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Abstract: In this work, we investigate the existence of
multistationarity for a triple-site mixed phosphorylation
network, where the phosphorylation part contains dis-
tributive and processive components, while the dephos-
phorylation part is purely distributive. We obtain a simple
inequality which defines a region in parameter space such
that the parametric ordinary differential equations (ODE)
system modeling the mixed network is multistationary,
i.e., it has multiple positive steady states. We obtain a
sufficient condition for uniqueness of the steady state in
the form of parametric inequalities. Lastly, we show that
the emergence of multistationarity is enabled by the cat-
alytic constants regardless of the position of the processive
part in the triple-site mixed mechanism phosphorylation
network.

Keywords: mixed phosphorylation, parametric ODE
system, convex parameters, multistationarity, bistability

I. INTRODUCTION

Phosphorylation is a chemical mechanism in which
a phosphate group is attached to a protein; whereas
dephosphorylation is the detachment of a phosphate
group from a phosphorylated protein. A single-site
phosphorylation consists of one phosphorylation event
and one dephosphorylation event, while multi-site phos-
phorylation is formed by multiple events. Multi-site
phosphorylation balances protein function and plays

prominent part in intracellular processes [1]. Processive
phosphorylation occurs when a kinase binds once to
all substrate sites before disassociating; in distributive
phosphorylation at most one site of the protein is modi-
fied by the kinase at each binding. If a phosphorylation
mechanism contains both processive and distributive
parts it is of mixed nature.

Research on the existence of multistationarity in
biochemical networks has been published extensively.
One of the influential papers related to this research
is “Mixed Mechanism of Multi-Site Phosphorylation”
by Suwanmajo and Krishnan [2]. They start their paper
by presenting purely processive and purely distributive
mechanism in single-site and multi-site phosphoryla-
tion models, which are followed by various mixed
mechanisms in double-site and triple-site phosphoryla-
tion models, encompassing up to three phosphorylation
events. While studying these models in detail requires
significant effort as the number of phosphorylation
sites increases, they use simulation and obtain purely
numerical results related to identifying multistationarity,
stability, and oscillations in multi-site phosphorylation
models.

Conradi and Mincheva published a paper on the
existence of multistationarity in a purely distributive
double-site phosphorylation model [3]. As a result of
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their studies, they obtain regions in parameter space
where either multiple positive steady states exist or a
unique steady state exists. Moreover, a general condi-
tion on multistationarity is obtained for reaction net-
works with bounded concentrations [4].

We analyze an ODE system model of a triple-site
mixed mechanism phosphorylation that consists of a
combination of processive and distributive components
adopted from [2]. Degree theory is essential to deter-
mining the number of positive steady states, which is
always odd and is either single or multiple [5, 6].

First, we determine the parameter region where
multiple positive steady states exist for the triple-site
mixed mechanism phosphorylation ODE system model
(Theorem 1). Based on Theorem 1, we select parameter
values such that the triple-site mixed mechanism model
has three positive steady states.

Then, we show that the ODE system is bistable by
confirming that two of the positive steady states are
asymptotically stable and one is unstable. Lastly, we
show that if the processive part of the network is moved
in the reaction network, multistationarity exists and
depends on specific rate constants.

In Section II, we introduce some preliminaries on
reaction networks, construct their ODE system model
using mass-action kinetics; multistationarity, and con-
vex parameters are introduced. In Section III, we de-
scribe the phosphorylation and dephosphorylation pro-
cesses in a triple-site mixed mechanism phosphoryla-
tion network. In Section IV, the ODE system of the
triple-site mixed mechanism phosphorylation network
is presented. Finally, in Section V, we present the main
results on multistationarity and bistability.

The Appendices contain some theoretical results on
degree theory and a list of matrices and long expres-
sions.

Notation. The following notation is used in this paper:
1) Rn≥0 is the nonnegative orthant of Rn.

2) Rn>0 is the positive orthant of Rn.

3) The matrix diag(x) ∈ Rn×n is a diagonal matrix
with diag(x)[i, i] = xi for i = 1, 2, . . . , n.

4) For x ∈ Rn>0, we introduce the vector notation

1

x
=

(
1

x1
, . . . ,

1

xn

)
.

5) For x, v ∈ Rn we use the notation

xv = (xv11 , . . . , x
vn
n ).

II. PRELIMINARIES

A. Reaction networks and their ODE System

A chemical reaction that consists of m species Ai
and n elementary reactions can be written as

m∑
i=1

αisAi
ks−→

m∑
i=1

βisAi, s = 1, 2, . . . n, (1)

where the coefficients αis ≥ 0 and βis ≥ 0 are small
integers called stoichiometric coefficients and ks > 0
are the rate constants.

The concentrations of Ai at time t ≥ 0 will be
denoted as xi(t). We assume that mass action kinetics
is used for the rate functions, where the reaction rate is
proportional to the product of the concentrations of the
reacting species raised to the power of their respective
molecularities. The reaction rate function rs(k, x) of
the s-th elementary reaction is

rs(k, x) = ks

m∏
i=1

xαis
i . (2)

Suppose that the column vectors ys contain the sto-
ichiometric coefficients αis of the i-th reactant species
Ai in the s-th reaction. These vectors form the (m×n)
kinetic order matrix Y .

