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1 Introduction

Lotka-Volterra and related systems of differential equations have been
extensively studied in the literature. See, for example, [1, 9, 21].
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On the other hand, impulsive biological systems have gained in-
creasing popularity during the last few decades. Impulsive conditions
have been incorporated into biological models by many researchers
to represent abrupt changes at certain moments of time. In term
of the mathematical treatment, the presence of pulses gives the sys-
tem a mixed nature, both continuous and discrete [4, 5, 10, 19]. For
example, some impulsive differential equations have been recently in-
troduced in population dynamics, such as vaccination [7], population
growth models [2, 3, 14, 16], chemotherapeutic treatment of disease
[11], chemostat [20], pollution [13], the tumor-normal cell interaction
[8], etc.

Also, in the recent years, much attention has been paid to study
impulsive Lotka-Volterra models. Recently, Li et al. [12] investi-
gated the existence of positive periodic solutions of a two-dimensional
Lotka-Volterra impulsive system with infinitely distributed delay, Liu
et al. [15] have formulated a two-species Lotka-Volterra impulsive
delay model with periodic coefficients and interesting results about
permanence and extinction were obtained, also, theorems for the ex-
istence of semitrivial periodic solutions and the stability results using
a modification of Lyapunov’s first method are proved in [15]; some
stability results for impulsive n-species Lotka-Volterra models are ob-
tained in [19]; theorems for the existence of almost periodic solutions
are given in [2, 17].

In mathematical simulation in various important branches of con-
trol theory, pharmacokinetics, economics, etc., one has to analyze the
influence of both the maximum of the function investigated and its
impulsive changes. Thus, for instance, if the concentration of the
medicinal substance in the blood plasma has to be controlled at a ve-
nous injection of the medical substance, one has to take into account
together with it, in view of the optimal therapy, the maximum of this
concentration too. Similar problems appear in many fields of science
and technology [18]. An adequate mathematical apparatus for simula-
tion of such processes seems to be impulsive differential equations with
supremums. To the best of our knowledge, there are no results consid-
ering the stability of Lotka-Volterra systems with supremums, which



is important from a theoretical point of view as well as applications,
and is also a challenging problem.

In this paper, we investigate the following n-species Lotka-Volterra
type impulsive system with supremums

ẋi(t) = xi(t)

[
ri(t)− aii(t)xi(t)−

n∑
j=1
j 6=i

aij(t) sup
s∈[t−τ,t]

xj(s)

]
, t 6= tk,

xi(t
+
k ) = xi(tk) + Iik(xi(tk)), k = 1, 2, ...,

(1.1)
where i = 1, ..., n, n ≥ 2; t ≥ 0; xi(t) represents the density of species
i at the moment t; ri(t) is the reproduction rate function; and aij(t)
are functions which describe the effect of the j -th population upon
the i -th population; aij ∈ C[[0,∞), [0,∞)]; ri ∈ C[[0,∞), R]; Iik :
[0,∞)→ R; 0 < t1 < t2 < ... < tk < ... are fixed impulsive points and
lim
k→∞

tk =∞.

In mathematical ecology, system (1.1) denotes a model of the dy-
namics of an n-species system in which each individual competes with
all the others for a common resource and the intra-species competi-
tion depends on the maximum values of the population densities xj(s)
(j = 1, ..., n, j 6= i, over the past time interval [t− τ, t], where τ > 0 is
a constant. The growth functions ri are not necessarily positive, since
the environment fluctuates randomly; in bad conditions, ri may be
negative. If at a certain time, biotic and antropogeneous factors act
on the population ”momentarily”, then the population number varies
by jumps. The numbers xi(tk) and xi(t

+
k ) are, respectively, the pop-

ulation densities of species i before and after impulse perturbation at
the moment tk; and Iik are functions which characterize the magnitude
of the impulse effect on the species i at the moments tk.

In this paper, we derive sufficient conditions for uniform stability
and uniform asymptotic stability of the positive solutions of system
(1.1). The paper is organized as follows. In Section 2, we give some
preliminaries and main definitions. In Section 3 we study the persis-
tence of positive solutions of system (1.1). In Section 4, we investigate
uniform stability and uniform asymptotic stability of positive solu-
tions. By means of piecewise continuous Lyapunov method, sufficient



conditions are obtained. Finally, in Section 5 two examples are given
to illustrate the effectiveness of the results obtained. We show that
by means of appropriate impulsive perturbations we can control the
system’s population dynamics. Some known results are improved and
generalized.

