
BIOMATH
https://biomath.math.bas.bg/biomath/index.php/biomath

B f

Biomath Forum

ORIGINAL ARTICLE

Extended SIRU model with dynamic transmission rate
and its application in the forecasting of COVID-19

under temporally varying public intervention

Yiye Jiang1,∗, Gaston Vergara-Hermosilla2
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Abstract: By considering the recently introduced SIRU
model, in this paper we study the dynamic of COVID-19
pandemic under the temporally varying public interven-
tion in the Chilean context. More precisely, we propose
a method to forecast cumulative daily reported cases
CR(t), and a systematic way to identify the unreported
daily cases given CR(t) data. We firstly base on the
recently introduced epidemic model SIRU (Susceptible,
Asymptomatic Infected, Reported infected, Unreported
infected), and focus on the transmission rate parameter
τ . To understand the dynamic of the data, we extend
the scalar τ to an unknown function τ(t) in the SIRU
system, which is then inferred directly from the his-
torical CR(t) data, based on nonparametric estimation.
The estimation of τ(t) leads to the estimation of other
unobserved functions in the system, including the daily
unreported cases. Furthermore, the estimation of τ(t)
allows us to build links between the pandemic evolution
and the public intervention, which is modeled by logistic
regression. We then employ polynomial approximation
to construct a predicted curve which evolves with the
latest trend of CR(t). In addition, we regularize the
evolution of the forecast in such a way that it corresponds
to the future intervention plan based on the previously

obtained link knowledge. We test the proposed predictor
on different time windows. The promising results show
the effectiveness of the proposed methods.

Keywords: SIRU model, transmission rate, cumulative
daily reported cases, nonparametric estimation

I. INTRODUCTION

In the recent years, the modelling of epidemiological
phenomena has played a protagonist role in taking deci-
sions and controlling the COVID-19 pandemic around
the world [1]. In particular, mathematical approaches
have made significant contributions, for their abilities
to help understand and predict the underlying pat-
terns of the epidemiological dynamics [2]. We refer
to the review paper [3], which provides a compre-
hensive overview of recently proposed mathematical
models for COVID-19 studies. The paper shows that
one popular way of modelling is by employing the
compartmental models, which are the classical models
initially designed for general infectious diseases. For
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example, the authors of [4, 5] based their studies on
the SEIR (Susceptible, Exposed, Infected, Removed)
model, while the authors of [6, 7] relied on the SIRD
(Susceptible, Infected, Recovered, Dead) model.

On the other hand, researchers of the machine learn-
ing community have also used their expertise in the
modelling of the COVID-19. For instance, the authors
in [8] applied tools from functional data analysis to
model the trajectories of cumulative daily reported
cases across countries, while the authors of [9] adopted
the point-process-based approaches to model the in-
fection/death cases which can be considered as events
arriving at random times. Some other papers consider-
ing machine learning methods that we highlight here
are [10–12]. However, the approaches from the two
research communities were proposed relatively inde-
pendently. Thus, in this paper, we consider machine
learning techniques with a compartmental model to
perform an efficient modelling of COVID-19.

We focus on the recently introduced compartmental
model SIRU [2]. SIRU model [2] has been successfully
implemented to describe the evolution of COVID-19
during the first pandemic waves in several countries,
such as China, South Korea, Italy and France. More
importantly, it introduces the compartment unreported
cases to the modelling, which consider the dynamical
role of unidentified infected cases in the evolution of
the epidemic. At this point, we stress the fact that, from
the beginning of the pandemic, related research works
have been proposed to deal with the unreported cases
and their role in the progression of the epidemic, where
we highlight the papers [13] and [14]. The existence of
unreported cases is caused by, first, the cases who never
manifest symptoms during the infection, and secondly,
the low testing capacity in certain countries or regions.
Regardless its wide existence, it can not be observed.
Thus inferring this quantity is of great interest.

Our work is motivated by noticing that the initial
SIRU model as well as its later variants all use relative
simple representations of the transmission rate, which
are not consistent with the reality, especially when
public intervention changes along time. Thus we start
from this point, and aim to equip the SIRU model with a
way to construct a time varying transmission rate, which
is moreover derived from real data. In the following we
firstly recall the initial SIRU model.