We use the columns yi of the kinetic order matrix Y
to define the monomial vector of rate functions ri(k, x)
in the following way:

φ(x) =

x
y1

...
xyn

 . (3)

Thus, the rate functions vector r(k, x) can be written
as the product

r(k, x) = diag(k)φ(x),

where k = (k1, . . . , kn) is the vector of rate constants.
Next, we define the entries of the m×n stoichiomet-

ric matrix Γ as

Γij = βij − αij .

Now, we can introduce the ODE system of reaction
network (1) in vector form

ẋ = Γ r(k, x), (4)

where Γ is the m × n stoichiometric matrix and
r(k, x) = (r1, . . . , rn)T is the vector of reaction rates
with rs defined as in (2).
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If rank(Γ) = s ≤ m, then there exist (m − s)
conservation relations. A full-rank matrix WT where
W is of order m× (m− s) such that WT Γ = 0 exists.

The conservation relations are defined as WTx = c,
where c = WTx(0) ∈ Rm−s>0 and x(0) ≥ 0 is the initial
condition of (4).

The solution of the ODE system (4) is contained in
the set

ωc = {x ∈ Rm≥0 |WTx = c}, (5)

which is convex, closed, and forward invariant by
definition.

B. Multistationarity and stability of steady states

A positive steady state x∗ satisfies the ODE system
(4) and the conservation relations WTx = c. Thus x∗

is contained in the set ωc defined in (5).

Definition 1 (Multistationarity). A chemical reaction
network is called multistationary if there exist at least
two positive steady states x∗ and x∗∗ in ωc for a fixed
c such that Γ r(k, x∗) = Γ r(k, x∗∗) = 0.

Since the rank of the Jacobian matrix J(k, x) of the
right-hand site of (4) is at most s, which is the rank of
Γ, the characteristic polynomial det(zI−J) has (m−s)
identical zero roots, and can be written as

q(z) = zm−s(zs − a1zs−1 + ...+ (−1)sas). (6)

Thus, we will work with the polynomial

p(z) = zs − a1zs−1 + ...+ (−1)sas, (7)

in place of (6), which is the restriction of (6) to the
subspace x+ image(Γ) [3].

A steady state x∗ is linearly stable if all eigenvalues
of the Jacobian J(k, x) evaluated at x∗ have negative
real parts. In our case, this means that the polynomial
p(z) of the Jacobian J(k, x) evaluated at the steady
state x = x∗ has s roots with negative real parts. In fact,
we will study the sign of the last non-zero coefficient
(−1)sas of p(z) in place of (−1)mam, where s ≤ m.
This is one way to simplify the computations for finding
parameter regions. Another method is by reducing the
number of reactions, which will be explained next.

Remark 1. An important theorem proved by Banaji
states that: “If a chemical reaction network contains
irreversible reactions only and its mathematical model
has multiple positive non-degenerate steady states, then
if a reverse reaction [with appropriately chosen rate
constants] is added to the network, the new chemi-
cal reaction network also has multiple positive (non-
degenerate) steady states” [7]. By working with the

corresponding reaction network with irreversible reac-
tions we can reduce the number of parameters and the
computations.

C. Convex parameters

In this section, we introduce the convex parameters
[8]. They will be used to parameterize the Jacobian
matrix of the ODE system (4).

At a nonnegative steady state for the dynamical
system ẋ = Γ r,

Γ r = 0, where r = [r1, r2, ..., rn]T , r ≥ 0.

Since r ≥ 0 satisfies a finite number of inequalities,
their intersection forms a polyhedral cone

C = {r |Γ r = 0, r ≥ 0}.

referred to as a flux cone and r as a flux vector. Any
flux vector can be represented as a non-negative linear
combination of the extreme vectors {E1, . . . , El} of C.

Let E be the matrix with columns E1, . . . El.

Definition 2 (Convex parameters). A vector of convex
parameters is a vector of the form

(j, h) = (j1, j2, ..., jl, h1, h2, ..., hl) ∈ Rl>0 × Rm≥0,

where hi = 1/x∗i , i = 1, 2, ...,m, such that the rate
function vector Ej ∈ Rn>0 [9] at a positive steady state
x∗.

Alternatively, the Jacobian in convex parameters can
be computed as [8, 10–15]

J(k, x∗) = J(j, h) = Γ diag(Ej)Y T diag (h) . (8)

We will work with the Jacobian matrix J(j, h) when
symbolic calculations are involved. For the numerical
calculation on finding positive steady states where we
use Maple, we will need the corresponding rate con-
stants k and total concentrations c values. We explain
next how to obtain the rate constants and total concen-
trations values by the convex parameters values.

Remark 2 (The rate constants k and the total concen-
trations c in terms of the convex parameters (j, h) [8]).
Using (3), the rate constants vector can be written in
terms of the convex parameters (j, h) as

k = diag(Ej)φ(h).

For the total concentrations c, we have

WT 1

h
= c, where

1

h
=

(
1

h1
,

1

h2
, ...,

1

hm

)
.
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A Ap A2p A3p

Dis, K
Pro, K

Dis, PDis, PDis, P

Fig. 1: Triple-site mixed mechanism phosphorylation model.

