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Abstract. In this note we construct a family of recurrence generated
sigmoidal functions based on the Log–logistic function. The study of
some biochemical reactions is linked to a precise Log–logistic function
analysis.

We prove estimates for the Hausdorff approximation of the Heav-
iside step function by means of this family. Numerical examples, il-
lustrating our results are given. The plots are prepared using CAS
Mathematica.
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1 Introduction

The logistic function belongs to the important class of smooth sig-
moidal functions arising from population and cell growth models.

The logistic function was introduced by Pierre François Verhulst
[1]–[3], who applied it to human population dynamics. Verhulst pro-
posed his logistic equation to describe the mechanism of the self-
limiting growth of a biological population. His equation was redis-
covered by A. G. McKendrick [4] for the bacterial growth in broth
and was tested using nonlinear parameter identification.

Since then the logistic function finds applications in many scien-
tific fields, including biology, ecology, population dynamics, chemistry,
demography, economics, geoscience, mathematical psychology, prob-
ability, sociology, political science, financial mathematics, statistics,
fuzzy set theory, insurance mathematics, debugging and test theory
to name a few [5]–[37].

Logistic functions are also used in artificial neural networks [38]–
[46]. Constructive approximation by superposition of sigmoidal func-
tions and the relation with neural networks and radial basis functions
approximations is discussed in [42].

Any neural net element computes a linear combination of its input
signals, and uses a logistic function to produce the result; often called
“activation” function [47]–[50].

The Log–logistic distribution (also known as the Fisk distribution
[51]) is a widely used lifetime distribution. For other results, see [53].

The distribution is used to model in fields such as biostatistics,
population dynamic, medical research [52] and economics. For the
quadratic transmuted family, see Shaw et Buckley [54]. Shaw et al.
[54], Gupta et al. [55] study a new model which generalizes the Log–
logistic function [56]. For some kinetics interpretation of Log–logistic
models, see [57]–[60].

Many biochemical reactions involve binding of a smaller molecule
L (called ligand) to a large macromolecule P

L+ P ←→ LP.



The oxygen binds to haemoglobin is one of the most important bio-
chemical reactions [60]. The proportion of the bound macromolecules

is defined by θ = [LP ]
[P ]+[LP ]

.
For arbitrary n from the reaction:

nL+ P ←→ LnP,

the proportion is described by a Hill’s formula θ = [L]n

K+[L]n
, where K

and n are empirical parameters. The study of this biochemical reaction
is linked to a precise Log–logistic function analysis [61].

Some applications of the Log–logistic and transmuted Log–logistic
sigmoids can be found in [61]. Another application area is medicine,
where the logistic function is used to model the growth of tumors or
to study pharmacokinetic reactions.

2 Preliminaries

Definition 1. Define the Log–logistic function as

M0(t) =
tβ

αβ + tβ
= 1− 1

1 +
(
t
α

)β (1)

where α is a scale parameter.

Evidently, M0(α) = 1
2
.

Definition 2. The (basic) step function is:

hα(t) =


0, if t < α,

[0, 1], if t = α,

1, if t > α,

usually known as shifted Heaviside step function.



Definition 3. [62] The Hausdorff distance (the H–distance) [62] ρ(f, g)
between two interval functions f, g on Ω ⊆ R, is the distance between
their completed graphs F (f) and F (g) considered as closed subsets of
Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (2)

wherein ||.|| is any norm in R2, e. g. the maximum norm ||(t, x)|| =
max{|t|, |x|}; hence the distance between the points A = (tA, xA), B =
(tB, xB) in R2 is ||A−B|| = max(|tA − tB|, |xA − xB|).

The Hausdorff approximation of the Heaviside step function by Log–
logistic functions of the form (1) is considered in [61] and the following
is proved:

Theorem A. [61] The H-distance d0 = ρ(hα,M0) between the Heavi-
side step function hα and the Log–logistic function M0 can be expressed
for β

α
≥ 2 as follows:

dl0 =
1

1 + β
α

< d0 <
ln
(
1 + β

α

)
1 + β

α

= dr0 , (3)

d̃l0 =
ln(1 + β

α
)

1 + β
α

−
ln ln(1 + β

α
)

(1 + β
α

)
(

1 + 1

ln(1+ β
α
)

) < d0 <
ln(1 + β

α
)

1 + β
α

+
ln ln(1 + β

α
)

(1 + β
α

)
(

ln ln(1+ β
α
)

1−ln(1+ β
α
)
− 1
) = d̃r0 .