SIRU model describes the dynamic of an epidemic
by a system of ordinary differential equations (ODEs),
which involves four unknown functions representing
four compartments: susceptible individuals, asymp-
tomatic infected individuals who do not yet have symp-

toms, symptomatic reported infected individuals, and
symptomatic unreported infected individuals, denoted
by S, I, R and U , respectively. The proposed dynamic
is illustrated by the diagram flux in Figure 1 (see also
[2]).

The corresponding system of ODEs reads as:
S′(t) = −τS(t)(I(t) + U(t)),
I ′(t) = τS(t)(I(t) + U(t))− vI(t),
R′(t) = v1I(t)− ηR(t),
U ′(t) = v2I(t)− ηU(t),

(1)

where ν = ν1 + ν2, and τ, ν, ν1, ν2, η are all positive.
As usual, the system is supplemented with initial data:

S (t0) = S0 > 0, I (t0) = I0 > 0,

R (t0) = 0 and U (t0) = U0 ≥ 0.
(2)

The meanings of all involved parameters in Model (1)
are summarized in Table 1.

We remark that, in the initial works on the SIRU
model [2, 15], the initial data are derived by assuming
the early stage of the system is exponential, and the
parameters ν, f, η are treated as hyperparameters, which
means that they are pre-assigned but not learnt from
real data. We use the same practice in our work. Thus,
the transmission rate τ will be the key parameter to
control the epidemic propagation after the early stage.
This implies that, a better τ will make the SIRU system
closer to real situations in the sense that the CR(t)
recovered from the SIRU solution is closer to the real
observation. In this case, the other SIRU solutions
S(t), R(t), U(t) will be more reliable estimations of
the unobserved data.

To furthermore adapt the SIRU model to the situation
where the transmission rate is influenced by the public
interventions, the authors of [15] and [16], proposed
to make the transmission rate τ as a function of time,
parametrized by the public intervention. More precisely,
in [16], the authors propose the following structure of
the transmission rate:

τ(t) =

{
τ0, for t ∈ [t0, t1],

0, for t ≥ t1,
(3)

while in [15] the authors consider:

τ(t) =

{
τ0, for t ∈ [t0, t1],

τ0 exp(−µ(t− t1)), for t ≥ t1,
(4)

where τ0 is a scalar parameter which characterises
the constant transmission rate during the time interval
[t0, t1], and µ is a scalar parameter that characterises
the constant intervention intensity. In both cases, even
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Fig. 1: Diagram flux associated with the SIRU model.

Parameters Interpretation
t0 Time at which the epidemic started.
S0 Number of individuals susceptible to the disease at time t0.
I0 Number of infected individuals without symptoms at time t0.
R0 Number of reported infected individuals at time t0.
U0 Number of unreported infected individuals at time t0.
τ Transmission rate of the disease.
1/ν Average time during which the infected asymptomatic individuals remain asymptomatic.
f Fraction of asymptomatic infected individuals that become reported infected individuals.
ν1 = fν Rate at which asymptomatic infected cases become reported symptomatic.
ν2 = (1− f)ν Rate at which asymptomatic infected cases become unreported infected.
1/η Average time during which an infected individual presents symptoms.

Table 1: Parameters of the SIRU model.

with these more detailed model designs for τ(t), the
numerical results still end with one pandemic wave,
as the initial SIRU construction. However, the data
obtained from the official statistics of all countries
show multiple waves. Thus, it is important to find a
more powerful and flexible model construction for the
transmission rate.

On the other hand, in [17], the authors proposed a
more sophisticated form of the transmission rate which
considers r intervention intensity values as in Equation
(5).

τ(t) =



τ0,

for t ∈ [t0, t1],

τ1(t) = τ0 exp(−µ1(t− t1)),

for t ∈ [t1, t2],
...
τr(t) = τr−1(tr) exp(−µr(t− tr)),

for t ∈ [tr, tr+1].

