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Abstract.

In this paper we find application of some new cumulative distribution
functions transformations to construct a family of sigmoidal functions
based on the Gompertz logistic function.

We prove estimates for the Hausdorff approximation of the shifted
Heaviside step function by means of these families.

Numerical examples, illustrating our results are given.
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1 Introduction

In literature, several transformations exists to obtain a new cumu-
lative distribution function (cdf) using other(s) well-known cdf(s) [1]–
[7].

Many researches have used the quadratic rank transmuted map
(QRTM) to develop new life time distribution.

Definition. Another popular transformation by using a (cdf) F (t) is
[5]:

G(t) =
1

e− 1

(
eF (t) − 1

)
. (1)

The transformation (1) has great applications in data analysis.

Definition. Another popular transformation by using a (cdf) F (t) is
[7]:

G1(t) = e1−
1

F (t) . (2)

Kumar et al. [8] proposed the cdf distribution by the use of any
two cdf F1(t) and F2(t) of baseline continuous distribution(s) with
common spectrum, by the transformation:

Definition. [8]

G2(t) =
F1(t) + F2(t)

1 + F1(t)
. (3)

If F1(t) = F2(t) = F (t), then (3) reduces to the following form

G2(t) =
2F (t)

1 + F (t)
. (4)

The transformation (3) has great applications in life time analysis.

Definition. Define the logistic (Verhulst) function f on R as

f(t) =
1

1 + e−kt
. (5)

The logistic function belongs to the important class of smooth
sigmoidal functions arising from population and cell growth models.



Since then the logistic function finds applications in many scientific
fields, including biology, population dynamics, chemistry, demography,
economics, geoscience, mathematical psychology, probability, financial
mathematics, statistics, insurance mathematics, nucleation theory to
name a few [9]–[18], [41]–[47].

Definition. The (interval) step function is:

ht0(t) =


0, if t < t0,

[0, 1], if t = t0,

1, if t > t0,

usually known as shifted Heaviside step function.

Definition. [19], [20] The Hausdorff distance (the H–distance) ρ(f, g)
between two interval functions f, g on Ω ⊆ R, is the distance between
their completed graphs F (f) and F (g) considered as closed subsets of
Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (6)

wherein ||.|| is any norm in R2, e. g. the maximum norm ||(t, x)|| =
max{|t|, |x|}; hence the distance between the points A = (tA, xA),
B = (tB, xB) in R2 is ||A−B|| = max(|tA − tB|, |xA − xB|).
Definition. The Gompertz function σα,β(t) is defined for α, β > 0 by
[31]–[33]:

σα,β(t) = ae−αe
−βt

, (7)

where a is the upper asymptote when time approaches +∞.
Gompertz functions, are introduced by Benjamin Gompertz for the

study of his demographic model, which represents a refinement of the
Malthus model.

The functions find applications in modeling tumor growth and in
population aging description.

In biology, the Gompertz curve or Gompertz function is commonly
used to model growth process where the period of increasing growth
is shorter than the period in which growth decreases.



For other results, see [34]–[40].
Let F (t) = f(t). Then the following theorems are valid

Theorem A. [30] The one–sided H-distance d(k) between the
function ht0 and the function G can be expressed in terms of the rate
parameter k for any real k ≥ 2 as follows:

dl =
1

2.5(1 + 0.254884k)
< d <

ln(2.5(1 + 0.254884k))

2.5(1 + 0.254884k)
= dr. (8)

Theorem B. [30] The one–sided H-distance d1(k) between the
function ht0 and the function G1 can be expressed in terms of the rate
parameter k for any real k ≥ 2 as follows:

dl1 =
1

2.5(1 + 0.346574k)
< d1 <

ln(2.5(1 + 0.346574k))

2.5(1 + 0.346574k)
= dr1 . (9)

Theorem C. [41] The H-distance d2(k) between the function ht0
and the function G2 can be expressed in terms of the rate parameter
k for any real k ≥ 2 as follows:

dl2 =
1

2.5(1 + 0.25k)
< d2 <

ln(2.5(1 + 0.25k))

2.5(1 + 0.25k)
= dr2 . (10)

2 Main Results

In this Section we discuss several computational, modelling and
approximation issues related to the class of cdf transformation (2)–(4)
to construct a family of sigmoidal functions based on the Gompertz
logistic function.