III. PHOSPHORYLATION NETWORKS

We introduce a biological process called phosphory-
lation, where a protein catalyst enzyme, called kinase,
transforms protein into a phosphorylated protein by
attaching a phosphate group. The reverse process, de-
phosphorylation, occurs when the phosphatase enzyme
detaches a phosphate group from a phosphorylated
protein [1].

A. Phosphorylation mechanisms

Phosphate groups attach to a protein and detach from
a phosphorylated protein in two ways: processive and
distributive. If the attachment of kinase and substrate
occurs once, after all phosphate groups are added, then
this mechanism of phosphorylation is referred to as
processive.

On the other hand, if kinase is attached to a sub-
strate, each time a phosphate group is added, then this
mechanism is distributive. Similarly, a phosphate group
can be detached from a substrate processively or dis-
tributively. If a reaction network contains only proces-
sive phosphorylation and dephosphorylation, then this
network is purely processive. Meanwhile, if a reaction
network contains only distributive phosphorylation and
dephosphorylation, then this network is distributive.

While networks can be purely processive or distribu-
tive, if a reaction network contains a mix of processive
and distributive phosphorylation and dephosphoryla-
tion, then it is referred to as a mixed mechanism
phosphorylation network.

When the binding sites of the phosphorylation and
dephosphorylation mechanism occur in order it is re-
ferred to as sequential. In a sequential mechanism the
last site to be phosphorylated is dephosphorylated first
[16].

B. Triple-site mixed mechanism network

Figure 1 shows the phosphorylation of A, Ap, and
A2p by kinase K, where A represents the protein, Ap
represents a mono-phosphorylated protein, A2p repre-
sents a double-phosphorylated protein, and A3p repre-
sents a triple-phosphorylated protein. Phosphorylation
is followed by dephosphorylation of A3p, A2p, and Ap

by phosphatase P . The abbreviations Dis and Pro
represent distributive and processive, respectively. The
last two parts of the phosphorylation in Figure 1 are
processive, while the first part of the phosphorylation
and all parts of the dephosphorylation are distributive.
Therefore, this triple-site phosphorylation model is of
mixed mechanism nature. By definition, the mixed
mechanism we consider is sequential.

The reaction network that corresponds to the triple-
site mixed mechanism phosphorylation model in Fig-
ure 1 is shown in equation (9). (The bold parts are
processive, while the remaining parts are distributive.)

A + K
k1−⇀↽−
k2

AK
k3−→ Ap + K

k4−⇀↽−
k5

ApK
k6−→ A2pK

k7−→ A3p + K,

A3p + P
k8−⇀↽−
k9

A3pP
k10−−→ A2p + P

k11−−⇀↽−−
k12

A2pP
k13−−→ Ap + P

k14−−⇀↽−−
k15

ApP
k16−−→ A + P.

(9)

IV. ODE SYSTEM OF THE TRIPLE-SITE MIXED
MECHANISM NETWORK

We denote the concentration of species A by [A] as
it is customary in chemistry. The concentrations of the
kinase K, phosphatase P , and all of the substrates are
denoted by x1, x2, ..., x12 as follows:

x1 = [A], x2 = [K], x3 = [AK],

x4 = [Ap], x5 = [ApK], x6 = [A2p],

x7 = [A2pK], x8 = [A3p], x9 = [P ],

x10 = [A3pP ], x11 = [A2pP ], x12 = [ApP ].

(10)

Banaji’s result (see Remark 1) allows us to remove
the reverse reactions from the phosphorylation network
(9) and consider the following simplified phosphory-
lation network where the reactions have been renum-
bered:

A + K
k1−→ AK

k2−→ Ap + K
k3−→

ApK
k4−→ A2pK

k5−→ A3p + K,

A3p + P
k6−→ A3pP

k7−→ A2p + P
k8−→

A2pP
k9−→ Ap + P

k10−−→ ApP
k11−−→ A + P.

(11)

Thus, we obtain the rate functions of (11), where the
law of mass action kinetics is implemented as follows:

r1 = k1x1x2, r2 = k2x3, r3 = k3x2x4,

r4 = k4x5, r5 = k5x7, r6 = k6x8x9,

r7 = k7x10, r8 = k8x6x9, r9 = k9x11,

r10 = k10x4x9, r11 = k11x12.

(12)
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The irreversible reaction network (11) is transformed
to the following ODE system:

ẋ1 = −k1x1x2 + k11x12,

ẋ2 = −x2(k1x1 + k3x4) + k2x3 + k5x7,

ẋ3 = −k2x3 + k1x1x2,

ẋ4 = −x4(k3x2 + k10x9) + k2x3 + k9x11,

ẋ5 = −k4x5 + k3x2x4,

ẋ6 = −k8x6x9 + k7x10,

ẋ7 = −k5x7 + k4x5, (13)
ẋ8 = −k6x8x9 + k5x7,

ẋ9 = −x9(k6x8 + k8x6 + k10x4) + k7x10

+ k11x12 + k9x11,

ẋ10 = −k7x10 + k6x8x9,

ẋ11 = −k9x11 + k8x6x9,

ẋ12 = −k11x12 + k10x4x9.

The system (13) can be written in a vector form as

ẋ = Γ r(k, x), (14)

where the stoichiometric matrix is given in (25) in
Appendix VII-E and r(k, x) = (r1, . . . , r11)T is the
vector of rate functions in equation (12).