(5)

Even though the large number of parameters is poten-
tially able to capture the complicated dynamic of trans-
mission rate, finding the ideal parameter values which
can correctly reconstruct the real data became another
problem. In fact, the values of ti, i = 0, . . . , r+ 1 need
to be either manually tuned or extensively searched over
grids, both by comparing with the data. Thus we were
to search for a method which can not only bring high
variability to τ but also is easy to estimate. Considering
the tuning difficulty is inevitable for any parametric
forms imposed to τ(t), for data illustrating multiple
waves, we propose to make τ a fully free function of
time and to use the nonparametric estimation in the
SIRU system to infer the shape of the function directly
from the real data. This initiative makes the classical
compartmental model fully benefit the data so as to give
a precise reconstruction of transmission rate dynamic.
The resulting estimation method of the transmission
rate is the primary result of this paper. We then link
transmission rate to the changes of public intervention
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in order to study the influence of the latter. The result
will serve for the forecasting of the cumulative number
of symptomatic reported infected cases CR(t), which
can thus take into account the future intervention plans.
Such forecasting models are of great interest for the
decision makers. In the following, we resume the main
novelties of the proposed methods, and present the
organization of this article.

Contributions of the paper: The main contributions
of this article are twofold:

1) firstly, a nonparametric method is proposed to esti-
mate the transmission rate τ(t) which is consistent
with both the SIRU system and the real data;

2) secondly, a new method is proposed to predict
the cumulative number of reported symptomatic
infected cases CR(t) which takes into account the
varying public intervention and a long prediction
period.

Organization of the paper: In Section II-A, we
propose the nonparametric method to estimate the
transmission rate τ(t) as well as the estimations of
I(t), R(t), S(t) and the unreported daily cases U(t).
In Section II-B, we rely on the logistic regression to
predict from the temporal variable public intervention
Q(t) the dynamic of τ(t). In Section II-C, we consider
the prediction of CR(t). We propose the regularized
polynomial approximation as the predictor. It is defined
as a minimizer of an optimization problem which con-
siders simultaneously the historical data of CR(t), and
the predicted future τ(t) dynamic. Finally, in Section
III, we present the numerical evidence of the proposed
methods.

II. METHODOLOGY

A. Nonparametric estimation of the transmission rate

In this section, we propose a method to infer the
curve of transmission rate τ(t). We require the inferred
values to be reliable, in the sense that they are able to
recover the observed cumulative number of reported in-
fected cases CR(t) with good accuracy, when plugged
back into the SIRU model. Given the observations of
CR(t) at time instants t1, ..., tN , we propose to make
τ(t) an unknown function to be solved, instead of
providing an explicit form as in literature. In return,
we make I(t) a known function in SIRU (1) system by
estimating it outside the system using its dependency
with the observation CR(t):

CR(t) = ν1

∫ t

t0

I(s)ds. (6)

The resolution of this transformed SIRU model gives
the inferred transmission rate function, together with
the reliable reconstructions of S(t), R(t) and U(t).

To get a function, which is highly close to the “true”
I(t) under the SIRU model assumption, we first apply
an admissible nonlinear approximation on the CR(t)

data to obtain the estimated curve ĈR(t). Then the
relationship between I(t) and CR(t) in Equation (6)
implies that the estimators for I(t) and I ′(t) can be
defined as

Î(t) = ĈR
′
(t)/ν1. (7)

Therefore, we can plug the estimated functions Î , Î ′

in the SIRU model, and consider the resulting ODE
system as the system of S(t), R(t), U(t), τ(t), which
reads as

S′(t) = −τ(t)S(t)(Î + U(t)),

R′(t) = v1Î − ηR(t),

U ′(t) = v2Î − ηU(t),

Î ′(t) = τ(t)(Î + U(t))S(t)− vÎ.

(8)

This system is equivalent to:

S′(t) = −Î ′ − vÎ,

R′(t) = v1Î − ηR(t),

U ′(t) = v2Î − ηU(t),

τ(t) =
Î ′ + vÎ

(Î + U(t))S(t)
.

(9)

System (9) is easy to solve given the initial data
S0, R0, U0 and t0. The initial data is obtained in the
same1 manner as [2].