2 Preliminaries

Let Rn denote the n-dimensional Euclidean space, and let ||x|| =
|x1|+ ...+ |xn| be the norm of x ∈ Rn, R+ = [0,∞).

Let φ ∈ CB[[−τ, 0], Rn], where CB[[−τ, 0], Rn] = {σ : [−τ, 0]→ Rn,
σ(t) continuous and bounded on [−τ, 0] }, φ = col(φ1, φ2, ..., φn). We
denote by x(t) = x(t; 0, φ) = col(x1(t; 0, φ), x2(t; 0, φ), ..., xn(t; 0, φ))
the solution of system (1.1), satisfying the initial conditions{

xi(s; 0, φ) = φi(s), s ∈ [−τ, 0],
xi(0

+; 0, φ) = φi(0), i = 1, ..., n,
(2.1)

and by J+(0, φ) - the maximal interval of type [0, β) in which the so-
lution x(t; 0, φ) is defined.

Let ||φ||τ = max
s∈[−τ,0]

||φ(s)|| be the norm of the function

φ ∈ CB[[−τ, 0], Rn].
We note that [19] the solution x(t) = x(t; 0, φ) of problem (1.1)-

(2.1) is piecewise continuous function in [0,∞) with points of disconti-
nuity of the first kind at tk (k = 1, 2, ...) at which it is left continuous,
i.e. the following relations are satisfied:

xi(t
−
k ) = xi(tk), k = 1, 2, ...,

xi(t
+
k ) = xi(tk) + Iik(xi(tk)), tk ∈ (0,∞),

i = 1, ..., n.
We introduce the following assumptions:
A1. ri ∈ C[R+, R], i = 1, 2, ..., n.
A2. aij ∈ C[R+, R+], i, j = 1, 2, ..., n.



A3. 0 < t1 < t2 < ... and lim
k→∞

tk =∞.

A4. Iik ∈ C[R+, R], i = 1, 2, ..., n, k = 1, 2, ....
A5. xi + Iik(xi) ≥ 0 for xi ∈ R+, i = 1, 2, ..., n, k = 1, 2, ....

Given a continuous function g(t) which is defined on J , J ⊆ R, we
set

gL = inf
t∈J

g(t), gM = sup
t∈J

g(t).

3 Permanence

In the proofs of the main theorems, we shall use the following lemmas.

Lemma 3.1. Let the assumptions A1-A4 hold.
Then J+(0, φ) = [0,∞).

Proof. Since the conditions A1 and A2 hold, then from the exis-
tence theorem for the corresponding system without impulses [9, 21],
it follows that the solution x(t) = x(t; 0, φ) of problem (1.1)-(2.1) is
defined on [0, t1] ∪ (tk, tk+1], k = 1, 2, .... From conditions A3 and A4,
we conclude that it is continuable for t ≥ 0.

Lemma 3.2. Assume that:
1. Conditions A1-A5 hold.
2. x(t) = x(t; 0, φ) = col(x1(t; 0, φ), x2(t; 0, φ), ..., xn(t; 0, φ)) is a

solution of (1.1)-(2.1) such that

xi(s) = φi(s) ≥ 0, supφi(s) <∞, φi(0) > 0, 1 ≤ i ≤ n.

Then xi(t) > 0, 1 ≤ i ≤ n, t ∈ [0,∞).
Proof. Since φi(0) > 0, the condition A5 holds, and the solution

of (1.1) is defined by

xi(t)=φi(0) exp


∫ t

0

[
ri(s)−aii(s)xi(s)−

n∑
j=1
j 6=i

aij(s) sup
s∈[t−τ,t]

xj(s)

]
ds

 ,

t ∈ [0, t1],



xi(t)=xi(t
+
k ) exp


∫ t

tk

[
ri(s)−aii(s)xi(s)−

n∑
j=1
j 6=i

aij(s) sup
s∈[t−τ,t]

xj(s)

]
ds

 ,

t ∈ (tk, tk+1],

xi(t
+
k ) = xi(tk) + Iik(xi(tk)), i = 1, 2, ..., n, k = 1, 2, ...,

then the solution of (1.1) is positive for t ∈ [0,∞).
Definition 3.1. The solution x : [0,∞)→ Rn of the system (1.1)

is said to be a maximal solution if for any other solution x : [0,∞)→
Rn of the system (1.1) the inequality x(t) ≤ x(t) holds for t ∈ [0,∞).

The minimal solution x(t) of the system (1.1) can be defined anal-
ogously by reversing the above inequality.