The system (13) has the following three mass con-
servation relations:

x9(t) + x10(t) + x11(t) + x12(t) = c1,

x2(t) + x3(t) + x5(t) + x7(t) = c2,

x1(t) + x3(t) + x4(t) + x5(t) + x6(t) + x7(t)

+x8(t) + x10(t) + x11(t) + x12(t) = c3,

which can be written in a matrix form as WTx(t) = c,
where

WT =

0 0 0 0 0 0 0 0 1 1 1 1
0 1 1 0 1 0 1 0 0 0 0 0
1 0 1 1 1 1 1 1 0 1 1 1


and c = (c1, c2, c3)T > 0 with c = WTx(0).

The solutions of (13) are contained in the set

ωc = {x ∈ R12
≥0 |WTx = c}. (15)

It is easy to show that ωc is compact, forward invariant,
and convex. Moreover, the boundary, ∂ωc, does not
contain any steady states of the dynamical system (13).
We can also conclude that the solution x(t) of the
ODE system (13) is bounded for all t ≥ 0 since ωc
is compact.

V. MAIN RESULTS

Our main result is Theorem 1 which will be applied
to the coefficient (−1)9a9(j, h) of (7) for s = 9 to
determine whether the ODE system (13) is multista-
tionary, and then identify the parameter region where
multiple steady states exist [3, 9].

First, we compute the characteristic polynomial of
the Jacobian matrix J(j, h) by using Maple [17], and
identify the coefficient (−1)9a9(j, h). Since j31 and j62
can be factored out, their product does not affect the
sign of (−1)9a9(j, h).

To simplify the analysis, we let h2 = h9 = s and

h̄ = (h1, h3, . . . , h8, h10, h11, h12).

We obtain a quadratic polynomial in s where

(−1)9a9(s) = g(s) = α(h̄)s2 + β(h̄)s+ γ(h̄).

The coefficients of g(s) are given in Appendix VII-C,
and there are several options for their signs as follows:

1) α > 0, β > 0, and γ > 0.
2) α < 0, β > 0, and γ > 0.
3) α < 0, β < 0, and γ > 0.
4) α > 0, β < 0, and γ > 0 (For the purposes of this

study, we will not be focusing on this case).

Remark 3. Suppose that case (1) above is satisfied,
then g(s) > 0 for all s > 0 and some h̄ > 0. On the
other hand, if case (2) or case (3) is satisfied, then there
exist s > 0 and h̄ > 0 such that g(s) < 0.

The first three cases are crucial for determining
whether the dynamical system (13) has a unique pos-
itive steady state or multiple positive steady states.
Suppose that case (1) is satisfied for some parameter
values of h; then, we will show in Theorem 2 that the
ODE system (13) has a unique steady state. On the other
hand, if cases (2) or (3) are satisfied, then we will show
in Theorem 1 that the ODE system (13) has multiple
positive steady states for some values of h. If (4) is
satisfied, multistationarity is still possible if g(h, s) < 0.
However, the proof will be more challenging.

Next, we introduce the following proposition to help
us prove Theorems 1 and 2.

Proposition 1. Consider the coefficients α, β, and γ in
(23). Then,

1) γ > 0, for all h > 0.
2) The sign of the coefficient α in (23) is determined

by

signα = sign
(
h3h10h11(h5 + h7)

−h5h7h12(h10 + h11)
)
.
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3) Suppose that h̄ > 0 satisfies

h3h10h11(h5 + h7)− h5h7h12(h10 + h11) > 0,

h5h8h12 − h1(h12 − 2h3)(h6 + h8) > 0,

h1h3 − (2h1 + h3)h8 > 0.
(16)

Then, the coefficients α, β, and γ are all positive
and g(s) > 0 for all s > 0.

4) Suppose that h̄ > 0 satisfies

h3h10h11(h5 + h7)− h5h7h12(h10 + h11) < 0.

Then, for a fixed value of h̄, we have fixed values
for α = ᾱ,β = β̄, and γ = γ̄. We obtain a
quadratic polynomial ḡ(s) = −ᾱs2 + β̄s+ γ̄. The
signs of the leading coefficient ᾱ and the free co-
efficient γ̄ are negative and positive, respectively,
while the sign of β̄ is either positive or negative.
Moreover, ḡ(0) = γ̄ > 0, and when s → ∞,
ḡ(s)→ −∞.

5) Suppose that

h3h10h11(h5 + h7)− h5h7h12(h10 + h11) < 0

is satisfied. Then, by part 4 there exists s > 0 such
that g(s) < 0.

6) Following part 3, if the inequalities in (16) are
satisfied, then for all s > 0, we have g(s) > 0.

A. Multistationarity in the triple-site mixed mechanism
network

The next theorem presents the condition under which
the ODE system (13) exhibits multiple positive steady
states in some ωc defined in (15) for some values of c.

Theorem 1 (Existence of multiple positive steady
states). Suppose that the inequality

h3h10h11(h5 + h7)− h5h7h12(h10 + h11) < 0 (17)

is satisfied. Then, for some values of the total concen-
trations c where WTx = c, the ODE system (13) has
multiple positive steady states contained in the set ωc
as defined in (15).

