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Abstract: S-shaped curves are ubiquitous in biology
especially when it comes to growth of a population or
even an individual. Growth models such as the classical
Verhulst-Pearl logistic growth equation and its extensions
effectively model such S-shaped growth curves. Most of
these models are parametrized by three or more param-
eters. In this work, continued fraction of straight lines
has been applied to model S-shaped curves of biological
growth through the use of only two parameters a and
m. Here, m is the maximum growth rate and a is the
parameter restricting the growth rate. The parameters «
and m help to better interpret the data when compared
to the logistic growth model since m represents factors
promoting growth while a represents restricting factors
of growth. This model is effective for modeling both
population as well as individual growth, especially around
the phase of rapid growth.
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I. INTRODUCTION

Biological growth can be studied in mainly two ways.
One is physical growth of an organism or a population.
The second way is the growth of a population i.e.
increase in the number of individuals. In both cases, the
growth follows a similar pattern [1]. This pattern when
represented on an xy-plane gives an S-shaped curve
also called as a sigmoidal or a logistic curve [2,3]. This
S-shaped graphical representation of biological growth
can be interpreted in the following way. The initial
phase of growth is gradual followed by a rapid increase

known as the logistic phase. This rapid increase in
growth continues until it reaches a maximum after
which it again slows down until there is no observable
change in growth any more [1]. Several models have
been given to represent this growth pattern [3-6]. In
general, S-curves are modeled with logistic sigmoid
function [3—6] and the Verhulst-Pearl logistic growth
equation is known to be the most successful one in
representing restricted population growth. Further mod-
els are mostly extensions of this classical equation [7].
In all these models, the exponential term is ubiquitous
and parametrization is achieved with three or more
parameters [8].

In this paper we present a growth model based on
continued fraction of straight lines parametrized with
two parameters a and m. This model has been used
to represent firstly, the population growth of yeast cells
and Drosophila individuals grown as laboratory cultures
[1]. The second attempt involves modeling growth of
attributes such as height or weight of a population
specifically of the sunflower (Helianthus) plant [9] and
the male white rat [10]. We also model individual
growth of a human male up to 18 years of age [11,12].

In the following section, we elaborate more about
this growth model. In Sections III, IV and V, we model
growth of population size, population attributes and that
of an individual, respectively. We discuss our findings
in Section VI and conclude our work in Section VIII.
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II. CONTINUED FRACTION OF STRAIGHT LINES

Consider the parametric straight line equation y =
ma with the parameter m as the slope on xy—plane.
This equation is modified as

mx

I 1
1+ ay?’ M

Y
where ay? bounds the values of y when a > 0.

This modification with @ > 0, behaves like a straight
line as y — 0 but as y values increase with x, the
line modifies in to an S-shaped curve. The real-valued
solution of Eqn. (1) for @ > 0 is given by

N 1.
i~ 2
a

o 2Tmz n 27ma\° n 27
N 2a 2a as’
S-shaped curves obtained from the above equation are
shown in Fig. 1. Eqn. (1) can be re-written as [13]

y= ; 3)

m2z2
(1+a(s22)%)"
which is a continued fraction of y = mx. The above
continued fraction converges to the solution of y, which
is the right hand side of Eqn. (2). From Eqn. (3), it
is known that ay? in Eqn. (1) is an infinite series of
bounded nonlinear functions of = [13].

Thus, to model growth, we have presented a paramet-
ric equation which behaves like a straight line around
the origin and takes an S-shape as you move away from
the origin.

1+a

A. As a growth model
Differentiating Eqn. (1) we have

Y (4)
r 14 3ay

The maximum rate of change occurs at the origin i.e.,
dy/dx = m when y = 0 and it reduces as we deviate
from the origin. As a growth model, we consider the
maximum rate of growth as the center or origin. Hence,
Eqn. (1) can be written as

o mto
~ 1+aNg’

where Ng = N — N, and tyg =t — t,,,. Here, N,, is
the population size at time ¢,,, of maximum growth rate

No )

m, with N as the actual population size at time ¢. So
the above equation can be re-written as

o om(t—ty)
1+ a(N - N,,)?

And for growth rate we have

aN____om
dt  1+3a(N—N,,)?

