we get:

∆(∆Γ‡∗1 ) ≈ 2

3|a|
·
(

1

1 + 2|a|
+ 1− 2

1 + |a|

)
·R · T,

(20a)

∆(∆Γ‡∗2 ) ≈ 2

3|a|(1 + 2|a|)

·
(

1

1 + 2|a|
1+2|a|

+ 1− 2

1 + |a|
1+2|a|

)
·R · T, (20b)

. . . (20c–20f)

∆(∆Γ‡∗7 ) ≈ 2

3|a|(1 + 12|a|)

·
(

1

1 + 2|a|
1+12|a|

+ 1− 2

1 + |a|
1+12|a|

)
·R · T, (20g)

where we have omitted n = 3 . . . 6 for brevity. As it
was shown by Samson and Deutch [24] and Diamantis,
et al. [10], real access channels have a slight inner
diameter gradient, so we can consider that |a| ≈ 0.1.
Thus according to (20a) – (20g) we have:

∆(∆Γ‡∗1 )

R · T
≈ 0.100,

∆(∆Γ‡∗2 )

R · T
≈ 0.060,

∆(∆Γ‡∗3 )

R · T
≈ 0.037,

∆(∆Γ‡∗4 )

R · T
≈ 0.025,

∆(∆Γ‡∗5 )

R · T
≈ 0.016,

∆(∆Γ‡∗6 )

R · T
≈ 0.010,

∆(∆Γ‡∗7 )

R · T
≈ 0.009.

(21)
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According to formula (16a) the difference of the drag
pseudopotentials on the ends of the whole channel ∆Γp

equals the sum of the differences of the drag barriers
of activation for all balanced positions:

∆Γp =

N−1∑
n=1

∆(∆Γ‡n), (22a)

where the first balanced position is close to the binding
center as it was already mentioned after formula (2b),
N is the ligand balanced positions number inside the
channel. If the channel always expands from the binding
center, then ∆(∆Γ‡n) = ∆(∆Γ‡∗n ) and according to
formula (22a) we have:

∆Γp = ∆Γ∗p > 0, ∆Γ∗p ≡
N−1∑
n=1

∆(∆Γ‡∗n ). (22b)

When the channel always narrows from the binding
center, then according to our both systems of numera-
tion and formula (15) we get ∆(∆Γ‡n) = −∆(∆Γ‡∗N−n)
and thus according to formula (22a) and the definition
in formula (22b) we have:

∆Γp = −∆Γ∗p < 0. (22c)

The number of ligand balanced positions inside of
a protein access channel may exceed 7 [7, 10, 17]. It
means that the difference of the drag pseudopotentials
on the ends of the whole channel may be considerable.
According to (21), (22b) and (22c) we have:

sup

{
|∆Γp|
R · T

}
≈ 0.26. (22d)

As it was already mentioned, the binding constant
usually is determined by formula (2a) under the condi-
tions of equilibrium and zero average velocities of the
ligand translocations to and out of the binding center
[20]. But due to the restriction of the number of ligand
possible trajectories by an access channel, the second
condition is not met. To correct (2a) let us take into
account formulas (2c) and (22a). Thus we can write:

Kbinr ≈ Kbin · ψ, ψ ≡ exp

(
∆Γp

R · T

)
, (23a)

where Kbinr is the real binding constant, while Kbin

is the one calculated according to (2a).
According to (23a) and (22d) the real binding con-

stant may be considerably different than the calculated
according to formula (2a), so we get:

inf{ψ} ≈ 0.8, sup{ψ} ≈ 1.3. (23b)

 

 

2 
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4 

3 

(A)
 

 1 

2 
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(B)

Fig. 4: Schematic representation of possible changing of a
protein access channel shape by a binding effector. A – the
binding effector is free, B – the binding effector is bound
by the protein. 1 is the protein globular molecule, 2 is the
binding center, 3 is the protein access channel, 4 is the
effector molecule. Red arrows mark the protein intramolecular
densification.

