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Here we provide a brief overview of the applications of the Totally Asym-
metric Simple Exclusion Process (TASEP) to various biological transport pro-
cesses [1] and some recent developments in the study of the generalized TASEP
(gTASEP) [2]. The TASEP is essentially a one-dimensional model where par-
ticles move unidirectionally along one-dimensional tracks, jumping probabilis-
tically to the nearest empty neighboring site, subject to a hard-core exclusion
interaction. In the generalized version, additional interaction is introduced be-
tween particles, modeling attractive or repulsive interaction between particles.

The process was first introduced in 1968 to model kinetics of protein syn-
thesis [3], but later found a number of applications to other biological trans-
port processes, e.g., the motion of molecular motor proteins, kinesin and dynein
along microtubules, a process that accounts for nearly all intracellular transport
in eukaryotic cells etc. Many other applications were suggested as well describ-
ing diverse phenomena, ranging from one-lane vehicular traffic flow, transport in
chemical systems, forced motion of colloids in narrow channels, interface growth
etc. Even though the TASEP is very simple model, it captures key characteris-
tics of these systems while remaining an analytically solvable model.

The one-dimensional (T)ASEP (and its different versions) is a useful tool-
model for understanding a variety of nonequilibrium phenomena [4]. It rep-
resents one of the simplest examples of self-driven many-particle systems with
particle-conserving stochastic dynamics, exhibiting nontrivial behavior in one
dimension through phase transitions between stationary nonequilibrium phases.
The gTASEP enables the investigation of aggregation-fragmentation phenom-
ena, fluctuations, and finite-size effects in nonequilibrium stationary states in-
fluenced by boundary conditions.
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Over the past few years, research on nonequilibrium models has advanced
rapidly; however, the aim remains to study model systems that provide more
realistic approximations of real systems. Here, our focus is on one such model
– the generalized TASEP (gTASEP) [2, 5].
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