2.1 Type III.

Let us consider the following sigmoid

G∗(t) =
2e−e

−βt

1 + e−e−βt
(11)

with

G∗(t0) =
1

2
, t0 = − 1

β
ln(ln 3) (12)

based on (4) with the Gompertz logistic function F (t) = σ1,β(t) =

e−e
−βt

.

The H-distance d3 = ρ(ht0 , G
∗) between the shifted Heaviside step

function ht0 and the sigmoidal function G∗ satisfies the relation:

G∗(t0 + d3) =
2e−e

−β(t0+d3)

1 + e−e
−β(t0+d3)

= 1− d3. (13)

The following theorem gives upper and lower bounds for d3 = d3(β)

Theorem 1 The one–sided H-distance d3(β) between the function
ht0 and the function G∗ can be expressed in terms of the parameter β
for any real β ≥ 2.41793 as follows:

dl3 =
1

2.5(1 + 0.41198β)
< d3 <

ln(2.5(1 + 0.41198β))

2.5(1 + 0.41198β)
= dr3 . (14)

Proof. We define the functions

F3(d3) =
2e−e

−β(t0+d3)

1 + e−e
−β(t0+d3)

− 1 + d3 (15)

G3(d3) = −1

2
+ (1 + 0.41198β)d3. (16)

From Taylor expansion



Figure 1: The functions F3(d) and G3(d) for β = 15.

2e−e
−β(t0+d3)

1 + e−e
−β(t0+d3)

− 1 + d3 − (−1

2
+ (1 + 0.41198β)d3) = O(d23)

we see that the function G3(d3) approximates F3(d3) with d3 → 0 as
O(d23) (cf. Fig. 1).

In addition G′3(d3) > 0 and for β ≥ 2.41793

G3(dl3) < 0; G3(dr3) > 0.

This completes the proof of the inequalities (14).
The generated sigmoidal functions G∗(t) for β = 7, 15 and 18 are

visualized on Fig. 2–Fig. 4.
Some computational examples using relations (14) are presented

in Table 1.
The third column of Table 1 contains the value of d3 for prescribed

values of β computed by solving the nonlinear equation (13).



Figure 2: The H-distance d3(β) between the functions ht0 and G∗

for β = 7 is d3 = 0.167936; dl3 = 0.10299; dr3 = 0.234109; t0 =
−0.0134354.

Figure 3: The H-distance d3(β) between the functions ht0 and G∗ for
β = 15 is d3 = 0.108108; dl3 = 0.0557126; dr3 = 0.160873; t0 =
−0.00626986.



Figure 4: The H-distance d3(β) between the functions ht0 and G∗ for
β = 18 is d3 = 0.0964647; dl3 = 0.0475306; dr3 = 0.144796; t0 =
−0.00522488.

2.2 Type II.

Let us consider the following sigmoid

G1∗(t) = e
1− 1

e−e−βt (17)

with

G1∗(t0) =
1

2
, t0 = − 1

β
ln(ln(1 + ln 2)) (18)

based on (2) with the Gompertz function F (t) = σ1,β(t) = e−e
−βt

.

The H-distance d4 = ρ(ht0 , G1∗) between the shifted Heaviside step
function ht0 and the sigmoidal function G1∗ satisfies the relation:

G1∗(t0 + d4) = e
1− 1

e−e
−β(t0+d4) = 1− d4. (19)



Figure 5: Software tools in CAS Mathematica.



β dl d3 computed by (13) dr
7 0.10299 0.167936 0.234109
15 0.0557126 0.108108 0.160873
200 0.00479639 0.0172917 0.0256122
300 0.00321043 0.0125866 0.0184322
500 0.00193246 0.00836835 0.0120759
600 0.00161168 0.00721971 0.0103639
700 0.00138224 0.00636772 0.00910072
1000 0.00096857 0.00475042 0.00672157

Table 1: Bounds for d3(β) computed by (13) and (14) for various β

Based on the methodology proposed in the present note, the reader
may formulate the corresponding modeling and approximation prob-
lems on his/her own.