III. ANALYSIS OF THE MODEL
FOR SOME NATURAL APPLICATIONS

It is known that all binding effectors impact the
conformational state of a protein [4, 21]. In such a
way the Gibbs free energies difference ∆G in formula
(2c) changes. Thus, the binding effectors influence
the binding constant. But they may also change an
access channel shape. In other words, they can change
ψ in formula (23a). Thus, binding near the protein
surface the effectors cause densification of outer protein
molecule layer (Fig. 4).
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In such a way they geometrically may decrease
the value of a in formula (14a). Most protein access
channels expand from the buried binding center [24].
According to (20a) – (23b) the changing of a exactly
from 0.1 to 0 may decrease the ligand binding constant
1.3 times. It may be quite noticeable, for example,
regarding oxygen release processes from hemoglobin to
tissues or from myoglobin to mitochondria in hypoxic
conditions [2–5].

As it was mentioned, the process of a ligand binding
by a protein is not only used for carrying different
metabolites through an organism. This process also is
the base of almost all biological catalytic reactions [1].
In the latter case a binding center becomes as a catalytic
center, where substrates transform to products and vice
versa through an intermediate molecule:

Ns1S1 +Ns2S2 + . . .+NsnSn + F 
 inter · F

 Np1P1 +Np2P2 + . . .+NpmPm + F,

(24)
where Si is i-th substrate, F is an enzyme, Pj is j-
th product, Nsi and Npj are stoichiometric numbers
for substrates and products respectively, inter · F is
the complex of the intermediate with the enzyme in its
catalytic center, n and m are the substrates and products
number correspondingly. The equilibrium constant of
reaction (24) Keq equals the relation of the binding con-
stants for the substrates Kbinsub and products Kbinpro

within the protein correspondingly:

Keq ≡
[P1]Np1 · [P2]Np2 · · · [Pm]Npm

[S1]Ns1 · [S2]Ns2 · · · [Sn]Nsn
=
Kbinsub

Kbinpro
,

Kbinsub =
[inter · F ]

[S1]Ns1 · [S2]Ns2 · · · [Sn]Nsn · [F ]
,

Kbinpro =
[inter · F ]

[P1]Np1 · [P2]Np2 · · · [Pm]Npm · [F ]
,

(25)
where [Si], [Pj ], [F ] and [inter · F ] are equilibrial
concentrations of i-th substrate, j-th product, enzyme
and the complex of the enzyme with the intermediate,
correspondingly. According to (23a) and (25) for a
monomolecular reaction with n = m = 1 in (24) we
have:

Keqr = Keq · ψeq, ψeq ≡ exp

(
∆Γps −∆Γpp

R · T

)
,

(26)
where Keqr is the real equilibrium constant, Keq is the
equilibrium constant calculated according to formulas
(2a) and (25), ∆Γps and ∆Γpp are the differences of the
drag pseudopotentials on the ends of the whole channel
(or different channels) for the substrate and product,

correspondingly.
Let us consider the case when the substrate and

product of such a reaction get to the active center via
only one access channel (Fig. 5, top row). In such a
situation, according to formula (22b) or (22c) and the
written before them, the signs of ∆Γps and ∆Γpp are
the same.

Taking into account that the substrate and product
diameters are close to each other, according to (18)
and (22a) we have ∆Γps ∼ ∆Γpp. Thus according to
formula (26) the equilibrium constant of a monomolec-
ular reaction catalyzed by an enzyme with one access
channel is almost independent from the channel shape.

Now let us consider the case when the substrate and
product of a monomolecular reaction get to the active
center via different access channels, the first of which
narrows (as > 0), while the second expands (ap < 0)
with the approach to the active center (Fig. 5, bottom
row) or vice versa. According to formula (22b) or (22c)
and the written before them, the signs of ∆Γps and
∆Γpp differ.

Let us consider the case, when the channels have
slight gradient of their inner diameters: |a| ≈ 0.1 and
are long enough so that the ligand molecule inside them
have approximately 7 balanced positions. In the active
center the channels diameters should be close to one
another. In such a case the smallest inner diameter
of the wider channel is considerably bigger than the
smallest inner diameter of the narrower one. Therefore,
according to (19c) – (20g), (22a) – (22c) and (26) a
contribution of the wider channel is neglectable. Thus
analogically to (23b) we have:

inf{ψeq} ≈ 0.8, sup{ψeq} ≈ 1.3. (27)

According to (27) the real equilibrium constant of a
monomolecular reaction catalyzed by an enzyme having
different access channels for substrate and product may
considerably depend on the channels shape.