Proof: Suppose that the convex parameters

h̄ = (h1, h3, h4, h5, h6, h7, h8, h10, h11, h12)T > 0

are fixed and satisfy the inequality in (17) while h2 =
h9 = s are kept as variables. It follows by Proposition 1
part (5) that (−1)9a9(s) = g(s) < 0 for some value of
s > 0. We fix any such steady state x∗ = 1

h and let
c̃ = WTx∗.

Thus, we fix c̃ = WTx∗ such that ωc̃ will contain
the multiple positive steady states of the ODE system

(13). Based on the degree theory introduced in Ap-
pendix VII-A, in particular equation (21), Corollary 3,
and Corollary 2, for every steady state x∗ = 1

h such that
(−1)9a9(x∗) < 0, two other positive steady states, x∗∗

and x∗∗∗ in ωc̃ must exist such that (−1)9a9(x∗∗) > 0
and (−1)9a9(x∗∗∗) > 0, respectively.

In summary, x∗, x∗∗, and x∗∗∗ satisfy Γ r(k∗, x) = 0
and WTx = c̃. Therefore, multistationarity exists for
the ODE (13) if the inequality in (17) is satisfied for
some values of c.

Remark 4. By Theorem 1, every x∗ = 1
h such that

(−1)9a9(h) < 0 defines c̃ = WTx∗ ∈ R3
>0, such that

the set ωc̃ contains multiple positive steady states of the
ODE system (13).

The next corollary follows by Lemma 1 in Ap-
pendix VII-B. The condition for multistationarity is
given in terms of the rate constants k. This condition
is useful when trying to solve the ODE system (13)
together with WTx = c numerically for given values
of k and c.

Corollary 1. Suppose that k ∈ R11
>0 satisfy

k2

(
1

k5
+

1

k4

)
−
(

1

k9
+

1

k7

)
k11 < 0. (18)

Then, for some values of the total concentration c, the
ODE system (13) has multiple positive steady states
contained in the set ωc as defined in (15).

Remark 5. We note that the number of positive steady
states, x, that satisfy Γ r(k∗, x) = 0 and WTx = c̃
when the inequality in (18) is satisfied, is at least three
and always an odd number by Corollary 3. For some
values of the rate constants k, we have obtained three
such positive steady states (see Section V-B). For some
other values of k that satisfy the inequality in (18), there
could be 5, 7, or more steady states but always an odd
number that is greater than 1.

B. Bistability in the triple-site mixed network

Recall that a reaction network is multistationary if
its ODE system has at least two positive steady states.
In the case of the triple-site mixed network, the steady
states have to belong to the same ωc for some fixed
c > 0. We say that a multistationary system is bistable
if its ODE system has three positive steady states where
two are linearly stable and one is unstable.

Krishnan and his colleagues used bifurcation tech-
niques to study the multistationarity, and consequently
bistability of steady states in several models of mixed
mechanism phosphorylation networks [2].
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They found that for some values of the rate constants,
multistationarity only exists in either purely distributive
or mixed mechanism models where a distributive part is
in both phosphorylation and dephosphorylation. Hence,
for the case of the triple-site mixed phosphorylation
network (11), bistability cannot be ruled out.

Next, we find parameter values such that the ODE
system (13) is multistationary and moreover, bistable.
We will select values for h such that the inequality
(17) is satisfied which guarantees multistationarity by
Theorem 1. The values of j1 > 0 and j2 > 0 are not
restricted in any way and we will set them to j1 = 200
and j2 = 400.

We compute the rate constants values for k and total
concentrations’ values for c by Remark 2 such that the
ODE system (13) has multiple positive steady states in
the set ωc̃ where WTx∗ = c̃ and x∗ = 1

h . With the help
of Maple, we will solve the ODE system (13) with the
selected k’s where the first second and ninth equations
have been replaced by the three equations of WTx∗ = c̃
and obtain three positive steady states.

The following example shows how we can use Maple
to find multistationarity and bistability for the ODE
system (13).

1) Select values for h3 = 1
400 , h5 = 1

200 , h7 = 3
400 ,

h10 = 1
100 , h11 = 1

80 , h12 = 3
100 , so that the

inequality (17) is satisfied.
2) Select values for h1 = h4 = h6 = h8 = 1 and let

h2 = h9 = s.
3) Substitute the values of h in (−1)9a9 = g(s). The

result is

g(s) = −8.5625s2−4.24796875s+0.033421875.

4) Solve g(s) < 0 for s > 0. The solution after
rounding is (−∞,−0.504) ∪ (0.008,∞).

5) Pick s = 0.01.
6) The total concentrations for the set ωc̃ which con-

tains multiple steady states are c̃1 = 313.3̄, c̃2 =
833.3̄, and c̃3 = 950.6̄.

7) The corresponding rate constants values are k1 =
2, k2 = 0.5, k3 = 4, k4 = 2, k5 = 3, k6 = 4,
k7 = 4, k8 = 4, k9 = 5, k10 = 2, and k11 = 6.

8) The three positive steady states are
(i) (46.02, 4.43, 816.25, 0.86, 7.59, 0.02, 5.1, 0.02,

238.48, 3.8, 3.03, 68.02).
(ii) (0.02, 250.53, 15.52, 0.68, 340.36, 29.77, 226.9,

29.8, 5.7, 170.2, 136.1, 1.3).
(iii) (1, 99.9̄, 400, 1, 199.9̄, 0.9̄, 133.3̄, 0.9̄, 100, 99.9̄,

79.9̄, 33.3̄).

