An Application of InterCriteria Analysis Approach to Assess the AMMOS Software Platform Outcomes

Authors

  • Dessislava Jereva Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Maria Angelova Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Ivanka Tsakovska Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Petko Alov Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Ilza Pajeva Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Maria Miteva Inserm U1268 MCTR, CNRS UMR 8038 CiTCoM - Université de Paris, Paris, France
  • Tania Pencheva Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria

DOI:

https://doi.org/10.55630/j.biomath.2022.03.068

Keywords:

decision making, intercriteria analysis, post-docking optimization,

Abstract

The experimental procedures of drug design, proven to be time-consuming and costly, are successfully complemented with computer-aided (in silico) approaches nowadays. Virtual ligand screening (VLS) is one of the most promising approaches when searching for new hit compounds. The efficiency of VLS procedures might be improved via post-docking optimization. In the focus of this investigation is AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening) developed as multi-step structure-based procedure for efficient computational refinement of protein-ligand complexes at different levels of protein flexibility. Their performance has been assessed by the recently developed InterCriteria Analysis (ICrA), elaborated as multi-criterion decision-making approach to reveal possible relations in the behavior of pairs of criteria when multiple objects are considered. The capacity of ICrA as a supporting tool to assess the effect of applying different levels of protein flexibility in the post-docking optimization via AMMOS has been investigated and analyzed.

Author Biography

Tania Pencheva, Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria

Prof. TANIA PENCHEVA, PhD, Dipl. Eng.

Department of QSAR and Molecular Modelling
Institute of Biophysics and Biomedical Engineering
Bulgarian Academy of Sciences

References

[1] Atanassov, K., Mavrov, D., Atanassova, V.: Intercriteria decision making: a new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Issues IFSs and GNs 11, 1-8 (2014).

[2] Atanassov, K.: Intuitionistic fuzzy sets, VII ITKR Session, Sofia, 20-23 June 1983, Reprinted: Int. J. Bioautomation, 20(S1), S1-S6 (2016).

[3] Atanassov, K. On intuitionistic fuzzy sets theory, Springer, Cham (2012).

[4] Atanassov, K. Index matrices: Towards an augmented matrix calculus, Springer, Berlin (2014).

[5] Atanassov, K., Atanassova, V., Gluhchev, G.: InterCriteria Analysis: Ideas and problems, Notes on IFSs, 21(1), 81-88 (2015).

[6] Atanassova, V., Doukovska, L., Atanassov, K., Mavrov, D.: InterCriteria decision making approach to EU member states competitiveness analysis. In: Proceedings of the International Symposium on Business Modeling and Software Design – BMSD’14, 289-294 (2014).

[7] Georgieva, V., Angelova, N., Roeva, O., Pencheva, T.: Intercriteria analysis of wastewater treatment quality. Journal of Int Scientific Publications: Ecology & Safety, 10, 365-376 (2016).

[8] Todinova, S., Mavrov, D., Krumova, S., Marinov, P., Atanassova, V., Atanassov, K., Taneva, S. G.: Blood Plasma Thermograms Dataset Analysisby Means of InterCriteria and Correlation Analyses for the Case of Colorectal Cancer. Int. J. Bioautomation 20(1), 115-124 (2016).

[9] Zaharieva, B., Doukovska, L., Ribagin, S., Radeva, I.: InterCriteria Analysis of Data Obtained from Patients with Behterev’s Disease. Int. J. Bioautomation, 24(1), 5-14 (2020), DOI: 10.7546/ijba.2020.24.1.000507.

[10] Sotirov, S., Sotirova, E., Atanassova, V., Atanassov, K., Castillo, O., Melin, P., Petkov, T., Surchev, S.: A Hybrid Approach for Modular Neural Network Design Using InterCriteria Analysis and Intuitionistic Fuzzy Logic. Complexity, 2018, Art. ID 3927951, (2018), DOI: 10.1155/2018/3927951.

[11] Pencheva, T., Roeva, O., Angelova, M.: Investigation of Genetic Algorithm Performance Based on Different Algorithms for InterCriteria Relations Calculation. Lecture Notes in Computer Science, 10665, 390-398 (2018), DOI: 10.1007/978-3-319-73441-5_42.

[12] Roeva, O., Fidanova, S.: Comparison of different metaheuristic algorithms based on InterCriteria Analysis. Journal of Computational and Applied Mathematics, 340, 615-628 (2018), DOI: 10.1016/j.cam.2017.07.028.