The key point in the above estimation is to choose
an admissible nonlinear method. Common nonlinear
methods that reconstruct a data curve by a function, are
polynomial approximation, spline, and kernel smoother,
see for example [18]. For Model (9), we propose to
use the kernel smoother. On one hand, the polynomial
approximation usually introduces oscillations, which
will furthermore be amplified after taking derivatives.
Thus the final estimated τ(t) will exhibit more local
extreme points which will mislead the interpretation

1It is worth mentioning that, to be consistent with the initial
values, before applying the nonlinear approximation, we amend
to the observations the data points CR(t0), . . . , CR(0) that are
generated by the exponential estimation of early stage of CR(t).
The exponential estimation is the one used in the calculation of initial
values.
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of true dynamic contained in raw data. On the other
hand, the I ′(t) expression given by the SIRU model
(1) implies that I(t) is likely to be a C∞ function.
Thus compared to spline function which is piece-wise
polynomials of low order, the kernel smoother with
Guassian kernel is preferable.

To close this subsection, we comment that the non-
parametric estimation we proposed to τ is transferable.
That means, we can apply the same method over
other hyperparameters as f, v, η. However, since only
I(t) is turned known, in return, to maintain exactly
4 unknowns for 4 equations, each time we can only
make one of τ, f, v, η unknown (time-varying) with the
rest presumed values which are fixed all the time. At
this point, we privilege a functional τ . Because it is by
nature more variable than other hyperparameters like
average infected time, since the others are related to
psychological facts. Thus it is less reasonable to let
vary the others but set the transmission rate fixed all
the way. On the other hand, transmission rate is the
key characteristic of the evolution of epidemic, thus it
is important to investigate it deeply. In the next subsec-
tion, we will use the transmission rate function in the
further studies on the impact of changing government
measures.

B. Logistic regression with the public intervention poli-
cies

In this section, we consider the case of variable pub-
lic intervention measure. We wish to study its impact
on the evolution of epidemic and develop the analysis,
given the transmission rate data, and additionally the
historical intervention data. To this end, we first intro-
duce a new temporal function which is able to represent
the intervention measure. Then we propose a mathemat-
ical model which describes the relationship between the
introduced measure function and the transmission rate.
The resulting model is expected to furthermore help the
prediction of unseen CR(t).

We illustrate our approach in Chile’s context. In
Chile, a significant varying public measure is the
percentage of national population in quarantine. Such
measurement is used in the work of [17] to motivate the
design the epidemic model, and leads to a good fit of
CR(t). We therefore consider the same measurement
as the representative of overall public intervention. In
Figure 2, we show the evolution of national quarantine
percentage. The data is obtained from official infor-
mation about quarantines provided by the ministry of
health of the Chilean government via the webpage [25].

We especially smooth the data points to facilitate the
observation. We can see that generally, the dynamic of
the measurement is complicated. There exists several
accelerations and decelerations of the implementation
of quarantine. On the top of Figure 2 is the inferred
transmission rate τ(t)2 obtained from the preceding
section.

We can observe that, from the aspect of the two
curve shapes, the extreme points of the transmission rate
and the inflection points of the quarantine percentage
coincide approximately in time, for example around
5/10/2020 and 6/29/2020. In order to furthermore
study this potential link of dynamics, we denote the
quarantine percentage at time instant t by Q(t), whose
values are located in [0, 100]. We require Q(t) ∈
C2(R). We also need to assume τ(t) ∈ C1(R), notice
that the inferred τ(t) by the proposed method belongs
to C∞(R). Thus, the observation indicates that, when
the absolute value of Q̈(t) is small, it is very likely that
the absolute value of τ̇ becomes small as well.

Recall that we aim to construct a model in terms
of τ(t) and Q(t), so that the fitted model can be
used to predict the future behaviors of τ given the
public intervention plans. Thus, we propose to adopt
the logistic regression (see for example [18]), to predict
the probability of the occurrence of event τ̇(t) = 0 at
every time instant t. The proposed model is:

P
(
τ̇(t) = 0 | Q̈(t), Q̇(t)

)
= Sig

(
β>
[
1, Q̈(t),

(
Q̈(t)

)2

, Q̇(t),
(
Q̇(t)

)2
])

,

(10)
where Sig(·) is the Sigmoid function. In practice,
we smooth the data points to obtain the approximat-
ing function of Q(t) (the red curve in Figure 2),
so that we can calculate the derivatives. The details
on this smoothing and the further training strategies3

