Mathematical Methods and Models in Biosciences June 15–20, 2025, Sofia, Bulgaria https://biomath.math.bas.bg/biomath/index.php/bmcs

A SIMPL model of phage-bacteria interactions accounting for mutation and competition

Carli Peterson¹, Darsh Gandhi¹, Austin Carlson¹, Aaron Lubkemann¹, Emma Richardson¹, John Serralta², Michael S. Allen², Souvik Roy¹, Christopher M. Kribs^{1,3}, Hristo V. Kojouharov¹

> ¹Department of Mathematics, The University of Texas at Arlington, Arlington, USA hristo@uta.edu

²Department of Microbiology, Immunology, and Genetics, The University of North Texas Health Science Center, Fort Worth, USA

> ³Department of Teacher and Administrator Preparation, The University of Texas at Arlington, Arlington, USA

Pseudomonas aeruginosa is an opportunistically pathogenic bacteria that causes fatal infections and outbreaks in hospital environments. Due to the increasing prevalence of antibiotic-resistant strains of P. aeruginosa, the need for alternative therapies is critical. Bacteriophage therapy is emerging as a promising approach; however, it remains unapproved for clinical use and is hindered by limited understanding of the complex interactions between bacterial cells and phage virions. Mathematical models provide insight into these interactions. Through a system of ordinary differential equations, we determined necessary biological assumptions to effectively capture the dynamics observed between susceptible, infected, and mutated bacterial cells and bacteriophage virions in a microwell setting. Data fitting based on this model produced a set of parameter estimates unique to our experimental observations of a specific phage and *P. aeruginosa* strain. In translating observed optical density readings into bacterial concentrations, we also found that bacterial debris has a significant impact on optical density, with a lysed bacterium contributing roughly 31% as much to optical density readings as a living cell.

Keywords: pseudomonas aeruginosa, optical density, bacterial dynamics, bacterial debris, non-isolated equilibria, parameter fitting, optimization

MSC2020: 92C70, 34D20, 37N25