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In this presentation, we study the progression of Alzheimer’s disease through
a multiscale modeling approach. We begin by formulating a system of partial
differential equations that captures the underlying biological mechanisms. The
evolution of the system is analyzed within a thin porous heterogeneous medium,
reflecting the complex structure of brain tissue. To address the multiscale nature
of the problem, we adopt a finite element heterogeneous multiscale method (FE-
HMM), which enables us to accurately approximate the macroscopic behavior
by systematically incorporating microscale effects. Numerical simulations are
carried out to validate the theoretical analysis and to illustrate the impact of
tissue heterogeneity on disease progression.
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