Lemma 3.3. Assume that:
1. Conditions of Lemma 3.2 hold.
2. The function Ui(t) ≥ 0 is the maximal solution of the logistic

system {
U̇i(t) = Ui(t)

[
|rMi | − aLiiUi(t)

]
, t 6= tk,

Ui(t
+
k ) = Ui(tk) + IMik ,

where IMik = max{Iik(Ui(tk))} for 1 ≤ i ≤ n and k = 1, 2, ....
3. The function Vi(t) ≥ 0 is the minimal solution of the system

V̇i(t) = Vi(t)

[
rLi − aMii Vi(t)−

n∑
j=1
j 6=i

aMij sup
t−τ≤s≤t

Uj(s)

]
, t 6= tk,

Vi(t
+
k ) = Vi(tk) + ILik,

where ILik = min{Iik(Vi(tk))} for 1 ≤ i ≤ n and k = 1, 2, ....
4. 0 ≤ Vi(0

+) ≤ φi(0) ≤ Ui(0
+), 1 ≤ i ≤ n.

Then
Vi(t) ≤ xi(t) ≤ Ui(t), 1 ≤ i ≤ n, t ∈ [0,∞). (3.1)

Proof. Since all conditions of Lemma 3.2 are satisfied, the domain
{col(x1, x2, ..., xn) : xi > 0, i = 1, 2, ..., n} is positive invariant with
respect to system (1.1).



¿From (1.1), for i = 1, 2, ..., n, we have{
ẋi(t) ≤ xi(t)

[
|rMi | − aLiixi(t)

]
, t 6= tk,

xi(t
+
k ) ≤ xi(tk) + IMik , k = 1, 2, ...,

and
ẋi(t) ≥ xi(t)

[
rLi − aMii xi(t)−

n∑
j=1
j 6=i

aMij sup
t−τ≤s≤t

xj(s)

]
, t 6= tk,

xi(t
+
k ) ≥ xi(tk) + ILik, k = 1, 2, ....

Then from the differential inequalities for piecewise continuous func-
tions Vi(t), Ui(t) and xi(t) ([10]), we obtain that (3.1) is valid for
t ∈ [0,∞) and 1 ≤ i ≤ n.

Lemma 3.4. Let the conditions of Lemma 3.2 hold and

rLi ≥
n∑

j=1
j 6=i

aMij r
M
j

aLii
, i, j = 1, 2, ..., n.

Then for all t ∈ [0, t1] ∪ (tk, tk+1], k = 1, 2, ... and 1 ≤ i ≤ n, we
have

αi ≤ xi(t) ≤ βi, (3.2)

where

αi =

rLi −
n∑

j=1
j 6=i

aMij r
M
j

aLii

aMii
, βi =

|rMi |
aLii

.

If, in addition, the functions Iik are such that

αi ≤ xi + Iik(xi) ≤ βi

for xi ∈ R+, i = 1, 2, ..., n, k = 1, 2, ..., then the inequalities (3.2)
are valid for all t ∈ [0,∞) and 1 ≤ i ≤ n.



Proof. From Lemma 3.3, we have that (3.1) holds for t ∈ [0,∞)
and 1 ≤ i ≤ n. We shall prove that there exist positive constants αi
and βi such that

αi ≤ Vi(t) ≤ Ui(t) ≤ βi (3.3)

for all t ∈ [0, t1] ∪ (tk, tk+1], k = 1, 2, ... and 1 ≤ i ≤ n.
First, we shall prove that

Ui(t) ≤ βi (3.4)

for all t ∈ [0, t1] ∪ (tk, tk+1], k = 1, 2, ... and 1 ≤ i ≤ n.
If t ∈ [0,∞), t 6= tk and for some i, i = 1, 2, ..., n, Ui(t) > βi, then

for t ∈ [0, t1] ∪ (tk, tk+1], k = 1, 2, ..., we will have

U̇i(t) < Ui(t)
[
|rMi | − aLiiUi(t)

]
< 0.

This proves that (3.4) holds for all t ∈ [0, t1] ∪ (tk, tk+1], k = 1, 2, ...
and i = 1, 2, ..., n, as long as Ui(t) is defined.