2In the literature there is no mention nor discussion about the unit
of transmission rate. Thus, here we give a reasonable interpretation,
that is, transmission rate represents the probability of an individual
from I (asymptomatic infected) or U (unreported symptomatic in-
fected) infecting an individual from S (susceptible to be infected).
The support of this interpretation is the equation of the SIRU model
S′(t) = −τS(t)(I(t) + U(t)), which describes how much S
individuals should become I individuals. Thus given the population,
the value of transmission rate needs to be very small. Furthermore,
we made the transmission rate time-varying, thus we can furthermore
interpret the transmission rate at time t as the probability at time t
of an individual from I or U infecting an individual from S.

3The event of this logistic regression model is τ̇ = 0, which is a
local extreme point of the transmission rate. However, there are only
a few such points, for example, approximately 6 − 7 local extreme
points in Figure 2 (left panel). Thus, we propose the particular
strategies to compose large enough and balanced training set.
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Fig. 2: Inferred transmission rate (left) from the Chilean
COVID-19 data, percentages of the Chilean population in
quarantine (right). The red curve in the right plot shows the
smoothing curve of the discrete data points.

of Model (10) are given in the appendix. Therefore,
the time instants t̂E with high predicted probabilities
P
(
τ̇(t̂E) = 0 | Q̈(t̂E), Q̇(t̂E)

)
(for example bigger

than 0.9) can be considered as the predicted moments
for the transmission rate to reach local extreme values.

Model (10) assumes that the likelihood of τ(t) to
reach its local extreme values at time t depends on
whether the government is changing the public inter-
vention policies at that moment. To distinguish the im-
pacts of changes between different public intervention
policies, for example:
• from decelerating (accelerating) to accelerating

(decelerating) the reinforcement of intervention,
• from accelerating (decelerating) to decelerating

(accelerating) the relaxation of intervention,

we consider Q̈(t), Q̇(t), and
(
Q̇(t)

)2

as dependent
variables as well in the model. Note that we intention-
ally avoid quantitative models of τ(t), such as ordi-
nary differential equation of τ(t), or regression model.
Indeed, we have tested these ways of modelling.4

However, the testing results imply that the quantitative
dependency of τ and Q can be very complicated. This
brings to inevitable prediction errors. These errors will
moreover be amplified in the retrieved CR(t), when
passing the predicted τ through the SIRU model.

C. Prediction of CR(t)

Recently, many works have considered the forecast-
ing of cumulative reported infected cases, for example
[10,19–21]. However, some of them propose the meth-
ods only valid for the prediction over the first wave. At
this point, we especially refer to the works in [20,22,23]
which adopt the exponential smoothing models [24,
Chapter 7]. The principle of such prediction models
is to extrapolate the CR(t) trend thus to obtain its
forecasting. An big advantage of exponential smooth-
ing methods is that they can be used indifferently
for the forecasting of any time interval. Nevertheless,
since the CR(t) is extrapolated with curves of simple
forms and little parametrization: exponential in [23]
for EST(M,M,N) model, linear in [22] for EST(A,A,N)
model, the length of satisfactory prediction interval is
very limited. Starting from this point, we propose to use
nonlinear function with adequate number of parameters
to first fit the trend, and then extrapolate it with an
additional control. We consider polynomials, because
its analytic facility enables us to relate the predicted
behavior of τ to the prediction of CR(t) through SIRU
model. To avoid Runge’s phenomenon associated to the
polynomial approximation, especially the oscillation at
the end of fitting interval, we sample the Chebyshev
nodes in practice to fit the polynomial. The use of
Chebyshev nodes can reduce the oscillation. Moreover,
we consider the shape control of the polynomial, es-
pecially in the trend extrapolation part. We propose to
fit the polynomial under the constraint given by the
predicted τ(t) dynamic. Namely, we require the optimal
polynomial to have the consistent characteristics so that
its deduced transmission rate reaches the local extreme
values around the previously predicted moments. Mean-
while we would like the optimal polynomial to be as
similar as possible as CR(t) in the fitting interval.
The performance of the resulting predictor polynomial

4We fit the models with 80% of the historical data, and evaluate
the prediction performance with the rest 20%.
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has been significantly improved, where it recovers the
CR(t) values precisely for an ongoing month, as shown
in Section III. We formalize the proposed forecasting
method in the following optimization problem.

