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Abstract

We consider the classical Monod model and modify it by
introducing generic growth rate for the biomass that is mono-
tonically increasing with respect to the functional response. We
show that this modification does not lead to qualitatively new
possibilities for the model solutions. On the other hand, how-
ever, it allows better flexibility in terms of fitting experimental
data. In particular, we use experimental data for microbial
growth under inhibitory conditions, make parametric identifi-
cation and show that the modified model performs far better
than the classical one.
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1 Introduction

The basic model, describing bacterial growth processes in continuous
bioreactors is the Monod model [9]:

ds

dt
=
(
s(0) − s

)
D − αVmaxsx

s+Ks

,

dx

dt
=

(
Vmaxs

s+Ks

−D
)
x,

x(0) = x0, s(0) = s0,

(1)

where s(t) and x(t) denote, respectively, concentrations of substrate
and biomass at time t, s(0) is the inlet substrate concentration and D is
the wash-out rate. The Monod function Vmaxs/(s+Ks) describes con-
sumption, and α characterizes the effectiveness of the biotechnological
process, i.e. “transformation” of substrate into biomass.

It is well-known, however, that the classical models perform well
in describing experimental data, when microorganisms are in optimal
conditions, but not in suboptimal or inhibiting conditions [1, 11]. That
is, there might be certain conditions of the environment like tempera-
ture, pH, substances (other than the limiting substrate) that make the
conditions not optimal. The main purpose of this paper is to study
whether using generic growth rate for the biomass could give better
results when describing experimental data in this case. In the present
article, we shall consider an example of the inhibiting effect of high
sugar concentrations on two wine-making strains.

Considering predator-prey type systems, A.J. Terry [10] suggested
that in some cases the growth rate of organisms is not adequately
modelled by a linear, with respect to the consumption, function. The
reasoning behind this statement is the following. It needs a certain
level of energy intake before an organism can reproduce. Thus, until
a certain threshold is reached the reproduction should be zero, rather
than a linearly increasing function. Also, if the functional response is
sufficiently large, the reproduction rate reaches a plateau level, since
no organism can reproduce infinitely fast.
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Using the latter idea, in Section 2, we modify the classical Monod
model (1) by using generic growth rate for the biomass. In Section 3,
the dynamical behavior of the model’s solutions is studied. Then, in
Section 5, we use experimental data from two wine-making strains
(described in Section 4) to compare the ability of the classical and the
modified model to fit real data.

2 Mathematical model

Using the idea from [10], we consider the following model:

ds

dt
=
(
s(0) − s

)
D − αVmaxsx

s+Ks

,

dx

dt
=

[
B
(
Vmaxs

s+Ks

)
−D

]
x,

x(0) = x0, s(0) = s0.

(2)

We denote F(s) = Vmaxs/(s+Ks) and let the function B(F) be defined
in the following manner:

(i) B = B(F) = B(F(s)) is continuously differentiable w.r.t. F ≥ 0
and s ≥ 0;

(ii) B(0) = 0 and 0 ≤ B(F) ≤ C F for some constant C > 0;

(iii) there exist non-negative constants A1 < A2 (A2 possibly equal
to +∞) such that, for s ≥ 0, B′ = dB/dF = 0 if F ∈ [0, A1] ∪
[A2,+∞), and B′ > 0 if F ∈ (A1, A2).

In our numerical experiments, we shall use the following possible
form of B(F), satisfying the aforementioned conditions [10]:

B(F) =


0, 0 ≤ F ≤ A1,

β cos2
{(

π
2

) (
1 +

[
F−A1
A2−A1

])}
, A1 ≤ F ≤ A2,

β, F ≥ A2.
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Remark 1. We shall neglect the death rate of the microorganisms,
assuming that it is much smaller than the wash-out rate or, for a batch
process, the time scale is such that it affects the process little.

3 Dynamical behavior of the model solu-

tions

As we shall show in the present section, the results for the classical
Monod model (see e.g., [9]) can be easily extended for the model with
generic growth function for the biomass.

