
Original communication Biomath Communications 4 (2017)

Biomath Communications

www.biomathforum.org/biomath/index.php/conference

Dynamic simulation and steady-state

computation of 3D physiologically

structured population models.

Michiel Van Dyck1, Xavier Woot De Trixhe2, Wim Vanroose1

1Dept. of Mathematics and Computer Science, University of
Antwerp, Antwerp, Belgium

Michiel.VanDyck@uantwerpen.be
2Dept. Modelling, Janssen Pharmaceutica, Beerse, Belgium

xwootdet@its.jnj.com

Abstract

The PSP modelling approach allows you to model biolog-
ical/pharmaceutical behaviour by combining micro-scale or-
dinary differential equation (ODE) models with macro-scale
ODE models and their bi-directional interaction. E.g.: based
on the model of a single cell, billions of cells can be simulated
to get the response of an entire organ (also incorporating the
organ to cell reaction). The PSP approach allows to simulate
this in a mathematically efficient way by characterising differ-
ent cells by a set of physiologically relevant quantities [2, 3].

Our framework is capable of taking into account up to 3
physiological parameters resulting in a 3D structure for which
a partial differential equation (PDE) should be solved. We
achieve considerable speed-up by using a semi-Lagrangian PDE
solver that allows big stable time stepping. Combining this

Citation: Michiel Van Dyck, Xavier Woot De Trixhe, Wim Vanroose, Dynamic
simulation and steady-state computation of 3D physiologically structured

population models, http://dx.doi.org/10.11145/bmc.2017.12.237

http://dx.doi.org/10.11145/bmc.2017.12.237


with a low level C-language implementation, we achieve excep-
tional efficient usage of the computing processing unit (CPU).
Furthermore we accelerate the computation of the steady-state
by using a Newton-Krylov method. For ease of use, a PSP de-
scription language is constructed to allow straightforward in-
put of different models. The simulator should empower future
computational/mathematical biologists to create and evaluate
more detailed models than currently is common practice.

Keywords: PSP model, simulator, multi-scale model, differential
equations

1 Introduction

A physiologically structured population model is a multi-scale model
which allows you to combine 2 models of different scale : a macro-
scopic or environment level model and a microscopic or cellular level
model. Typically a compartmental model, a set of ordinary differ-
ential equations is used to model the environment. The microscopic
model and the way it interacts at macroscopic level can be modelled
in different ways: One way is to simulate each microscopic entity in-
dividually. The response of all the cells is accumulated to get the
response at macroscopic scale. Another, less accurate, but computa-
tionally less demanding way, is to simulate an averaged microscopic
cell and multiply this response with the number of cells. The PSP
modelling method is a modelling method ranging between the former
2 extremes. Depending the number of discretisation points, the model
will resemble more an averaged compartment. But when more points
are used, it will resemble more a brute force approach where every
single cell is simulated.

In [3] they modelled and simulated the Hepatitis-C virus - drug
dynamics by using a PSP model. In [5] a numerical scheme was build
to simulate this model by using a semi-Lagrangian partial differential
equation solver to update the distribution of the different types of
cells.



In this paper we will extend this framework towards more complex
models which can incorporate more physiologically relevant quantities
inside the cellular model.

Furthermore, we also created an improved algorithm to calculate
the steady-state of de PSP model using a Newton-Raphson-Krylov
solver.

At last, we also polished the structure of 1) the PSP language, 2)
the PSP solver and 3) the generated PSP model code.

2 The PSP solver

The PSP solver consists of four different types of differential equation
solvers. We use 3 ordinary differential equation (ODE) solvers and
one partial differential equation (PDE) solver.

Two ODE solvers are used to solve the macroscopic and micro-
scopic model f and g respectively. (eq. 1, 2)

ẏ = f(y,Ψ) (1)

ẋ = g(x, y) (2)

y is a vector of macroscopic state variables. x is a scalar or vector
of microscopic state variables. Ψ is a scalar or vector representing the
macroscopic effect of all the microscopic entities combined. This is
calculated by integrating the distribution of the microscopic entities
over the different physiologically structured quantities. (eq. 7)

A partial differential equation is used to link the microscopic simu-
lation with the macroscopic simulation. This equation updates the dis-
tribution of the microscopic entities over the different possible states.


dn
dt

= ∂n(x,t)
∂t

+∇x· (g(y, x)n(x, t)) (3)

= −λ(y, x)n(x, t) (4)

Boundary cond.: g(x)n(x, t) x̂ = b(y, x) (5)

Initial conditions: n(x, 0) = n0(x) (6)



Ψ(t) =

∫
Ω

φ(x)n(x, t) dx (7)

The third ordinary differential equation solver is used to solve the
interactions between the previous three equations. The combination
of all the equations is put into the operator <.