Let us consider the case when a biochemical re-
action with n > 1 or m > 1 in (24) is catalyzed
by a ferment with two different access channels for
substrates and products, one of which narrows, while
the other expands with the approach to the active center
or vice versa. For such a reaction more than one ligand
molecule should be translocated through the channels.
It leads to multiplication of the drag pseudopotentials
differences located in the exponent of formula (26). The
real equilibrium constant of such a reaction may be
shifted even more than monomolecular one:

inf{ψeq} ≈ 0.8k, sup{ψeq} ≈ 1.3k, (28)
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Fig. 5: Schematic representation of an enzymatic monomolecular reaction. A, B, C are different stages of the reaction, which
is catalyzed by an enzyme with the only access channel for the substrate and product. D, E, F are different stages of the
reaction, which is catalyzed by a ferment with two different access channels. 1 is the protein globular molecule, 2 is the
catalytic center, 3 are the protein access channels, 4 is the substrate molecule, 5 is the intermediate, 6 is the product.

where k equals n in the case when the substrate access
channel is narrower, or m when the product channel is
narrower.

As it was already mentioned, intramolecular channels
of proteins are widely used by living cells also for rapid
transmembrane transport of different metabolites [15].
As it is known, L-type of Ca2+-channels considerably
expand in the direction to the membrane surfaces [14]
(Fig. 6). According to our model it leads to excess (near
1.3-fold) accumulation of Ca2+-ions in the middle
of the channel, in comparison with the described by
Eisenberg [25]. This can additionally increase Ca2+-
affinity of the channel.

Due to the demonstrated gradients of diameters of
transmembrane channels [17] and according to (19a) –
(22a), in the state of dynamic equilibrium they can cre-
ate additional transmembrane electrochemical potential
difference µad (note that the same applies to pumps,

which also use access channels [15]):

|∆µad| = |∆Γp|. (29)

In conditions of room temperature according to (22d)
and (29) we have:

sup{|∆µad|} = sup{|∆Γp|} ∼ 670 J/mol. (30)

According to (30), possible excess transmembrane
electrochemical potential difference created by bio-
logical ion channels and pumps with inner diameter
gradient is much smaller in comparison with physiolog-
ical transmembrane electrochemical potential difference
[1]. It means that such a phenomenon does not play
considerable role in cell charging.

Analogically, we can say the same about the shifting
of a biochemical reaction (24) right or left due to
the access channels inner gradients. It cannot be used
in ATP or other macroergic compounds accumulation
because |∆G| of their synthesis is of order 30 kJ/mol
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Fig. 6: Schematic representation of the L-type Ca2+-channel
structure. 1 is the phospholipid bilayer membrane, 2 is the
Ca2+-channel.

[1]. It is considerably higher than 670 J/mol, which is
calculated in our model according to formula (30).

Formula (4) connects the work, which should be done
by fluctuation force I during the ligand binding by
a protein, with the work of the drag force, and thus
with the drag pseudopotential difference on the ends of
the protein access channel, calculated in our model by
means of formulas (18) – (22d). Thus, in the framework
of our model, it was shown that due to the fluctuation
force (or the thermal energy) the equilibrium between
free and binded ligand by a protein may be considerably
shifted. Analogically, the equilibrium between the sub-
strates and products of a biochemical reaction may be
shifted, or a metabolite may be accumulated unevenly
on both sides of the membrane.

Thus, it may become another variety of thermal
energy harvesting. Presently, the thermal energy har-
vesting is known mainly as thermoelectric conversion
of thermal energy into electrical one, due to new
technological possibilities to control of phonon gen-
eration, relaxation and propagation in the nanoscale
[26]. Proteins are also nanoscale devices [1, 6]. As
it was shown in this article, protein molecules may
also harvest thermal energy in small amounts, due to
their access channels diameter gradients. Such type
of thermal energy harvesting may play certain role in
functioning of living organisms. This role should be
studied further.

IV. CONCLUSION

1) A ligand inside of a protein access channel should
dissipate considerable amount of energy for over-
coming the activation barrier. Such an energy value
is called a drag barrier of activation.

2) The drag barrier of activation is proportional to
the temperature and to the squared ratio of the
ligand diameter and the distance-averaged channel
diameter.

3) The drag barriers of activation for the forward
and backward ligand equilibrial translocations may
differ inside of an access channel which has an inner
diameter gradient.

4) Such differences may be considerable. They expo-
nentially have an effect on the binding constant.
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