CR∗ = arg min
P (·;Θ)∈Pm

1

N

N∑
i=1

(
CR(ti)− P (ti; Θ)

)2

,

subject to:
(
τ ′p(t̂E ; Θ)

)2 ≤ λ0.
(11)

In the above problem, Pm is the family of polynomials
of order m, CR(ti), i = 1, ..., N are the data points of
fitting interval, λ0 is a pre-given positive hyperparame-
ter, τp(t; Θ) is the deduced transmission rate defined by
the SIRU model (9) where ĈR(t) is given as P (t; Θ),
t̂E is the predicted moment when the transmission
rate reaches the first local extreme value after time
instant tN . The constraint on the one hand addresses
the oscillation problem of polynomial approximation,
on the other hand, transfers the future information of
transmission rate to the CR(t) predictor. Note that, we
propose to control the magnitude of τ ′p(t; Θ) at t̂E in-
stead of imposing the equality constraint τ ′p(t̂E ; Θ) = 0,
so as to reduce the impact of prediction error in the
preceding logistic regression.

When λ0 is tunable, Problem (11) is equivalent to
the following formulation:

CR∗ = arg min
P (·;Θ)∈Pm

1

N

N∑
i=1

(
CR(ti)− P (ti; Θ)

)2

+ λ
(
τ ′p(t̂E ; Θ)

)2

,

(12)

where λ > 0 is the hyperparameter. Problem (11) is
a classical composition of optimization problem for
learning models, with a data term and a regulariza-
tion term which aims to address the ill-posedness of
the original problem and/or to endow the additional
characteristics of the optimizer. λ controls the influence
of regularization term. The greater λ is, the smaller
τ ′p(t̂E ; Θ∗) will be.

Recall the comments at the end of Section II-B,
compared to forecasting τ(t) and use its deduced CR(t)
values as future prediction, forecasting CR(t) directly
as in Problem (11) with more accurate τ(t) information
will avoid the error accumulation in the SIRU model,
hence lead to a more satisfactory CR(t) forecasting.

We now provide the explicit formula of τ ′p(t) in
Problem (11). When ĈR(t) is given as the polynomial
P (t; Θ) ∈ Pm, solving directly the SIRU model (9)

gives the corresponding transmission rate:

τ ′p =
Ï + vİ

(I + U)S
− (İ + vI)Ṡ

(I + U)S2
− (İ + vI)(İ + U̇)

(I + U)2S
,

where

I =
1

v1
Ṗ , İ =

1

v1
P̈ ,

S = −I − v

v1
P + cs, Ṡ = −İ − vI,

U =
v2

η

m−1∑
k=0

(−1)k

ηk
I(k) + cu exp(−ηt),

U̇ = −v2

m−1∑
k=1

(−1)k

ηk
I(k) − ηcu exp(−ηt).

(13)

Thus, τ ′p can be essentially expressed in terms of
P (t; Θ). Note that, to determine the constant cs, usually
we only need one function value S(ts). However, we
would like to fully use the training data, and make the
estimated model S as general as possible. Thus, we
employ the least square estimation to evaluate constant
cs as:

ĉs := arg min
c

1

N

N∑
i=1

(
S(ti) + I(ti; Θ)

+
v

v1
P (ti; Θ)− c

)2

,

where S(ti), i = 1, ..., N, are the solutions of System
(9) evaluating at time ti. Thus

ĉs =
1

N

N∑
i=1

(
S(ti) + I(ti; Θ) +

v

v1
P (ti; Θ)

)
(14)

is also a function of Θ. Similarly, the least square
estimation of cu is

ĉu =
1

N

N∑
i=1

(
U(ti) exp(ηti)

− v2

η

m−1∑
k=0

(−1)k

ηk
I(k)(ti; Θ) exp(ηti)

)
.

(15)

Thus, we inject the terms in (14) and (15) into the
Formula (13). In Section III, we will illustrate the
performance of the proposed predictor CR∗ using the
official COVID-19 data from the government of Chile.