The following theorem gives upper and lower bounds for d4 = d4(β)

Theorem 2 The one–sided H-distance d4(β) between the function
ht0 and the function G1∗ can be expressed in terms of the parameter
β for any real β ≥ 0.888606 as follows:

dl4 =
1

2.5(1 + 0.445796β)
< d4 <

ln(2.5(1 + 0.445796β))

2.5(1 + 0.445796β)
= dr4 . (20)

Proof. We define the functions

F4(d4) = e
1− 1

e−e
−β(t0+d4) − 1 + d4 (21)

G4(d4) = −1

2
+ (1 + 0.445796β)d4. (22)

From Taylor expansion

e
1− 1

e−e
−β(t0+d4) − 1 + d4 − (−1

2
+ (1 + 0.445796β)d4) = O(d24)



Figure 6: The functions F3(d) and G3(d) for β = 15.

we see that the function G4(d4) approximates F4(d4) with d4 → 0 as
O(d24) (cf. Fig. 6).

In addition G′4(d4) > 0 and for β ≥ 0.888606

G4(dl4) < 0; G4(dr4) > 0.

This completes the proof of the inequalities (20).

The generated sigmoidal functions G1∗(t) for β = 7, 15 are visual-
ized on Fig. 7–Fig. 9.

From the graphics it can be seen that the ”saturation” is faster.

2.3 Type I.

Let us consider the following sigmoid



Figure 7: The H-distance d4(β) between the functions ht0 and G1∗

for β = 7 is d4 = 0.165054; dl4 = 0.0970739; dr4 = 0.226404; t0 =
0.0916193.

Figure 8: The H-distance d4(β) between the functions ht0 and G1∗

for β = 15 is d4 = 0.106452; dl4 = 0.0520363; dr4 = 0.15381; t0 =
0.00427557.



Figure 9: The H-distance d4(β) between the functions ht0 and G1∗ for
β = 18 is d4 = 0.095035; dl4 = 0.0443246; dr4 = 0.138125.

G3∗(t) =
1

e− 1

(
ee

−e−βt − 1
)

(23)

with

G3∗(t0) =
1

2
, t0 = − 1

β
ln(− ln(ln

1 + e

2
)) (24)

based on (1) with the Gompertz function F (t) = σ1,β(t) = e−e
−βt

.

The H-distance d5 = ρ(ht0 , G3∗) between the shifted Heaviside step
function ht0 and the sigmoidal function G3∗ satisfies the relation:

G3∗(t0 + d5) =
1

e− 1

(
ee

−e−β(t0+d5) − 1
)

= 1− d5. (25)

Based on the methodology proposed in the present note, the reader
may formulate the corresponding modeling and approximation prob-
lems on his/her own.

The following theorem gives upper and lower bounds for d5 = d5(β)



Figure 10: The H-distance d5(β) between the functions ht0 and G3∗ for
β = 7 is d5 = 0.183892; dl5 = 0.123293; dr5 = 0.258076; t0 = 0.105494.

Theorem 3 The one–sided H-distance d5(β) between the function
ht0 and the function G3∗ can be expressed in terms of the parameter
β for any real β ≥ 1.23556 as follows:

dl5 =
1

2.5(1 + 0.320614β)
< d5 <

ln(2.5(1 + 0.320614β))

2.5(1 + 0.320614β)
= dr5 . (26)

The proof follows the ideas given in this paper and will be omitted.

3 Conclusions

To achieve our goal, we obtain new estimates for the H-distance be-
tween a shifted Heaviside step function and its best approximating
family of transmuted cumulative distribution functionsG∗(t) andG1∗(t)
based on the Gompertz function.

The result has application in population dynamics and neural net-
works.

Numerical examples, illustrating our results are given.



Figure 11: The H-distance d5(β) between the functions ht0 and G3∗

for β = 15 is d5 = 0.11836; dl5 = 0.0688562; dr5 = 0.184241; t0 =
0.0492304.

For other results, see [21]–[29].
We propose a software module within the programming environ-

ment CAS Mathematica for the analysis of the considered families of
transmuted cumulative distribution functions.

The module offers the following possibilities:
- generation of the function G∗(t) under user defined values of the

β and t0;
- calculation of the H-distance between the Heaviside function ht0

and the sigmoidal function G∗(t);
- software tools for animation and visualization.
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Figure 12: The H-distance d5(β) between the functions ht0 and G3∗

for β = 18 is d5 = 0.105515; dl5 = 0.059075; dr5 = 0.16712; t0 =
0.0410253.
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