[13] Jereva, D., Pencheva, T., Tsakovska, I., Alov, P., Pajeva, I.: Exploring applicability of intercriteria analysis to evaluate the performance of MOE and GOLD scoring functions. Studies in Computational Intelligence, in press (2020)

[14] Tsakovska, I., Alov, P., Ikonomov, N., Atanassova, V., Vassilev, P., Roeva, O., Jereva, D., Atanassov, K., Pajeva, I., Pencheva, T.: InterCriteria Analysis Implementation for Exploration of the Performance of Various Docking Scoring Functions. Studies in Computational Intelligence, 902, 88-98 (2021), DOI: 10.1007/978-3-030-55347-0_8.

[15] Ikonomov, N., Vassilev, P., Roeva, O.: ICrAData – Software for InterCriteria Analysis, Int. J. Bioautomation 22(1), 1-10 (2018), DOI: 10.7546/ijba.2018.22.1.1-10.

[16] Sauton, N., Lagorce, D., Villoutreix, B.O., Miteva, M.A.: MS-DOCK: Accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening, BMC Bioinformatics 9:184 (2008), DOI: 10.1186/1471-2105-9-184.

[17] Moustakas, D.T., Lang, P.T., Pegg, S., Pettersen, E., Kuntz, I.D., Brooijmans, N., Rizzo, R.C.: Development and validation of a modular, extensible docking program: DOCK 5. J. Comput. Aided Mol. Des. 20, 601-619 (2006), DOI: 10.1007/s10822-006-9060-4.

[18] Pencheva, T., Lagorce, D., Pajeva, I., Villoutreix, B.O., Miteva, M.A.: AMMOS: automated molecular mechanics optimization tool for in silico screening. BMC Bioinform. 9:438 (2008), DOI: 10.1186/1471-2105-9-438.

[19] Labbé, C.M., Pencheva, T., Jereva, D., Desvillechabrol, D., Becot, J., Villoutreix, B.O., Pajeva, I., Miteva, M.A.: AMMOS2: A web server for protein-ligand-water complexes refinement via molecular mechanics. Nucleic Acids Res. 45 (W1), W350-W355 (2017), DOI: 10.1093/nar/gkx397.

[20] Pencheva, T., Soumana, O., Pajeva, I., Miteva, M.: Post-docking virtual screening of diverse binding pockets: comparative study using DOCK, AMMOS, X-Score and FRED scoring functions, Eur J Med Chem. 45 (6), 2622-2628 (2010), DOI: 10.1016/j.ejmech.2009.12.025.

[21] Pencheva, T., Alov, P., Jereva, D., Pajeva, I., Miteva, M.A.: Post-docking optimization and analysis of protein-ligand interactions with AMMOS Free Software, Topics in Chemistry and Material Science, Vol. 5 of Current Issues in Organic Chemistry 2 (Proceedings of the Third International Symposium on Organic Chemistry with Satellite Meeting on NMR in Life Sciences, October 30 - November 2, 2010, Sofia, Bulgaria, Eds. Nikolova R. D., S. Simova, P. Denkova, G. N. Vayssilov), 43-51 (2011).

[22] Jia, M., Dahlman-Wright, K., Gustafsson, J.: Estrogen receptor alpha and beta in health and disease. Best Pract Res Clin Endocrinol Metab. 29(4), 557-68 (2015), DOI: 10.1016/j.beem.2015.04.008.

[23] Eyster, K.M.: The estrogen receptors: an overview from different perspectives. Methods Mol Biol. 1366, 1-10 (2016), DOI: 10.1007/978-1-4939-3127-9_1.

[24] Bassetti, M., Castaldo, N., Carnelutti, A.: Neuraminidase inhibitors as a strategy for influenza treatment: pros, cons and future perspectives. Exp Opin Pharmacother. 20(14), 1711-18 (2019), DOI: 10.1080/14656566.2019.1626824.

[25] Jagadesh, A., Salam, A.A., Mudgal, P.P., Arunkumar, G.: Influenza virus neuraminidase (NA): a target for antivirals and vaccines. Arch Virol. 161(8), 2087-94 (2016), DOI: 10.1007/s00705-016-2907-7.

[26] Pajeva, I., Tsakovska, I., Pencheva, T., Alov, P., Al Sharif, M., Lesigiarska, I., Jereva, D., Diukendjieva, A.: In silico Studies of Biologically Active Molecules, In: Research in Computer Science in the Bulgarian Academy of Sciences (Atanassov K., Ed.), Studies in Computational Intelligence 934, 421-451 (2021).

Downloads

Published

2022-05-30

Issue

Section

Original Articles