III. NUMERICAL EVIDENCE

In this numerical study, we consider the evolution of
the COVID-19 pandemic in Chile for the period from
March 2020 to December 2020, due to the availability
of quarantine percentage information. We obtain the
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Fig. 3: Nonlinear approximation of CR(t) data. The kernel
smoother used here writes as: ĈR(t) =

∑
i zi(t)CR(ti)∑

i zi(t)
, where

zi(t) = exp(− (t−ti)
2

128
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Fig. 4: Estimation of I(t) based on Equation (7) from the
estimation of CR(t) in Figure 3.

CR(t) data from the daily reported new infected cases
as its cumulative sum, and the quarantine percentage
from [25]. We fix f = 0.3, v = 1/7, n = 1/7, and
S0 = 19458310 (total population of Chile) throughout
the experiments. We use the first 20 CR observations
to fit the exponential growing and calculate the initial
data. The initial data supplementing System (9) are:
t0 = −0.6951, I0 = 7.1934, and U0 = 1.5945. We first
show the estimation results from the methods proposed
in Section II-A. The CR(t) data and its approximation
by kernel smoother ĈR(t) is given in Figure 3, with
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Fig. 5: Estimation of R(t) and U(t) based on System (9).
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Fig. 6: Estimation of S(t) based on System (9).

the corresponding Î(t) given in Figure 4.
The estimations of R(t), U(t) and S(t) as the so-

lution of System (9) are given in Figures 5 and 6.
Using these estimations, the inferred transmission rate
has been shown in Figure 2, which has a consistent
interpretation with respect to the quarantine percentage
data.

Next, we show the result of Logistic regression. We
use the inferred τ(t) data and the quarantine percentage
data until 9/02/2020 to train the logistic model (10).
Then the fitted model is used to forecast the probability
of occurrence of τ̇ = 0 from September to December
with the corresponding quarantine percentage data. We
compare the prediction result in Figure 7 with the “true”
τ(t) data, where the blue curve is the predicted proba-
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bility. We can see that for the training data, the model
has successfully predicted its local extreme points such
as the one in the beginning of May 2020, and the one
at the end of June 2020. For the test data, the model
forecasts that around 11/01/2020 and 12/18/2020, there
will likely appear local extreme points of τ(t), while
it predicts in October, it will be almost impossible to
appear extreme points.

We now use these predicted moments t̂E to derive
the predictor of CR(t) as proposed in Equation (12),
and compare their values with the true data values.
To evaluate the performance of predictor, especially to
examine the improvement brought by the information
of future τ which is well predicted from quarantine
percentage, we set the fitting interval t1, ..., tN at least
half a month earlier than the predicted local extreme
point of τ(t), and fit it with a polynomial without shape
control as well as a polynomial with the proposed shape
control by t̂E . For t̂E = 11/01/2020, we set the fitting
interval as t1 = 8/13/2020 to tN = 10/12/2020 in
Equation (12). While for t̂E = 12/08/2020, we test two
fitting intervals, one spanning from t1 = 9/02/2020 to
tN = 11/01/2020, the other from t1 = 9/22/2020
to tN = 11/21/2020. The order for all polynomials
are fixed as m = 4. We try 3 λ values for each fitting
intervals: 1036, 5036, and 1037. The numerical evidence
of our methods are provided in Figure 8 and Figure 9.
In both figures, the blue curves refer to the real CR data
while the red curves refers to the predictions from the
proposed predictor, where their thin part corresponds
to the fitting interval, and their thick part refer to
the forecasting of a month. The green curve is the
forecasting from the polynomial without shape control,
which is fitted on the same interval.

In Figure 8, the plots show the one-month forecasting
of CR from the proposed method incorporating the
information of the forecasted extreme point t̂E =
12/08/2020, with different weights λ. We can see
that in general, by incorporating the τ information, the
forecasted values have been improved in all three λ
cases, especially when λ = 1037, the proposed method
gives the perfect forecasting.