From the above, it can be seen that m represents the
maximum growth rate at N = N,,, while a acts as
a restricting parameter that limits this linear growth.
Thus, m is the growth promoting parameter because it
represents the state when restrictions on growth become
zero, i.e., a(N — N,,)? = 0 when N = N,,,. This leads
to a being the restricting parameter of this maximum
growth. Henceforth, we refer to Eqn. (6) as the a — m
model.

+ Ny, (6)

)

B. Comparison with the logistic model

According to the Verhulst-Pearl logistic growth

model [2]
dN N
K (3)

K — Ninitial —rt
1 + ( Ninitial ) €

Here, K is the carrying capacity, r is the intrinsic
growth rate and Ny, is the population size at initial
time, t = 0. In this work, since we consider the
growth of both the population size and attributes, we
parameterize Eqn. (8) as

=N =

p

S Trget )

where p, g and r are the parameters [8, 14].

C. Fitting procedure

Both the models are fit using Imfit python package
[15]. Initially, we define the models as separate func-
tions as shown below.

1) Define logistic model as logistic (x,p,q,r)
that returns v = p/ (1+g*exp (—r*x)).

2) Define a — m model as am-model (x,a,m)
that returns vy = t~ (-1/3)/a — t~(1/3)/3,
where t=sqrt (729* (x+m/2/a) "2+27/a"3)

—27xx*m/2/a.
3) Create models using Model class of
Imfit package. Model (logistic) and

Model (am-model) represent logistic model and
a —m model, respectively.
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4) Create parameters for the above models with the
following initial values:

a) p=20and p > 1077,
b) ¢ =20 and ¢ > 1077,
¢) »=0.01 and r > 1079,
d) a=0.1and a > 1079,
e) m=1.

5) Fit the models using the fit method of Model
class.

6) In the above, for the a — m model, x and y
represent ty and Ny (or Qp), respectively. For the
logistic model, = and y represent ¢t and N (or @),
respectively.

We then use 1mfit to estimate the parameters p, ¢ and
r of the logistic model and parameters a and m of the
a —m model. The goodness of the fit can be verified
both graphically and by observing the out . bic, which
is the Bayesian Information Criterion [15].

D. Finding N,, and t,,

In the following sections, both @ —m model and the
logistic model with parameters p, ¢ and r are compared
while fitting them for various growth data. We neglect
some of the data points to get a good fit. Considering
the selected data points, N,,, and ¢,, will be the mean
value of N and ¢, respectively. This is also the point of
inflection described by Verhulst [2].

III. POPULATION SIZE

In this section, we fit the a — m model on the
population growth data of Drosophila (Table 11 of [1])
and yeast (Table 9 of [1]). The three-parameter logistic
model is compared with the two-parameter a — m
model.

A. Drosophila

The growth model for Drosophila is shown in Fig. 3.
In Fig. 3A, both the logistic model and the a —m model
have been fitted for the entire data. In Fig. 3B, the first
two data points have been removed. From Fig. 3A, it
is observed that the logistic model fits better for the
entire data compared to the a — m model. However,
the a — m model fits well after simply omitting the
initial two data points as shown in Fig. 3B. This fit
made with two parameters is very close to the three-
parameter logistic model. Thus, a — m model fits best
for the phase that shows the maximum manifestation of
population growth.

Based on Eqn. (6), the maximum growth rate is found
to be m = 23.92. This means around 24 Drosophila
individuals are born per day when the population size is

200 individuals i.e., when N = N,,,. As the population
size deviates from [V,,, the growth rate decreases with
the square of deviation which is parameterized with a.

B. Yeast cells

Here, we fit the a — m and logistic growth models
on the yeast cell division data provided by Pearl [1] as
shown in Fig. 4. Similar to the Drosophila population
model, the logistic model fits well for the entire data
as compared to the ¢ — m model as shown in Fig. 4A.
However, around the rapid growth phase a — m model
fits as well as the logistic one as shown in Fig. 4B. This
is achieved by neglecting the first two and the last five
data points. Also, a numerical value for the maximum
growth rate is obtained directly from the parameter m
which is around 103 yeast cells per day.

