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Many living organisms, from bacteria, through phytoplankton, to elephants,
have a tendency to form groups that can grow in size by demographic processes
occurring inside each group, but also due to amalgamation and/or fragmentation
of the groups, [6]. Similar processes are also important in engineering (polymer-
ization/depolymerization), or planetary science (formation and destruction of
planetismals from cosmic dust).

We are concerned with describing such processes using the number ui(t) of
groups of size i at time t if i is a discrete variable, or a suitable density u(x, t)
of groups of size x if x is a continuous variable.

The modelling of such processes goes back to the work of Smoluchowski,
[7] and Müller [5]. In our case, the classical fragmentation-coagulation equa-
tions are complemented by the terms describing demographical process, such
as McKendrick-von Foerster renewal model. In the continuous case we study,
[1, 3],

∂tu(x, t) = −∂x(r(x)u(x, t))− µ(x)u(x, t)

−a(x)u(x, t)−
∞∫
x

a(y)b(x|y)u(y, t)dy

+u(x, t)

∞∫
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k(x, y)u(y, t)dy

+
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x∫
0

k(x− y, y)u(x− y, t)u(y, t)dy, x > 0,

r(0)u(0, t) =

∞∫
0

β(y)u(y, t)dy,

u(x, 0) = u0(x), (1)

where r is the size dependent growth rate of clusters, µ is the rate of the clusters
removal, a is the rate of splitting, the fragmentation kernel b is the average
number of clusters generated by fragmentation of a cluster of size y, k is the



amalgamation rate and β describes the rate at which newborns detach from the
clusters.

In many cases it is unreasonable to assume continuous size distribution. If
we discretize (1, we obtain (retaining the meaning of the coefficients)

dui(t)

dt
= ri−1ui−1(t)− riui(t)− µiui(t) +

1

2

i−1∑
j=1

ki−j,jui−j(t)uj(t)

−
∞∑
j=1

ki,jui(t)uj(t)− aiui(t) +
∞∑

j=i+1

ajbi,juj(t), i ≥ 1,

(2)

and the boundary equation for the class of newborns u0(t),

r0u0(t) =
∞∑
j=1

βjuj(t), (3)

unlike in the continuous case, can be inserted into (2).
The pure fragmentation semigroup was proved to be analytic for a large class

of fragmentation kernels in [2, 4]; it is also compact in the discrete case. The
main aim of this lecture is to show that these results can be extended to (2) and
to apply them to analyze the long term behaviour of solutions to (2).
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