Nondimensionalizing the model (2) with s̄ = s/s(0), t̄ = Dt, x̄ =
αx/(Ds(0)), B̄ = B/D, K̄s = Ks/s

(0) and skipping the bars for nota-
tional simplicity, we consider the system

ds

dt
= 1− s− Vmaxsx

s+Ks

,

dx

dt
=

[
B
(
Vmaxs

s+Ks

)
− 1

]
x.

(3)

Let s∗ denote the unique positive value for s, such that

B
(
Vmaxs

s+Ks

)
= 1.

If such a value does not exist, we define s∗ := +∞. Let us further
define

x∗ :=
(s∗ +Ks)(1− s∗)

Vmaxs∗
.

Then, obviously, the system (2) can have up to two equilibrium
points—E1 = (1, 0), which always exists, and E∗ = (s∗, x∗), which
exists only when the inequalities 0 < s∗ < 1 hold true.

Lemma 1. When the internal equilibrium E∗ = (s∗, x∗) exists, i.e.
when 0 < s∗ < 1, then there exists time T > 0 such that s(t) < 1 for
each t ≥ T .
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Proof. Assume that s(t) ≥ 1 for each t > 0. Then we have

ds

dt
= 1− s− Vmaxs

s+Ks

x < 0.

Barbălat’s Lemma (cf. [4]) implies that limt→+∞ s(t) = 1 and limt→+∞ x(t) =
0 are fulfilled. Using the monotonicity of B we obtain that

B(F(s))− 1 ≥ B(F(1))− B(F(s∗)) > 0,

and thus
dx

dt
= (B(F(s)) − 1)x > 0 for all sufficiently large t, which

contradicts the boundedness of x(t). This contradiction shows that
there exists a sufficiently large T > 0 such that s(T ) ≤ 1 is satisfied.
Moreover, if the equality s(t̃) = 1 holds true for some t̃ ≥ T , then

ds

dt
(t̃) = 1− s(t̃)− Vmaxs(t̃)

s(t̃) +Ks

x(t̃) = − Vmaxs(t̃)

s(t̃) +Ks

x(t̃) < 0.

The last inequality shows that s(t) < 1 for each t > T .

Remark 2. Let us note that in order to study the dynamics of (3), it
is sufficient to only consider the positively invariant set ∆ = {(s, x) ∈
R2 : 0 < s < 1, x > 0}, since all trajectories with positive initial
conditions enter it for finite time.

The dynamics of (2) is completely characterized by the following
two theorems.

Theorem 1. In the case, when the system (2) has no internal equilib-
ria, i.e. when s∗ > 1 holds, then the boundary equilibrium E1 = (1, 0)
is globally asymptotically stable.

Proof. Consider the function V (s, x) = x on the positively invariant
set ∆.

For the directional derivative over the trajectories of (2) the fol-
lowing is satisfied:

V̇ =

[
B
(
Vmaxs

s+Ks

)
− 1

]
x.
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The latter is always non-positive in ∆, taking into account that

B
(
Vmaxs

s+Ks

)
< B

(
Vmax

1 +Ks

)
< B

(
Vmaxs

∗

s∗ +Ks

)
= 1.

Further, V̇ = 0 exactly when x = 0.
Now, from the LaSalle Invariance Principle it holds that the ω-

limit set is contained in the set {(x, s) ∈ cl∆ : x = 0}. However,
all trajectories in it are attracted by the equilibrium point E1, which
concludes the proof of the theorem.

Before we consider the case, when the internal equilibrium point
E∗ exists, we shall prove the following lemma, necessary for the proof
of E∗ being globally asymptotically stable.

Lemma 2. In the case, when the internal equilibrium E∗ = (s∗, x∗)
exists, i.e. when 0 < s∗ < 1 hold, the equilibrium point E1 in an
unstable equilibrium.

Proof. The variational matrix of the system (2), computed at the point
E1, has the following form:[

−1 − Vmax

1+Ks

0 B
(
Vmax

1+Ks

)
− 1

]
.

Taking into account that from the monotonicity of B and the con-
dition 0 < s∗ < 1 it follows that

B
(

Vmax
1 +Ks

)
> B

(
Vmaxs

∗

s∗ +Ks

)
= 1,

it can be easily checked that E1 is a saddle point, i.e. it is unstable.

Theorem 2. In the case, when the internal equilibrium E∗ = (s∗, x∗)
exists, i.e. when 0 < s∗ < 1, it is globally asymptotically stable.