IV. POPULATION ATTRIBUTES

In this section and the subsequent section, we con-
sider the mean physical growth of a population of indi-
viduals. This is done by simply replacing the population
size N by a quantity @) under study. Here, we consider
@ to be the height or weight of the individuals. So,
Eqgn. (6) and Eqn. (9) are modified as

m(t — ty,)

Q= 14+a(Q— Qm)2 @, (10)
- p
@= 1+get’

respectively. Here, @,,, is the value of the quantity under
study when the rate of growth in ) is maximum, which
occurs at time ¢t = t,,.

A. Mean height of sun flower plants

We now consider the mean height growth data of
58 sunflower plants (Helianthus) provided by Reed et
al. [9]. Taking @ to be the mean height, we fit a — m
model and the logistic model (Eqn. (10)). Similar to
previous sections, the logistic model fits well for the
entire data of mean height as compared to the a — m
model as shown in Fig. 5A. However, after removing
the final three points, a — m model fits well with the
data as shown in Fig. 5B. Estimating m = 5.44 cm per
day reveals that maximum growth rate of mean height
is 5.44 cm in a day, when the mean height is around
133 cm.

B. Mean weight of male white rats

In this section we take () to be mean weight in
Eqn. (10) and consider the data of mean weight of male
white rats provided by Donaldson [10] for fitting the
growth models. Both the a — m model and the logistic
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model of Eqn. (10) do not fit well for the entire data as
shown in Fig. 6A. However, after neglecting the final
five points both the models fit well, especially around
the phase of rapid growth as shown in Fig. 6B. a —m
model fits even better when the initial ten points and
the final eleven points are left out as shown in Fig. 6C.

In Fig. 6B and 6C, we find that m = 2.36 — 2.63
grams per day, which is the maximum growth in weight
of male white rats. Since Fig. 6C shows the best fit of
the a-m model, it can be concluded that the estimation
of mean values is more precise in this case.

V. INDIVIDUAL GROWTH

So far, we have considered the population size data
and the growth data of attributes such as the height and
weight of a population In this section, we consider the
growth of an individual instead of a set of individuals.
We consider the growth data provided as the first
seriatum study of individual human growth [11,12] over
a period of 18 years.

We initially try to fit both the models over the entire
height data. As shown in Fig. 7A, both the models do
not fit well over the entire data. Therefore, we mainly
look for S-shaped growth spurts from within the data.
We split the 18-year data in to smaller portions and
obtain model parameters after fitting in these portions
of the data. In all these portions except one, the a —
m model fits better than the three-parameter logistic
model. The portions are as follows:

e 0 to 3 years: In this portion, the logistic model fits
better than the @ — m model as shown in Fig. 7B.
This portion highlights the limitation of a —m model.
We discuss the limitations in section VI-D.

e 3 to 5 years: In this portion a — m model fits well
as shown in Fig. 8A and captures the nonlinearity
better than the logistic model.

¢ 5.5 to 7 years: The a — m model fits well for this
portion of data in Fig. 8B which is just four data
points spread across two and a half years. Growth
is more nonlinear, since this portion has the highest
value of a compared to the rest of the fitted portions
in the data.

e 7 to 10 years: Both the models fit well for this
portion of data as shown in Fig. 8C. Both the models
show linear trend of growth. This portion has the
lowest maximum growth rate which is m = 6cm per
year.

e 11.5 to 17 years: Perhaps this portion known as
the pubertal growth spurt [12] clearly shows that the
a —m model effectively captures the rapid phase of
growth spanning many years of growth data as shown

in Fig. 8D. This portion includes more number of
years compared to the rest of the portions and the
maximum growth rate is highest in this region which
is m = 11.89 cm per year.

VI. DISCUSSIONS

So far, in the previous sections we fitted the a — m
model for various growth data and compared the fit with
the logistic model. In this section, we present some of
the possible discussions on biological growth based on
the @ — m model.

A. Growth is linear in time

Eqn. (1) can be re-written as
ay3 + 1y =mx.

The term ay?® is a nonlinear parametric addition to the
linear equation y = mx. When used as a growth model
as seen in sections III and IV, it can be concluded
that growth is fundamentally linear but restricted due
to a nonlinear addition. This nonlinearity becomes
more pronounced as we move away from the point of
maximum growth rate.