ṗ = <(p) (8)

p =

YΨ
N

 (9)

Different types of ordinary differential equation solvers can be used.
We currently use a Runge-Kutta 4 to simulate the macroscopic and
microscopic models.

For the partial differential equation, which mainly consists of an
advection term, we use the modified method of characteristics. This is
an unconditionally stable method which allows to simulate the partial
differential equation with large time-steps.

When more accuracy is desired the step size can be decreased. <
is solved with an implicit Euler ODE solver

3 Towards the simulation of more com-

plex cellular models

When using the modified method of characteristics, we construct char-
acteristic curves to create a mapping from the distribution of the dif-
ferent types of cells, at one point in time, to the distribution of the
cells in next point in time.

For stability reasons, we simulate the characteristic curves in a
forward and backward direction(see fig. 1).

The endpoint of the characteristic curve is most of the time not a
grid point.



To resolve this we do an interpolation between the neighbouring
endpoints, to find the mapping weights of a grid-point towards a few
grid points in the next time step and vice versa for the backward
direction.

Figure 1: Modified method of characteristics applied on the distri-
bution of the PSP. 1) Construction of the backward characteristic
curves from the grid-points in t2. 2) Interpolation at the character-
istic endpoint, and subtraction of these values from the neighbouring
grid-points. 3) Construction of the forward characteristic curves to
project the remainder of the grid-point values. 4) Distribution of this
remainder over the neighbouring grid-points.

When we characterize a cell by more than one characteristic quan-
tity, we have to construct characteristic curves in a more-than one-
dimensional grid.

Because of this, we also need to do interpolation in a higher di-
mensional grid.

Because our grid is uniform, we can use the bi-linear and tri-linear
interpolation for the two and three dimensional case respectively.

The tri-linear interpolation interpolates a 3 dimensional point by
using the 8 surrounding points. (This in contrast to barycentric coor-
dinates which uses only 4 surrounding points.)

These 8 points are paired to construct orthogonal lines on which
the first interpolation points are constructed.



Figure 2: Tri-linear interpolation of a point in a regular 3D grid. .

These four interpolation points are paired again to form two new
lines on which two new points of interpolation are constructed.

At last these 2 points are paired to form a line on which the point
of interest, the end of the characteristic curve can be found.

With this construction, the interpolation weights of the 3 dimen-
sional point can be found.

ni = (1− wz)(

(1− wy)((1− wx)n000 + wxn100)

+ wy(1− wx)n010 + wxn110)

+ wz(

(1− wy)((1− wx)n001 + wxn101)

+ wy((1− wx)n011 + wxn111))

(10)

As done in the 1D case, we drop these interpolation weights in the
2 mapping matrices Wb and Wf .

Then the 2 matrices are combined and corrected for mass conser-
vation into the mapping matrix S.

sc =
[
1, 1, ...1

]
Wb (11)



W ∗
b = Wb × diag(1/max(1, sc)) (12)

W ∗
f = Wf × diag(max(1− sc, 0)) (13)

S = W ∗
b +W ∗

f (14)

Then the S matrix is used to map the distribution I from one point
in time to the next.(eq.15)

I2 = SI1 (15)

4 Steady-state computation

In some cases we are not interested in the dynamics of the distribution,
we just want to know to which state the PSP model will converge to
eventually. One way to do this is to simulate the system for a very
long time. As was suggested in [5].

This is certainly a valid option since the time steps size of the mod-
ified method of characteristics is not limited by the Courant, Friedrich
Levinson (CFL) constraint.

dt < C · dx
g(x)

(16)

The CFL constraints the stepsize for Eulerian PDE solvers but the
modified method of characteristics, is a semi-Langrangian method,
which allows to make very big time steps. (see fig. 3)

Another way to calculate the steady state of the system is to solve
the steady state equation:

U(p) = p (17)

With U(p) the updated PSP-state. When we use the implicit Euler
update rule to update the overall system <, then U(p1) = p2 with p2

the solution of the system

p2 = p1 + dt<(p2) (18)

To find the steady state, we need to find the roots of U(p)−p = 0.



