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Abstract.

The Kumaraswamy–Dagum distribution is a flexible and simple
model with applications to income and lifetime data.

We prove upper and lower estimates for the Hausdorff approxima-
tion of the shifted Heaviside function h̃t0(t) by a class of Kumaraswamy–
Dagum–Log–Logistic cumulative distribution function – (KD–CDF).
Numerical examples, illustrating our results are given.
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1. Introduction. Dagum (1977) [3] motivates his model from the
empirical observation that the income elasticity η(F, t) of the cumu-
lative distribution function (CDF) F of income is a decreasing and
bounded function F .

The cumulative distribution function (cdf) of Dagum distribution
is given by

GD(t, λ, β, δ) =
(
1− λt−δ

)−β
, (1)

for t ≥ 0, where λ is a scale parameter; δ and β are shape parameters.
The cumulative distribution function (cdf) of Kumuraswamy dis-

tribution is given by [10]

G(t) = 1−
(
1− tψ

)φ
, t ∈ (0, 1) (2)

for ψ > 0 and φ > 0.
This approach was further developed in a series of papers on gen-

erating systems for income distribution [4]–[7].
For other results, see [8], [9], [10] [11].

For an arbitrary (cdf) F (t) with (PDF) f(t) = dF (t)
d t

the family of
Kumaraswamy–G distribution with (cdf) Gk(t) is given by

Gk(t) = 1−
(
1− Fψ(t)

)φ
, (3)

for ψ > 0 and φ > 0.
By letting F (t) = GD(t), we obtain the Kumuraswamy–Dagum

(KD) distribution, with (cdf)

GKD(t) = 1−
(

1−Gψ
D(t)

)φ
, (4)

i.e.



GKD(t) = 1−
(

1−
((

1 + λt−δ
)−β)ψ)φ

. (5)

See [10] for further details.

When β = 1, we obtain Kumaraswamy–Dagum–Log–Logistic cu-
mulative distribution function – (KD–CDF):

GKD(t) = 1−
(

1−
((

1 + λt−δ
)−1)ψ)φ

. (6)

In this paper we prove upper and lower estimates for the Hausdorff
approximation of the shifted Heaviside function h̃t0(t) by a class of
Kumaraswamy–Dagum–Log–Logistic cumulative distribution function
– (KD–CDF).

2. Preliminaries.

Definition 1. The (basic) step function is:

h̃t0(t) =


0, if t < t0,

[0, 1], if t = t0,

1, if t > t0,

(7)

usually known as shifted Heaviside function.

Definition 2. [12], [13] The Hausdorff distance (the H–distance) [12]
ρ(f, g) between two interval functions f, g on Ω ⊆ R, is the distance
between their completed graphs F (f) and F (g) considered as closed
subsets of Ω× R.

More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (8)

wherein ||.|| is any norm in R2, e. g. the maximum norm ||(t, x)|| =
max{|t|, |x|}; hence the distance between the points A = (tA, xA), B =
(tB, xB) in R2 is ||A−B|| = max(|tA − tB|, |xA − xB|).



Let us point out that the Hausdorff distance is a natural measuring
criteria for the approximation of bounded discontinuous functions [1].

3. Main Results.

Let us consider the following five parametric sigmoid function

F ∗(t) = 1−
(

1−
((

1 + λt−δ
)−β)ψ)φ

(9)

with

F ∗(t0) =
1

2
, t0 =

(
1

λ

((
1− 0.5

1
φ

)− 1
βψ − 1

))− 1
δ

. (10)

The H-distance d = ρ(h̃t0 , F
∗) between the shifted Heaviside step

function h̃t0 and the sigmoidal function F ∗ satisfies the relation:

F ∗(t0 + d) = 1−
(

1−
((

1 + λ(t0 + d)−δ
)−β)ψ)φ

= 1− d. (11)

The following theorem gives upper and lower bounds for d in the
case β = 1

Theorem 1. Let

a = −

1−


1

1 +

((
−1+(1−0.5

1
φ )

− 1
ψ

λ

)− 1
δ

)−δ
λ


ψ

φ

(12)



b = 1 + δ

((
−1+(1−0.5

1
φ )

− 1
ψ

λ

)− 1
δ

)−1−δ
λ

 1

1+

(−1+(1−0.5
1
φ )

− 1
ψ

λ

)− 1
δ


−δ

λ


1+ψ

×

×

1−

 1

1+

(−1+(1−0.5
1
φ )

− 1
ψ

λ

)− 1
δ


−δ

λ


ψ
−1+φ

φψ.

(13)
The H-distance d between the function h̃t0 and the function F ∗ can

be expressed in terms of the parameters for 2b
−a > e2 as follows:

dl =
1
2b
−a

< d <
ln
(

2b
−a

)
2b
−a

= dr. (14)

Proof. We define the functions

H(d) = F ∗(t0 + d)− 1 + d (15)

G(d) = a+ bd. (16)

From Taylor expansion

H(d)−G(d) = O(d2)

we see that the function G(d) approximates H(d) with d→ 0 as O(d2)
(cf. Fig. 1).

In addition G′(d) > 0 and for 2b
−a > e2

G(dl) < 0; G(dr) > 0.



Figure 1: The functions H and G.

This completes the proof of the inequalities (14).

The generated sigmoidal functions F ∗(t) for λ = 0.1; δ = 2.5; β =
1; ψ = 0.7; φ = 1.8 and λ = 0.001; δ = 3.5; β = 1; ψ = 0.8; φ = 1.9
are visualized on Fig. 2–Fig. 3.

From the Fig. 2–Fig.3 it can be seen that the ”supersaturation” is
fast.

Following Dagum (1977), in a period when individual data were
rarely available, minimized

n∑
i=1

Fn(ti)−

(
1−

(
1−

((
1 + λt−δi

)−β)ψ)φ)2
 .

a non–linear least–squares criterion based on the distance between the
empirical Fn and the CDF of a Kumaraswamy–Dagum approximation.

The appropriate least–square fitting of the real data (the experi-
mental data - biomass for Xantobacter autotrophycum with electric
field, see [26]) by the Dagum model yields for β = 1, λ = 110, δ = 1.45,
ψ = 1.35 and φ = 1.1 and is visualized on Fig. 4.



Figure 2: The function F ∗(t) for λ = 0.1; δ = 2.5; β = 1; ψ = 0.7;
φ = 1.8; t0 = 0.226373; H-distance d = 0.175123; dl = 0.0689168;
dr = 0.184343.

Figure 3: The function F ∗(t) for λ = 0.001; δ = 3.5; β = 1; ψ = 0.8;
φ = 1.9; t0 = 0.0979526; H-distance d = 0.0763243; dl = 0.0244187;
dr = 0.0906522.



Figure 4: The appropriate least–square fitting of the real data by the
Dagum model yields for β = 1, λ = 110, δ = 1.45, ψ = 1.35 and
φ = 1.1.

4. Conclusion

In this paper we prove upper and lower estimates for the Hausdorff
approximation of the shifted Heaviside function h̃t0(t) by a class of
Kumaraswamy–Dagum–Log–Logistic cumulative distribution function
– (KD–CDF).

A family of five parametric sigmoidal functions based on Kumuraswamy–
Dagum cumulative distribution function is introduced finding appli-
cation in population dynamics.

Numerical examples, illustrating our results are given.
We propose a software module (intellectual property) within the

programming environment CAS Mathematica for the analysis of the
considered family of (KD–CDF) functions.

For other results, see [14]–[26].
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