B. Growth is symmetric around t,,

From Fig. 1, it can be seen that the a —m curves vary
symmetrically about the origin. Similarly, a —m growth
model due to the term (N — N,,)? in Eqn. (6), varies
symmetrically about IV,,, (or Q,,,). Since we have fitted
the a —m model on the growth data of population size
, population attributes and portions of an individual’s
growth, we can conclude that biological growth is
symmetric about the point of maximum growth rate
even if it is across many years as shown in Fig. 8D.
However, this symmetry is restricted to the parts closer
t0 (tm, Nim) OF (tm, Qm)-

C. A growth coordinate system

An advantage of the a — m model is that, since we
are using only two parameters to model growth, we can
obtain planar plots with a and m as the axes. m—axis
represents promoting factors of growth and a—axis
represents restricting factors on growth. Thus, we can
compare different growth data using this coordinate
system as shown in Fig. 2. As the values of a vary
over a wide range, it is convenient to use a logarithmic
scale representation for a— axis.

From Fig. 2, it can be seen that growth of yeast (Sec-
tion III) is more promoted and less restricted compared
to the other population size data. Similarly, human
individual growth in height is more promoted and less
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restricted between 11.5 to 17 years compared to other
portions of data in Sec. (V).

D. Limitations of a —m model

The a — m model fails to capture variations in
the initial and final phases of population and mean
individual growth. It also does not capture nonlinearities
in Fig. 7B, which is the growth of an individual human
male from 0-3 years. So, a — m model is mainly
applicable to the parts of data around maximum growth
rate. This also shows that the initial and final portions
of population size and attribute growth data deviate
from the (N — N,,,)? nonlinearity, which in turn breaks
the symmetry about (¢,,, N,,) or (¢, @). This can
be remedied in the future by adding more parametric
nonlinear terms to Eqn. (1).

E. Flexibility of the a — m model

The flexibility of an S-shaped model can be under-
stood by comparing it with the Heaviside function. For
p =1, ¢ = 1 and for large values of r the logistic
model (Eqn. (9)) becomes indistinguishable from that
of the Heaviside function, offering a switch from O to 1
in a short interval of x. However, the transition from O
to 1 with the a —m model is more gradual, as shown in
Fig. 9A. This is also the reason why the Scy, model fits
better for growth data in Fig. 3A, 4A and 5A as the data
approach saturation. Therefore, the a —m model offers
only limited flexibility compared to the logistic model,
as shown in Fig. 9A. While the logistic model can be
interpreted as a switch from O to 1, the a — m model
can be interpreted as a combination of two behaviors:
—t1/3/3 and 1/at'/? (Eqn. (2)) as shown in Fig. 9B.
—§1/3 /3 dominates the lower portion of S,_,, curve,
while 1/at'/? dominates the upper portion.

VII. FUTURE STUDIES

From the above sections, it can be observed that
the three-parameter logistic model (Eqn. (9)) does not
universally fit all the growth curves, see, for example,
Fig. 6A. Hence, a more generalized model such as the
hyper-log-logistic model [16, 17] given by

dN o 5

pr rN“(1—N)
can be used to compare with the a — m model with «
and ~y as additional parameters. This will be considered
in our future work. Moreover, the a — m model can
be compared with the Heaviside function based on
an appropriate metric such as the Hausdorff distance,
similar to the studies by Anguelov et al. [17].

VIII. CONCLUSIONS

In this work, we have introduced a two-parametric
growth model using continued fraction of straight lines.
The two parameters are a and m, which represent fac-
tors that restrict and promote growth, respectively. The
a —m growth model is effective for modeling growth
of population size and attributes and, to some extent,
an individual’s growth, especially around the phase
of rapid growth. This model suggests that biological
growth is fundamentally linear in time but restricted
by nonlinear factors. These nonlinear factors vary as
the square of deviation from the point of maximum
growth rate. Thus, the two parameters a and m can be
considered as biological growth coordinates.
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X
Fig. 1: S-shaped curves for various a and m.
100 4 Y D Drosophila Population
Y Yeast Population
H Mean height of Helinathus
80 - R Mean weight of male white rats
Promoting X Human height (3-5 years)
factors + Human height (5.5-7 years)
of growth e Human height (7-10 years)
(m) * Human height (11.5-17 years)
40 -
D
20 A
* X 4+
H [ ]
0 -I T R T T T
-12 -10 -8 -6 -4