The inequality αi ≤ Vi(t) is proved similarly.
Hence, the inequalities (3.3) are valid for all t ∈ [0, t1] ∪ (tk, tk+1],

k = 1, 2, ... and 1 ≤ i ≤ n.
It is now clear that if, in addition, the functions Iik are such that

αi ≤ xi(tk) + Iik(xi(tk)) ≤ βi for xi ∈ R+, i = 1, 2, ..., n, k = 1, 2, ...,
then inequalities (3.3) are valid for all i = 1, 2, ..., n and t ∈ [0,∞).

Corollary 3.1. Let the conditions of Lemma 3.4 hold, and the
functions Iik are such that

αi ≤ xi + Iik(xi) ≤ βi for xi ∈ R+, i = 1, 2, ..., n, k = 1, 2, ....

Then there exist positive constants m and M , m, M <∞ such that

m ≤ xi(t) ≤M, t ∈ [0,∞). (3.5)

4 Uniform stability

Let ϕ ∈ CB[[−τ, 0], Rn], ϕ = col(ϕ1, ϕ2, ..., ϕn) and x∗(t) = x∗(t; 0, ϕ) =
col(x∗1(t; 0, ϕ), x∗2(t; 0, ϕ), ..., x∗n(t; 0, ϕ)) be a strictly positive (component-



wise) solution of system (1.1), satisfying the initial conditions{
x∗i (s; 0, ϕ) = ϕi(s), s ∈ [−τ, 0],
x∗i (0

+; 0, ϕ) = ϕi(0), i = 1, 2, ..., n.

Next, we suppose that

ϕi(s) ≥ 0, supϕi(s) <∞, ϕi(0) > 0,

φi(s) ≥ 0, supφi(s) <∞, φi(0) > 0, i = 1, 2, ..., n.

In this paper we will use the following definitions for uniform sta-
bility and asymptotic stability of the solutions of (1.1)

Definition 4.1. The solution x∗(t) = x∗(t; 0, ϕ) of (1.1) is said to
be:

(a) uniformly stable, if for each ε> 0, there exists δ = δ(ε) > 0
such that ||φ− ϕ||τ < δ implies ||x(t)− x∗(t)|| < ε for all t ≥ 0;

(b) uniformly asymptotically stable, if it is uniformly stable and

lim
t→∞
||x(t)− x∗(t)|| = 0.

Theorem 4.1. Assume that:
1. Conditions of Lemma 3.4 hold.
2. m ≤ xi+Iik(xi) ≤Mform ≤ xi ≤M, i = 1, 2, ..., n, k = 1, 2, ....
3. The following inequalities are valid

aLjj ≥
n∑

i=1
i 6=j

aMji , t 6= tk, k = 1, 2, ....

Then the solution x∗(t) of system (1.1) is uniformly stable.

Proof. For t ≥ 0, define a Lyapunov functional



V (t, x(t), x∗(t)) =

n∑
i=1

[
| ln xi(t)

x∗i (t)
|+

n∑
j=1
j 6=i

∫ t

t−τ
aij(u+ τ) sup

s∈[u,t]
|xj(s)− x∗j(s)|du

]
. (4.1)

Obviously,

V (t, x(t), x∗(t)) ≥
n∑
i=1

| ln xi(t)

x∗i (t)
|, t ≥ 0. (4.2)

By the Mean Value Theorem and (3.5), it follows that for any
closed interval contained in [0, t1] ∪ (tk, tk+1], k = 1, 2, ... and for all
i = 1, 2, ...

1

M
|xi(t)− x∗i (t)| ≤ | lnxi(t)− lnx∗i (t)| ≤

1

m
|xi(t)− x∗i (t)|. (4.3)

From (4.1) and (4.3), we obtain

V (0+, x(0+), x∗(0+)) =

n∑
i=1

[
| lnxi(0+)− lnx∗i (0

+)|+
n∑

j=1
j 6=i

∫ 0

−τ
aij(u+ τ) sup

s∈[u,0]
|xj(s)−x∗j(s)|du

]

≤ 1

m
|ϕi(0)− φi(0)|+ λ||ϕ− φ||τ ≤

(
1

m
+ λ

)
||ϕ− φ||τ , (4.4)

where λ =
n∑
i=1

n∑
j=1

aMij .