In Figure 9, the plots show the one-month forecasting
of CR from t̂E = 12/08/2020 with the other fitting
and predicting intervals. We can see that in this case,
the best forecasting result is given by λ = 5036. We
would also like to report the result in the bottom
subfigure of Figure 9, where the λ value is set too
large for this fitting interval. In this case, since the
weight of regularization loss is greater, the optimization
problem (12) needs to search the polynomials of smaller
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Fig. 7: The blue curve is the prediction of the probability
of τ̇(t) = 0 based on Q(t) and Q̇(t). The model is fitted
using the data until 9/02/2020. The two red points denote
the predicted future time instants t̂E , with the high predicted
probabilities P

(
τ̇(t̂E) = 0 | Q̈(t̂E), Q̇(t̂E)

)
. They are on

the dates 11/01/2020 and 12/18/2020.

regularization loss τ ′p(t̂E)2. Such polynomials may have
in return relatively larger data term loss. Thus, the
optimal polynomial has a worse fitting performance.

Lastly, Figure 10 shows the forecasting performance
of the CR predictor with t̂E = 11/01/2020. We
can see that, in this case, the regularization terms
have very little influence on the polynomial shapes,
with all the forecasting from the proposed predictor
overlapping the forecasting of the polynomial without
shape control. The possible reason can be that, the
polynomial without shape control has already a good
prediction performance, namely, a low data term loss,
meanwhile the λ values are relatively low for this fitting
interval.

IV. CONCLUSION

In this paper, we firstly proposed a novel way to infer
the transmission rate based on the nonparametric esti-
mation. This proposed method has solved the problem
that, with multiple epidemic waves, it is very difficult
to find an accurate parametric form of transmission rate
which can recover the true CR(t) data. It has also con-
siderably increased the use efficiency of the available
data, instead of only using it in the hyperparameter
tuning. The inferred transmission rate function enables
us to furthermore establish a more sophisticated model
between the epidemic and the government control.
Thus, the extra government control information, which
is the quarantine percentage in our case, can be used to
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Fig. 8: CR predictor with fitting interval t1 = 9/02/2020
to tN = 11/01/2020, m = 4, λ = 1036(left), 5036(right),
1037(bottom), and t̂E = 12/08/2020.
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Fig. 9: CR predictor with fitting interval t1 = 9/22/2020
to tN = 11/21/2020, m = 4, λ = 1036(left), 5036(right),
1037(bottom), and t̂E = 12/08/2020.
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Fig. 10: CR predictor with fitting interval t1 = 8/13/2020
to tN = 10/12/2020, m = 4, λ = 1036(left), 5036(right),
1037(bottom), and t̂E = 11/01/2020.

improve the prediction of CR(t). The numeric results
have shown that the proposed CR(t) predictor has a
promising performance in terms of both accuracy and
the length of efficient prediction interval, which can
reach one month in our experiments.

APPENDIX

In the following we explain how to approximate a
function Q ∈ C2(R) from the data points of quarantine
percentage (see the right plot in Figure 2). To primarily
filter out the intense fluctuations, we first subsample the
data points by a frequency of 25, then we use the kernel
smoother with kernel exp(− (t−t′)2

18 ) on the subsampled
points to generate the smooth approximation of data,
denoted as Q̂, which is the red curve in Figure 2. To
furthermore obtain the functions of Q̇ and Q̈, we fit
Q̂ with the cubic spline, and use the derivatives of the
fitted spine as Q̇ and Q̈. Similarly, we fit the inferred
transmission rate with cubic spline and use its derivative
to obtain function τ̇ .

To train Logistic model (10), we need to provide the
balanced set which consists in the moments t0i whose
τ(t0i ) are extremas as well as the t1j whose τ(t1j ) are
not extremas. We also need the predictor quarantine
percentage function values at these points, namely
Q̇(t0i ), Q̈(t0i ), Q̇(t1j ), and Q̈(t1j ). Given τ̇ , we use the
bisection method to find its roots so as to determine the
moments t0i . The root finding results show there are 4
extreme points before 9/02/2020, which are 4/11/2020,
5/07/2020, 6/30/2020, and 8/30/2020. We also consider
their six nearest neighbouring dates as t0i , to increase
the training samples also to compensate any errors
during the calculation. For the moments t1i , we choose
the dates 3/22/2020, 4/24/2020, 6/03/2020, 7/30/2020,
and their six nearest neighbouring dates.

The Matlab codes implementing the numeric studies
in this work are available on https://github.com/yiyej/
Extended SIRU with dynamic transmission rate.
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