Proof. Choose and fix an arbitrary initial point (s(0), x(0)) ∈ ∆.
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We consider the function

V (s, x) =

∫ s

s∗

B(F(ξ))− 1

1− ξ
dξ +

1

x∗

∫ x

x∗

η − x∗

η
dη

on the set ∆, where F = Vmaxs/(s+Ks) is the Monod function, mod-
ifying an idea from [12]. Its directional derivative over the trajectories
of (2) is

V̇ = ∇V ·
(
ds

dt
,
dx

dt

)
=
B(F(s))− 1

1− s

(
1− s− Vmaxsx

s+Ks

)
+

1

x∗
· x− x

∗

x
· (B(F(s))− 1)x

= x (B(F(s))− 1)

[
− Vmaxs

(s+Ks)(1− s)
+

Vmaxs
∗

(s∗ +Ks)(1− s∗)

]
.

The latter is obviously non-positive on ∆, since either the second term
is positive, and the third one is negative, or vice versa, depending on
whether s > s∗, or s < s∗.

Denote by L+(s(0), x(0)) the ω-limit set of the solution (s(t), x(t))
of (3) starting with (s(0), x(0)) ∈ ∆. It is known that L+(s(0), x(0))
is invariant with respect to the trajectories of (3). Also (because each
trajectory of the model is contained in a compact set), L+(s(0), x(0)
is nonempty, compact and connected, and is contained in the closure
cl∆, i.e. L+(s(0), x(0)) ⊂ {(s, x) : 0 ≤ s ≤ 1, x ≥ 0}.

According to the LaSalle invariance principle every solution of the
model starting from a point of ∆ is defined in the interval [0,+∞) and
approaches the largest invariant set which is contained in the closure of
the set Z, where the derivative V̇ of V with respect to the trajectories
of the model is equal to zero, i.e. Z := {(s, x) ∈ ∆ : V̇ (s, x) = 0}.

Let (s̃, x̃) be an arbitrary point from L+(s(0), x(0)). Then the
following two cases are possible: (i) s̃ = 1 and x̃ = 0; (ii) s̃ = s? and
x̃ = x?.

Assume that case (i) holds true. The continuity of B(·) implies
the existence of a neighborhood U of s̃ so that for each point s ∈ U
the inequality B(F(s)) > B(F(s?)) holds true. Hence, if a trajectory
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(s(t), x(t)) enters the set U , then the right-hand side of the second
equation in the model is strongly positive (because x(t) > 0). This
means that x(t) will strictly increase and the trajectory could not
tend to the point (s̃, x̃) for which x̃ = 0. So we obtain that case (i) is
impossible. Hence the case (ii) is fulfilled. From here it follows that
Z = {E?}, and therefore L+(s(0), x(0)) = {(s∗, x∗)}. This completes
the proof of Theorem 2.

4 Physical experiments

Data from two different wine-making strains, namely, Saccharomyces
cerevisiae MB and Saccharomyces cerevisiae FR were used [2].

Yeast are unicellular fungi, used as a model organism in molecular
biology and with a particularly important role in genetic engineering.
In general, these microscopic fungi have diverse natural habitats—
plant leaves and owers, soil, and salt water, but also they can be found
on the surfaces and in the intestinal tracts of warm-blooded animals,
as symbionts or as parasites. Fermented beverages and foods have
been significant for people for millennia. The main fermenting agent,
Saccharomyces cerevisiae, is used in the production of beer, wine, and
bread, as well as fermented dairy products worldwide. Also, Saccha-
romyces cerevisiae is often taken as a vitamin supplement, because it
is 50 percent protein and a rich source of B vitamins, niacin, and folic
acid [8]. Amid the typical characteristics of Saccharomyces cerevisiae
are:

• they metabolise sugars with concentrations 170 − 220g/l [7],
where concentrations above 250g/l may cause inhibition effect
on the fermentation [6];

• in general, their species can survive up to 15 % alcoholic content
[3]; there are still variations.

Data is obtained from a batch process. Saccharomyces cerevisiae
strains were cultivated on grape juice from Vitis vinifera cv. Merlot
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which possess important qualities in the biotechnology of wine mak-
ing. The species were put in inhibitory conditions because of the high
concentration of sugars in the initial cultures.