For t > 0 and t = tk, k = 1, 2, ..., we have
V (t+k , x(t+k ), x∗(t+k )) =

n∑
i=1

[
| ln xi(t

+
k )

x∗i (t
+
k )
|+

n∑
j=1
j 6=i

∫ t+k

t+k −τ
aij(u+ τ) sup

s∈[u,t]
|xj(s)− x∗j(s)|du

]



=
n∑
i=1

[
| ln xi(tk)+Iik(xi(tk))

x∗i (tk)+Iik(x∗i (tk))
|+

n∑
j=1
j 6=i

∫ tk

tk−τ
aij(u+τ) sup

s∈[u,t]
|xj(s)−x∗j(s)|du

]

≤
n∑
i=1

[
| ln M

m
|+

n∑
j=1
j 6=i

∫ tk

tk−τ
aij(u+ τ) sup

s∈[u,t]
|xj(s)− x∗j(s)|du

]

≤
n∑
i=1

[
| ln xi(tk)

x∗i (tk)
|+

n∑
j=1
j 6=i

∫ tk

tk−τ
aij(u+ τ) sup

s∈[u,t]
|xj(s)− x∗j(s)|du

]

= V (tk, x(tk), x
∗(tk)). (4.5)

Consider the upper right-hand derivative D+
(1.1)V (t, x(t), x∗(t)) of

V (t, x(t), x∗(t)) with respect to system (1.1). For t ≥ 0 and t 6= tk,
k = 1, 2, ..., we derive the estimate

D+
(1.1)V (t, x(t), x∗(t))

≤
n∑
i=1

[
−aii(t)|xi(t)− x∗i (t)| +

n∑
j=1
j 6=i

aij(t+ τ)|xj(t)− x∗j(t)|

]

=
n∑
j=1

[
−ajj(t)|xj(t)− x∗j(t)| +

n∑
i=1
i 6=j

aij(t+ τ)|xj(t)− x∗j(t)|

]

≤
n∑
j=1

[
−aLjj|xj(t)− x∗j(t)| +

n∑
i=1
i 6=j

(
aMij

)
|xj(t)− x∗j(t)|

]
.

¿From the last inequality and condition 3 of Theorem 4.1, we ob-
tain

D+
(1.1)V (t, x(t), x∗(t)) ≤ 0, (4.6)

t ≥ 0 and t 6= tk, k = 1, 2, ....
Given 0 < ε < M , choose δ = εm

2M(1+λm)
. Then, from (4.2), (4.4),

(4.5) and (4.6), we obtain

||x(t)− x∗(t)|| ≤MV (t, x(t), x∗(t)) ≤MV (0+, x(0+), x∗(0+))



≤M

(
1

m
+ λ

)
||ϕ− φ||τ ≤ ε,

t ≥ 0. This shows that the solution x∗(t) of system (1.1) is uniformly
stable.

Theorem 4.2. In addition to the assumptions of Theorem 4.1,
suppose there exists a nonnegative constant µ such that

aLjj ≥ µ+

(
n∑

i=1
i6=j

aMji

)
, t 6= tk, k = 1, 2, .... (4.7)

Then the solution x∗(t) of system (1.1) is uniformly asymptotically sta-
ble.

Proof. We consider again the Lyapunov functional (4.1). From
(4.3) and (4.7), we obtain

D+
(1.1)V (t, x(t), x∗(t)) ≤ − µ

m

n∑
i=1

|xi(t)− x∗i (t)| ≤ −µV (t, x(t), x∗(t)),

t ≥ 0 and t 6= tk, k = 1, 2, ....
¿From the last inequality and (4.5), we have

V (t, x(t), x∗(t)) ≤ V (0+, x(0+), x∗(0+))exp {−µt} (4.8)

for all t ≥ t0. Then, from (4.2), (4.8) and (4.3) we deduce the inequality

n∑
i=1

|xi(t)− x∗i (t)| ≤M

(
1

m
+ λ

)
||ϕ− φ||τe−µt,

t ≥ 0.
This shows that the solution x∗(t) of system (1.1) is uniformly

asymptotically stable. The proof of Theorem 4.2 is complete.



5 Applications

In order to illustrate some feature of our main results, in the follow-
ing we will apply Theorem 4.2 to a two-species system. The results
obtained can be applied in the investigation of the stability of any
solution which is of interest.

One of the solutions which is an object of investigations for the sys-
tems of type (1.1) is the positive periodic solution. To consider periodic
environmental factors, it is reasonable to study the Lotka-Volterra sys-
tems with periodic coefficients. The assumption of periodicity of the
parameters ri, aij is a way of incorporating environmental periodicity
(e.g. seasonal effects of weather condition, food supplies, temperature,
etc).

The existence and stability of equilibrium states of some special
cases of (1.1) without impulses has been studied extensively in the
literature. In this case we do not need the assumptions of periodicity
on the parameters. Let τ > 0 be a constant.