Figure 3: Convergence of the PSP simulator towards the steady state
in function of the number of ” big ” timesteps.

Since the PSP update function is a non-linear function, we need
to use a non-linear system solver.

A commonly used one, is the Newton-Raphson solver.
This method also needs the Jacobian J of the system.
If the Jacobian of the system is not available, the Jacobian can be

approximated by calculating n, (n = length(p)) finite differences.
For each entry of the PSP state vector, we perturb p with a small

value ε

J ≈ ∀i ∈
[
1 : length(p)

]
: J(i, :) =

U(p+ ε~ei)− U(p)

ε
(19)

Since the PSP model is a multi scale model, we typically have
to deal with a large dynamic range of numbers: very big and very
small numbers to model the macroscopic and microscopic model re-
spectively. Because of this we encountered numerical issues due to



the finite numerical accuracy of the processor. To avoid these, the
perturbation size should be chosen not too big since then the Jaco-
bian is not calculated very accurately (and the solver might become
also unstable) but also not too small since too small perturbations
are numerically insignificant for the computer, resulting in a singular
Jacobian matrix.

When the Jacobian is known we use the Jacobian to solve the next
system:

J∆p = −r (20)

∆p is the change of the PSP state each Newton step (eq. 21) and
r is the residual of the steady state equation at the previous Newton
iteration. (eq. 22)

p2 = p1 + ∆p (21)

r = U(p)− p (22)

It should be noted that also other methods exist to approximate
and use the Jacobian: all these are called quasi-Newton methods.

4.1 Solving the steady state equation

When solving the steady-state equation we have to take into account
of couple of things. First, since the partial differential equation can
have a lot of discretisation points, the system, and so the size of the
Jacobian matrix, can become very big, . Secondly, We do note that
the matrix is very sparse. (see fig. 4)

When inverting the matrix, this sparsity feature is exploited by the
Krylov subspace methods.

Third thing to note is that the Jacobian Matrix, or the approx-
imation of it, can be singular or ill-conditioned. For this, a form of
regularisation should be used to solve eq. 20.



Figure 4: (black) the nonzero elements in the Jacobian Matrix.

4.2 Combining the systems

On the one hand, we have to construct the Jacobian on the other
hand, we also have to solve the system. J∆p = −r which essentially
means inverting the Jacobian.

When using the subspace Krylov method GMRES, we iteratively
build a Krylov subspace Kr conceptually by applying the matrix J
multiple times on the residual r.

Kr = span{r, Jr, J2r, J3r, · · · Jnr}
= span{q0, q1, q2, q3, · · · qn} (23)

In practice, each iteration an orthonormal direction v is added on
the matrix Q which spans the same Krylov subspace. Each itera-
tion, an upper (almost triangular) Hessenberg matrix H is extended,
decomposing the residual r further in the span of Q.

The application of the Jacobian matrix J on this direction v, re-
turns the derivative of the steady state function in that direction v.



But instead of multiplying J with v, we can also find this by doing a
finite difference approximation in the direction of v [1]:

Jv ' (U(p+ hv)− (p+ hv))− (U(p)− p)
h

(24)

Note, that all these search directions are orthogonal, so that after
n iterations also the total Jacobian is built.(n = size(p))

When solving the system J∆p = −r using GMRES we also know
that the total system is solved after maximal n iterations. Further-
more, the Arnoldi iteration inside GMRES, is a matrix-free algorithm:
i.e. it only needs a function which returns the result of the matrix J
applied to the vector v. This in contrast with most other commonly
used linear algebra solvers: e.g. LU-decomposition. By combining
the construction, application and inversion of the Jacobian, we can
find the PSP state update ∆p in only n Krylov iterations per Newton
step. So worst case we have to apply the J matrix n times onto the
residual, each Newton step. But for this application we do not need to
construct the Jacobian explicitly but we can evaluate the finite differ-
ence approximation in the search direction of the GMRES algorithm v
(eq.24). After n or less evaluations, GMRES will produce the Newton
update ∆p which allows us to update p (eq.21).

p = p+ ∆p (25)

These Newton steps are repeated until convergence.

∆p < Ctol (26)

This algorithm calculates efficiently the steady state solution of the
PSP model.

4.3 Regularisation

Depending on the system which is simulated, the convergence of the
Newton Method or the GMRES method might be slow or maybe not
converging at all.



When this is the case, one needs to regularize the system to make
it more stable.