The last steady state is the one that we selected as x∗ =
1
h to fix the total concentrations values, WTx∗ = c̃.

To show the stability of the first two steady states and
its relationship to bistability we work with the Hurwitz
command in Maple.

For the first two steady states the Hurwitz command
returns the value of true. By the necessary condition
for stability, we have that the third steady states is
unstable since (−1)9a9(h) < 0, [18]. As a result, the
ODE system (13) of the triple-site mixed mechanism
phosphorylation model in Figure 1 admits three positive
steady states where two are stable and one is unstable
for the given values of the rate constants k in 7)
and the total concentrations c̃ in 6) showing that the
ODE system (13) is bistable for this particular set of
parameter values.

C. Uniqueness of the steady state in the triple-site
mixed network

In this section, we state the conditions for the unique-
ness of a steady state of the dynamical system 14.

Theorem 2 (Uniqueness of the steady state). Consider
the ODE system (13), and suppose that the steady states
reciprocals h ∈ R12

>0 satisfy the inequalities

h3h10h11(h5 + h7)− h5h7h12(h10 + h11) > 0,

h5h8h12 − h1(h12 − 2h3)(h6 + h8) > 0,

h1h3 − (2h1 + h3)h8 > 0.

(19)

Then, for any value of the total concentrations of c ∈
R3
>0, the ODE system (13) has a unique positive steady

state x∗ such that x∗2 = x∗9 in ωc.

Proof: Suppose that h satisfy the inequalities in
(19). Then, it follows from part (6) of Proposition 1 that
for all s > 0, (−1)9a9(s) > 0. If this is the case, then
by Corollary 2 and equation (21) for all x∗ = 1

h , where
ZTx∗ = ZTx0 > 0, there is a unique steady state. For
each such fixed x∗ we have c∗ = WTx∗ > 0 such that
x∗ ∈ ω∗c and Γ r(k∗, x∗) = 0. The latter means, that
every set, ωc∗ where c∗ = WTx∗ > 0, contains only
the steady state x∗ > 0.

Remark 6.
(a) If we select h-values such that (19) is satisfied

and any values for j1 > 0, j2 > 0, then by Remark 2,
we can find the corresponding rate constant values k
such that the ODE system (13) has a unique steady
state x∗ in ωc where c = WT 1

h .
(b) Other conditions for uniqueness of a steady state
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for any c > 0 in terms of the rate constants k > 0 are

k2

(
1

k5
+

1

k4

)
−
(

1

k9
+

1

k7

)
k11 > 0,(

(k1k5 − 2k2k6)k4 − 2k6k2k5
)
k9 + k2k4k5k6 > 0.

These conditions can be obtained by using the coeffi-
cient (−1)9a9(k, x) of the characteristic polynomial for
the Jacobian J(k, x) parameterized in k and x > 0.

The presence of a distributive part in both the phos-
phorylation and dephosphorylation part is essential for
the existence of multistationarity in the triple-site mixed
phosphorylation network. We have tested the triple-
site mixed phosphorylation network where the phos-
phorylation is processive and the dephosphorylation
is distributive (computations not included). Since the
corresponding last non-zero coefficient (−1)9a9(s) is
positive for all values of s, the existence of multiple
positive steady states is excluded.

In [2,19] a double-site mixed network is studied and
it is shown that its ODE system also has a unique
positive steady state for any c > 0. In [20] it is shown
for the n-site processive network, that there is a unique
steady state which is globally asymptotically stable.

In the next section, we answer the question if mul-
tistationarity still exists and if the inequality in (17)
that guarantees it, is the same provided the position
of the processive part changes in the triple-site mixed
phosphorylation network in (9).

D. Symmetry in triple-site mixed mechanism networks

In this section, we attempt to answer the question -
if multistationarity will persist when the processive part
in (9) is moved to the front of the phosphorylation; also
if the processive part is moved to the dephosphorylation
part, and is positioned first at the front and then at
the end of the reaction network. Our initial guess, that
multistationarity persists for suitably chosen values of
the reciprocal steady states h > 0 (and correspondingly
k) and for some values c is confirmed.

We label the reaction network in (11) asN1. Next, we
list the other triple-site mixed reaction networks where
the processive part is in bold:

N2 : A + K
k1−→ AK

k2−→ ApK
k3−→

A2p + K
k4−→ A2pK

k5−→ A3p + K,

A3p + P
k6−→ A3pP

k7−→ A2p + P
k8−→

A2pP
k9−→ Ap + P

k10−−→ ApP
k11−−→ A + P,

N3 : A + K
k1−→ AK

k2−→ Ap + K
k3−→

ApK
k4−→ A2p + K

k5−→ A2pK
k6−→ A3p + K,

A3p + P
k7−→ A3pP

k8−→ A2p + P
k9−→

A2pP
k10−−→ ApP

k11−−→ A + P,

N4 : A + K
k1−→ AK

k2−→ Ap + K
k3−→

ApK
k4−→ A2p + K

k5−→ A2pK
k6−→ A3p + K,

A3p + P
k7−→ A3pP

k8−→ A2pP
k9−→

Ap + P
k10−−→ ApP

k11−−→ A + P.