5 Data analysis

We compare models (1) and (2) in terms of their ability to fit the
experimental data.

5.1 Parametric identification procedure

We use the following procedure to obtain the best fit in the least
squares sense. Let us be given n measurements,

{(ti, xi, si) : i = 1, n},

where xi and si are the biomass and substrate concentration at time
ti, respectively.

We define the following objective function:

ε(p) =
n∑
i=1

[(
x(ti; p)− xi

xi

)2

+

(
s(ti; p)− si

si

)2
]
,

where p = (α, Vmax, Ks, s0, x0) for the Monod model (1) or p =
(α, Vmax, Ks,
β, A1, A2, s0, x0) for the model (2) and x(t; p) and s(t; p) are the solu-
tions of the respective model for given parameter values p.

Minimizing the latter with respect to p, we obtain the optimal
parameter values. We solve this minimization problem, by using the
Wolfram Mathematica implementation of the Nelder–Mead method.

5.2 Numerical experiments

We consider the first phase of the growth process, until the population
reaches its quasi-stationary state.
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FR Strain. We obtain the best fit with the Monod model (1)
for the following values of the model parameters—α = 0.4099686,
Vmax = 909.6993014, and Ks = 5.61387864 × 106. As can be seen
from Fig. 1, this model fails to adequately describe the growth dy-
namics. Obviously, the main reason lies in the fact that the growth
of the bacteria is supposed to be linear w.r.t. the consumption. The
behaviour of the experimental data, however, rejects this suggestion.
The organism’s growth stops, even though there is sufficient substrate
left in the culture.
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Figure 1: Growth dynamics of Saccharomyces cerevisiae FR. The
dashed line and the solid line represent solution of the mathemati-
cal model for the substrate and biomass, respectively. The empty
and filled-in circles correspond to substrate and biomass experimental
data.

A much better fit is obtained using model (2) for the following
values of the model parameters—α = 10.0155702, Vmax = 0.287346,
Ks = 2.03163, β = 0.498609, A1 = 0.284397, A2 = 0.288714 (see
Fig. 1b).

One might argue that the failure of model (1) lies in the fact that
we have neglected the death rate. Even adding this term, however,
the model is still unable to describe well the quasi-stationary phase of
the process. Considering a constant per-capita death rate d, we obtain
the results, depicted in Fig. 2, for parameter values α = 0.0407204,
Vmax = 1465.12, Ks = 2.78048× 106, and d = 0.0985754.
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Figure 2: Growth dynamics of Saccharomyces cerevisiae FR, mod-
elled by (2). The dashed line and the solid line represent solution of
the mathematical model for the substrate and biomass, respectively.
The empty and filled-in circles correspond to substrate and biomass
experimental data.

Similar observations, as in the case of the FR strain, can be made
about the best fit obtained for the set of experimental data for the
MB strain, see Fig. 3a for the results, obtained with the Monod model
and Fig. 3b for the ones, obtained with the model (2).
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Figure 3: Growth dynamics of Saccharomyces cerevisiae MB. The
dashed line and the solid line represent solution of the mathemati-
cal model for the substrate and biomass, respectively. The empty
and filled-in circles correspond to substrate and biomass experimental
data.
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6 Conclusions and discussion

We have showed that introducing nonlinear growth rate for the biomass
in the classical Monod model does not change its asymptotic behav-
ior and can, thus, model two principal situation—when the organ-
isms get washed out from the bioreactor and when a stable stationary
state is reached. Those correspond to what is observed in real-life one
substrate–one biomass systems.

On the other hand, however, our experiments show that the modi-
fied model is more flexible in terms of fitting real data. While the only
possibility for the classical model to reach a quasy-stationary state for
the biomass in a batch process is when all substrate is exhausted from
the bioreactor, the modified model allows to describe more complex
behaviour, resulting from the interplay between all the conditions in
the medium. Those might be incorporated in the parameters, defining
the thresholds in the growth rate. Thus, further studies could focus on
defining specific forms of the growth rate that are most plausible from
biological point of view. Furthermore, various scenarios, where classi-
cal models fail, could be studied, so that acceptable growth functions
are derived.
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