Example 5.1. For the system
ẋ(t) = x(t)

[
6− 15x(t)− sup

s∈[t−τ,t]
y(s)

]
,

ẏ(t) = y(t)

[
17− 3 sup

s∈[t−τ,t]
x(s)− 16y(t)

]
,

(5.1)

one can show that the point (x∗, y∗) = (1
3
, 1) is an equilibrium which

is uniformly asymptotically stable [7].



Now, we consider the impulsive Lotka-Volterra system

ẋ(t) = x(t)

[
6− 15x(t)− sup

s∈[t−τ,t]
y(s)

]
, t 6= tk,

ẏ(t) = y(t)

[
17− 3 sup

s∈[t−τ,t]
x(s)− 16y(t)

]
, t 6= tk,

∆x(tk) = −2

5

(
x(tk)−

1

3

)
, k = 1, 2, ...,

∆y(tk) = −3

5

(
y(tk)− 1

)
, k = 1, 2, ...,

(5.2)

where 0 < t1 < t2 < ... and lim
k→∞

tk =∞.

For the system (5.2), the point (x∗, y∗) = (1
3
, 1) is an equilibrium

and all conditions of Theorem 4.2 are satisfied. In fact, for µ ≤ 1,
m = 1

3
and M = 1, we have

1

3
≤ x(tk) + I1k(x(tk)) =

9x(tk) + 2

15
≤ 1,

1

3
≤ y(tk) + I2k(y(tk)) =

2y(tk) + 3

5
≤ 1

for 1
3
≤ x(tk) ≤ 1, 1

3
≤ y(tk) ≤ 1, k = 1, 2, ....

Therefore, the equilibrium (x∗, y∗) = (1
3
, 1) is uniformly asymptot-

ically stable.
If, in the system (5.2), we consider the impulsive perturbations of

the form: 
∆x(tk) = −3

(
x(tk)−

1

3

)
, k = 1, 2, ...,

∆y(tk) = −3

5

(
y(tk)− 1

)
, k = 1, 2, ...,

then the point (x∗, y∗) = (1
3
, 1) is again an equilibrium, but there is

nothing we can say about its uniform asymptotic stability, because for
1
3
≤ x(tk) ≤ 1, we have −1 ≤ x(tk) + I1k(x(tk)) ≤

1

3
, k = 1, 2, ....



The example shows that by means of appropriate impulsive pertur-
bations we can control the system’s population dynamics. We can see
that impulses are used to keep the stability properties of the system.
On the other hand, a well-behaved system may lose its (asymptotic)
stability due to uncontrolled impulsive inputs. Theorem 4.2 provides a
set of sufficient conditions under which the asymptotic stability prop-
erties of a Lotka-Volterra system can be preserved under impulsive
perturbations.

Example 5.2. The system
ẋ(t) = x(t)

[
5− 15x(t)− 2 sup

s∈[t−τ,t]
y(s)

]
,

ẏ(t) = y(t)

[
201

10
− 1

2
sup

s∈[t−τ,t]
x(s)− 20y(t)

]
,

(5.3)

has an uniformly asymptotically stable equilibrium point (x∗, y∗) =
(1
3
, 0) which implies that the second species will be driven to extinction.
However, for the impulsive Lotka-Volterra system

ẋ(t) = x(t)

[
5− 15x(t)− 2 sup

s∈[t−τ,t]
y(s)

]
, t 6= tk,

ẏ(t) = y(t)

[
201

10
− 1

2
sup

s∈[t−τ,t]
x(s)− 20y(t)

]
, t 6= tk,

∆x(tk) = −1

2

(
x(tk)−

1

5

)
, k = 1, 2, ...,

∆y(tk) = −1

3

(
y(tk)− 1

)
, k = 1, 2, ...,

where 0 < t1 < t2 < ... and lim
k→∞

tk = ∞, the point (x∗, y∗) = (1
5
, 1) is

an equilibrium which is uniformly asymptotically stable. In fact, all



conditions of Theorem 4.2 are satisfied for µ ≤ 1
2
, m = 1

5
, M = 1 and

1

5
≤ x(tk) + I1k(x(tk)) =

5x(tk) + 1

10
≤ 1,

1

5
≤ y(tk) + I2k(y(tk)) =

2y(tk) + 1

3
≤ 1

for 1
5
≤ x(tk) ≤ 1, 1

5
≤ y(tk) ≤ 1, k = 1, 2, ....

This shows that the impulsive perturbations can prevent the pop-
ulation from going extinct.
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