Remark 7. We kept the same notation for the con-
centrations as in equation (10) and obtained the same
inequality (17) as a condition for multistationarity for
networks N1 and N4 for some values of c. On the other
hand, for networks N2 and N3, the inequality which
guarantees multistationarity for some values of c is

h3h5h10(h11 + h12)− h7h11h12(h3 + h5) < 0. (20)

Remark 8. If we state the corresponding inequalities
to (17) and (20) in terms of the rate constants, then
it becomes clear that the catalytic constants ensure
the emergence of multistationarity in such triple mixed
mechanism networks. Below we give the corresponding
inequalities for networks Ni, i = 2, 3, 4; for network
N1, the inequality is (18):

N2 : k7

(
1

k9
+

1

k11

)
−
(

1

k2
+

1

k3

)
k5 < 0,

N3 : k8

(
1

k10
+

1

k11

)
−
(

1

k2
+

1

k4

)
k6 < 0,

N4 : k2

(
1

k6
+

1

k4

)
−
(

1

k9
+

1

k8

)
k11 < 0.

VI. CONCLUSION

We have presented a sufficient condition for multi-
stationarity (Theorem 1 and Corollary 1) in the triple-
site mixed mechanism phosphorylation network ODE
system (13). For a set of parameter values, we show
that the ODE model (13) is bistable (Section V-B). In
Theorem 2, we have presented a sufficient condition for
a unique steady state of the ODE system (13) for all
values of the total concentrations c. In Section V-D, we
show that if the position of the processive part changes
in the triple-site mixed mechanism phosphorylation
network (11), then the inequality which guarantees
the existence of multistationarity always involves the
catalytic constants.
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An intriguing question for future study is whether
the ODE system of the triple-site mixed mechanism
phosphorylation network (11) exhibits bistability across
all parameter values that satisfy the multistationarity
condition (17).
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VII. APPENDICES

A. Degree theory

Assume that the columns of a full-rank matrix S
form an orthonormal basis of Im(Γ). Then, it suffices
to study the matrix STJS in place of J [3]. In
Lemma 4.1 of [3], it is shown that det(STJ(k, x)S) =
(−1)m−3am−3(k, x). ( The number 3 could be replaced
by the number of conservation relations.) Similarly,
the set ωc can be projected onto a lower-dimensional
space by considering an orthonormal matrix Z whose
columns are an orthonormal basis for Im(Γ)⊥. The set
Ωp corresponding to ωc in Rm−3 is defined as

Ωp =
{
y ∈ R9

≥0 |S y + Z p ≥ 0
}
.

We have to introduce the corresponding dynamical
system:

ST ẋ = ST Γ r(k, x(y, z)), ST ẋ = g(k, y),

or

ẏ = g(k, y), y = ST x, g(k, y) = STΓ r(k, x).

Moreover, for t = 0, we have

y(0) = y0 = STx0,

p(0) = p0 = ZTx0.

The set Ωp is compact, convex, forward invariant,
and does not contain any boundary steady states.

Therefore, the degree of the function g(k, y) on the
set Ωp is defined as:

deg(g,Ωp, 0) =
∑

{h∈Rm
>0|ZT 1

h=Z
T x0}

sign((−1)m−3am−3(j, h)). (21)

Remark 9.
1) Note that g(k, y) is parameterized with respect to

k, while the degree is defined in terms of h and
j. If (j, h) are given, we can compute k and c by
Remark 2.

2) We will work with (−1)9a9(j, h) to obtain param-
eter values and parameter region for h, and thus
for k and c such that ẏ = g(k, y) has multiple
steady states in Ωp. However, this means that
ẋ = Γ r(k, x) has the same number of steady states
in ωc, since x = Sy.

The next corollary follows directly from Theorem 5.2
from [3].

Corollary 2. The function g(k, y), where y ∈ Ωp, has
deg(g,Ωp, 0) = 1.
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The following corollary shows that at least one steady
state always exists and the number of steady states is
always an odd number. For the proof of this corollary,
see Corollary 5.3 in the supplementary file of [3].

Corollary 3. Suppose that the set D is bounded, open,
convex, and forward invariant such that ∂D does not
contain any steady states of ẋ = F(x), where F is
a smooth function on D̄. If the steady states in D
are regular, then the number of steady states in D is
odd. Furthermore, if (−1)m−3am−3 alternates its sign
between positive and negative (when it is evaluated at
different steady states), then D contains more than one
regular steady state.

B. Inequality (17) in terms of the rate constants k

Lemma 1. Suppose that the convex parameters h
satisfy the following inequality

h3(h5 + h7)h10h11 − h5h7(h10 + h11)h12 > 0. (22)

Then, the rate constants k satisfy

k2

(
1

k5
+

1

k4

)
−
(

1

k9
+

1

k7

)
k11 > 0.

Proof: Suppose that hi satisfy (22). Then, we need
to show that we can write this inequality in terms of
the reaction rate constants k.

Consider the reaction rate function r2 = k2x3 in
equation (12). Solving for k2 gives us

k2 =
r2
x3
.