One way of regularisation is early stopping, meaning that we don’t
iterate the GMRES algorithm n times but stop before total conver-
gence of the GMRES has happened.

For the GMRES algorithm, the condition number of the system
relates to the speed of convergence.

Our initial system had a condition number of over 1E20.
When calculating the eigenvalues of the Jacobian we discovered

that 2 eigenvalues were equal to Zero.
To invert this matrix in a stable fashion we did early stopping by

allowing GMRES only to do max 10 iterations per Newton step.
This allowed us to stably converge towards the solution.(fig.5)
Further analysis revealed that these zero valued eigenvalues orig-

inate from the Ψ variables. Indeed, these variables are calculated by
integrating the distribution each iteration, which results into the fact
that perturbations on these variables don’t have any effect on the re-
sulting simulation. Explaining the 2 zero eigenvalues.

Ψ =

∫
ψ(a)idr

ψ(a) = r, R =

∫
ridr

ψ(a) = 1, I =

∫
idr

By removing these variables out of the steady state equations, the
condition number of the Jacobian decreased to 1E13.

With these singular values removed, we could increase the number
of iterations the GMRES algorithm could do each Newton step without
the steady state solver becoming unstable.

We could increase the number of GMRES iterations each Newton
step even up to the size of the PSP Vector. Meaning solving the system
exactly. When we did this, the steady state equation was solved in
3-4 Newton steps, with each Newton step consisting of ≈ n GMRES
steps.



Figure 5: Noisy convergence of the Newton solver with early stopping
regularisation.

So each Newton step takes a bit longer than the simulation of a
certain time step, but overall the convergence of the Steady State of
the PSP is accelerated by some orders of magnitude. (see fig. 6)

5 Framework

The PSP solver was put into a framework to simulate in a familiar
way different types of virus-drug models.

For this a Domain specific Language (DSL) was constructed with a
parser which converts the *.psp file into different types of source code.

Depending on the pharmacologist needs, he/she can choose to con-



Figure 6: Fast convergence towards the solution of the discretised
system by complete GMRES inversion each Newton step.

vert the psp model to C, C++, object oriented C++ or Matlab code.
This code can be used to simulate the PSP models and to interface
the models and simulators with different packages and libraries.

The *.C files can be compiled to an *.exe file which can be called
from different scripting languages alternatively the *.C files can be
compiled to a *.mex files which can be used in Matlab.

The advantage of these compiled *.mex files over the generated
*.m files is that these mex files can be up to a factor 1000x faster than
the native matlab script files.

Other libraries can interface with the object oriented C++ version
of the PSP solver. This C++ code is build very modular which allows
to easily replace one module with another: E.g. replacing one of the
3 ODE solver with your own ODE solver.



Figure 7: Software processing overview, illustrating the process from
*.psp model to *.exe file.

6 Conclusion

We have developed a framework which allows to simulate a wide range
of physiologically structured population models.

We increased the number of features of the PSP solver by intro-
ducing higher dimensional partial differential equations which origi-
nate from an increased number of characteristic quantities to describe
a single cell. Further-on we accelerated the computation of the steady
state solver by multiple orders of magnitude by using a Newton-Krylov
method.

References

[1] Knoll D.A., Keyes D.E. , Jacobian-Free Newton-Krylov methods:
a survey of approaches and applications, Journal of Computational
Physics, August 2003.

[2] Diekmann, O.,et all , Daphnia revisited: local stability and bi-
furcation theory for PSP models explained by way of an exam-
ple. Journal of Mathematical Biology, 61, (pp. 277-318) (42 p.).
DOI:10.1007/s00285-009-0299-y.

[3] Woot de Trixhe, X., et all. vRNA structured population model for
Hepatitis C Virus dynamics. Journal of theoretical biology, 378,
DOI:10.1016/j.jtbi.2015.04.017. 2015



[4] Van Dyck, M. and Peremans, H., Realtime 3D Sensor
Based Air Flow Reconstruction., The Eurographics Association,
DOI:10.2312/conf/EG2012/posters/041-042, (2012)

[5] Van Dyck, M. and Woot de Trixhe, X., and Vermeulen, A. and
Vanroose, W.(2017) A robust simulator for physiologically struc-
tured population models., Manuscript submitted for publication


	 Introduction 
	 The PSP solver 
	 Towards the simulation of more complex cellular models 
	 Steady-state computation 
	 Solving the steady state equation 
	 Combining the systems 
	 Regularisation 

	 Framework 
	Conclusion