Restricting factors of growth (loga)

Fig. 2: Growth coordinate system with log a as the z— axis and m as the y— axis. Values for a and m are from
Fig. 3B, 4B, 5B, 6C, 8A, 8B, 8C and 8D. The coordinates are D(—9.84,23.92), Y(—11.64,103.73), H(—10.66,5.44),
R(—9.6,2.63), x(—3.96,11.57), +(—3.38,10.34), ¢(—6.21,6.01), % (—6.21,11.89).
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Fig. 3: Comparison of a — m model shown as S,—., with the logistic model shown as Sexp
for the Drosophila population data (Table 11 of [1]).
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Fig. 4: Comparison of a — m model shown as S,—,, with the logistic model shown as Sexp
for the yeast population data (Table 9 of [1]).
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(A) For Sq_m, a = 4.95e=% m = 5.32. (B) For Sq—m., a = 2.36e= 9%, m = 5.44.
For Sexp, p = 261.11, ¢ = 20.17 and 7 = 0.09. For Sexp, p = 270.9, ¢ = 18.97 and r = 0.08.

Fig. 5: Comparison of a — m model shown as S,—,, with the logistic model shown as Sexp
for the growth in mean height of Helianthus plants [9].
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(A) For Sq_m, a = 6.53¢=95, m = 2.31.
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(B) For Sg—m, a

= 4.8¢79%, m = 2.36.

For Sexp, p = 235.68, ¢ = 21.62 and r = 0.04.
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(C) For Sq—m, a = 6.81e795, m = 2.63.
For Sexp, p = 213.75, ¢ = 24.90 and r = 0.045.

Fig. 6: Comparison of a — m model shown as S,_,, with the logistic model shown as Sexp
for the growth in mean weight of male white-rats [1, 10].
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(A) Fitting of data from 0-18 years.
For Sq—m, a =1.0e7%9, m = 6.63.
For Sexp, p = 211.72, ¢ = 2.01 and r = 0.15.

(B) Fitting of data from 0-3 years.
For Sq—m, a = 1.0e7%9, m = 15.34.
For Sexp, p = 106.15, ¢ = 1.03 and r = 0.84.

Fig. 7: Comparison of the a — m model shown as S,—,, with the logistic model shown as Sexp
for the growth in height of individual human male [11,12].
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(A) Fitting of data from 3-5 years. (B) Fitting of data from 5.5-7 years.
For Sg—m, a = 0.019, m = 11.57. For Sg—m, a = 0.034, m = 10.34.

For Sexp, p = 15448147.03, ¢ = 191345.26 and r = 0.065. For Sexp, p = 139.06, ¢ = 2.04 and r = 0.41.

1421 1854 ® data

140 A 180] 7 Se-m

— Se'xp
1381 1751

Height in cm
= = =
w w w
N » o
Height in cm
= = -
[} o)} ~
o w o

130+ 1551
150+
128
t)h = 8.55
; ; ; ; ; ; 145+ ; ; ; ; ; ;
7.5 8.0 8.5 9.0 9.5 10.0 12 13 14 15 16 17
Years Years
(C) Fitting of data from 7-10 years. (D) Fitting of data from 11.5-17 years.
For Sq—m, a = 0.002, m = 6.01. For Sq—m, a = 0.002, m = 11.89.
For Sexp, p = 191.61, ¢ = 1.36 and r = 0.14. For Sexp, p=292.13, ¢ = 3.21 and r = 0.1.
Fig. 8: Comparison of the & — m model shown as S,—., with the logistic model shown as Sexp
for the growth in height of individual human male [11,12].
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(A) Fitted a — m model showing limited flexibility. (B) =55— and at% components of the @ — m model.

Fig. 9: Fitting Su_,, model: a(y — 0.5)* 4 (y — 0.5) = ma on Seyp model (p =1, ¢ =1 and r = 1000).
Estimates are a = 1041.38, m = 252.78.
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