We substitute the convex parameters r2 = j1 from
equation (24) and h3 = 1

x∗
3

into k2 = r2
x3

to obtain

k2 =
r2
x3

= j1h3, h3 =
k2
j1
.

In a similar manner, we calculate

h5 =
k4
j2
, h7 =

k5
j2
, h10 =

k7
j2
,

h11 =
k9
j2
, h12 =

k11
j1
.

We substitute the value of h into equation (22) and we
obtain
k2
j1

(
k4
j2

+
k5
j2

)
k7
j2

k13
j2
− k4
j2

k5
j2

(
k7
j2

+
k9
j2

)
k11
j1

> 0.

Finally, we multiply both sides of the inequality by j1j32
and divide by k4k5k7k9 to obtain

k2

(
1

k5
+

1

k4

)
− k11

(
1

k9
+

1

k7

)
> 0.

C. Coefficients of g(s)

α = −((−h3(h5 + h7)h11 + h12h5h7)h10

+ h12h5h7h11)(((h6 + h8)h4 + h6h8)h1 + h4h6h8),

β = (((((h12h8h5 − h1(h12 − 2h3)(h6 + h8))h11

+ h12(((−2h1 − h3)h8 + h1h3)h6 + h1h3h8))h10

+ h12(((−2h1 − h3)h8 + h1h3)h6 + h1h3h8)h11)h7

+ 2h3h6h8h10h11(h1 + h12))h5

+ 2h3h6h7h8h10h11(h1 + h12))h4

+ h1((h12 + h7)h5 + h12h7)h6h10h3h11h8,

γ = ((((((((h7 + h8)h6 + h7h8)h5 + h6h7h8)h4

+ h5h6h7h8)h3 + h4h5h6h7h8)h1

+ h3h4h5h6h7h8)h12

+ h1h3h4h5h6h7h8)h11 + h1h12h3h4h5h6h7h8)h10

+ h1h11h12h3h4h5h6h7h8.
(23)

D. Jacobian matrix

Solving Γr = 0 for the system (13); we obtain

j1 = r1 = r2 = r10 = r11,

j2 = r3 = r4 = r5 = r6 = r7 = r8 = r9,
(24)

where j1, j2 ≥ 0. Consequently, we can write r as

r =

2∑
i=1

jiEi, ji ≥ 0,

E1 = [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1]T ,

E2 = [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]T ,

are the extreme vectors of the flux cone [8].
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The Jacobian matrix of the ODE system (13) in terms of k and x is:

− r1
x1

− r1
x2

0 0 0 0 0 0 0 0 0 r11
x12

− r1
x1
− r1+r3x2

r2
x3

− r3
x4

0 0 r5
x7

0 0 0 0 0
r1
x1

r1
x2

− r2
x3

0 0 0 0 0 0 0 0 0

0 − r3
x2

r2
x3

− r3+r10x4
0 0 0 0 − r10x9

0 r9
x11

0

0 r3
x2

0 r3
x4

− r4
x5

0 0 0 0 0 0 0

0 0 0 0 0 − r8
x6

0 0 − r8
x9

r7
x10

0 0

0 0 0 0 r4
x5

0 − r5
x7

0 0 0 0 0

0 0 0 0 0 0 r5
x7

− r6
x8

− r6
x9

0 0 0

0 0 0 − r10x4
0 − r8

x6
0 − r6

x8
− r6+r8+r10x9

r7
x10

r9
x11

r11
x12

0 0 0 0 0 0 0 r6
x8

r6
x9

− r7
x10

0 0

0 0 0 0 0 r8
x6

0 0 r8
x9

0 − r9
x11

0

0 0 0 r10
x4

0 0 0 0 r10
x9

0 0 − r11
x12



.

The Jacobian matrix of the ODE system (13) in convex parameters is:

−j1h1 −j1h2 0 0 0 0 0 0 0 0 0 j1h12
−j1h1−(j1 + j2)h2 j1h3 −j2h4 0 0 j2h7 0 0 0 0 0
j1h1 j1h2 −j1h3 0 0 0 0 0 0 0 0 0

0 −j2h2 j1h3 −(j1 + j2)h4 0 0 0 0 −j1h9 0 j2h11 0
0 j2h2 0 j2h4 −j2h5 0 0 0 0 0 0 0
0 0 0 0 0 −j2h6 0 0 −j2h9 j2h10 0 0
0 0 0 0 j2h5 0 −j2h7 0 0 0 0 0
0 0 0 0 0 0 j2h7 −j2h8 −j2h9 0 0 0
0 0 0 −j1h4 0 −j2h6 0 −j2h8−(2j2 + j1)h9 j2h10 j2h11 j1h12
0 0 0 0 0 0 0 j2h8 j2h9 −j2h10 0 0
0 0 0 0 0 j2h6 0 0 j2h9 0 −j2h11 0
0 0 0 j1h4 0 0 0 0 j1h9 0 0 −j1h12


E. Stoichiometric and kinetic matrices

The stoichiometric matrix Γ and the kinetic matrix Y for the triple-site mixed mechanism phosphorylation
network are:

Γ =



−1 0 0 0 0 0 0 0 0 0 1
−1 1 −1 0 1 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 1 −1 0
0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 −1 0 1 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 −1 1 −1 1 1 1
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 1 −1



, Y =



1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1



.

(25)
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