(4)



3 Main Results

Let us consider the following family of recurrence generated sigmoidal
Log–logistic functions

Mi+1(t) = 1− 1

1 +
(
t+ 1

2
− α +Mi(t)

)β , i = 0, 1, 2, . . . , (5)

with

Mi+1(α) =
1

2
, i = 0, 1, 2, . . . , (6)

based on the Log-logistic function M0(t).
Let p is the number of recurrences in (5). For p = 0, we get the

estimates from Theorem A.

The case p = 1. In the case of one recursion (p = 1, or the same as
i = 0) from (5)–(6) we get:

M1(t) = 1− 1

1+(t+ 1
2
−α+M0(t))

β

= 1− 1

1+

t+ 3
2
−α− 1

1+( tα)
β

β .
(7)

The H-distance d1 = ρ(hα,M1) between the Heaviside step func-
tion hα and the sigmoidal function M1 satisfies the relation:

M1(α + d1) = 1− 1

1 +

(
d1 + 3

2
− 1

1+(1+ d1
α )

β

)β = 1− d1. (8)

The following theorem is valid

Theorem B. The H-distance d1 between the function hα and the func-
tion M1 can be expressed for β

(
1 + β

4α

)
≥ 2 as follows:

dl1 =
1

1 + β + β2

4α

< d1 <
ln
(

1 + β + β2

4α

)
1 + β + β2

4α

= dr1 . (9)



Proof. From (8) we find

ln
1− d1
d1

= β ln

(
d1 +

3

2
− 1

1 +
(
1 + d1

α

)β
)
.

We examine the function

F (d1) = β ln

(
d1 +

3

2
− 1

1 +
(
1 + d1

α

)β
)
− ln(1− d1)− ln

1

d1
.

From F ′(d1) > 0 we conclude that function F is increasing.
Consider the function

G(d1) =

(
1 + β +

β2

4α

)
d1 − ln

1

d1
. (10)

From Taylor expansion we obtain G(d1) − F (d1) = O(d2). Hence
G(d1) approximates F (d1) with d1 → 0 as O(d21) (see Fig. 1).

In addition, from

G′(d1) = 1 + β +
β2

4α
+

1

d1
> 0

we conclude that the function G is increasing.

Further, for β
(
1 + β

4α

)
≥ 2 we have

G

(
1

1 + β + β2

4α

)
= 1− ln

(
1 + β +

β2

4α

)
< 0,

G

 ln
(

1 + β + β2

4α

)
1 + β + β2

4α

 = ln ln

(
1 + β +

β2

4α

)
> 0.

This completes the proof of the theorem.

The function M1 for α = 0.6; β = 7 is visualized on Fig. 2.



Figure 1: The functions F (d1) and G(d1).

Figure 2: The function M1) for α = 0.6; β = 7; Hausdorff distance
d1 = 0.104494; dl1 = 0.0351906; dr1 = 0.117782.



Figure 3: The recurrence generated sigmoidal Log–logistic functions:
M0(t) (red), M1(t) (green), M2(t) (dashed) and M3(t) (thick).



From the nonlinear equation (8) and inequalities (9) we have: d1 =
0.104494; dl1 = 0.0351906; dr1 = 0.117782.

The recurrence generated sigmoidal Log–logistic functions: M0(t),
M1(t), M2(t) and M3(t) are visualized on Fig. 3

Remark.
For each p, based on the methodology proposed in the present note,

the reader may formulate the corresponding approximation problems
on his/her own.

3. Conclusions

To achieve our goal, we obtain new estimates for the H-distance be-
tween a step function and its best approximating family of recurrence
generated sigmoidal Log–logistic functions.

Numerical examples, illustrating our results are given.

We propose a software module (intellectual properties) within the
programming environment CAS Mathematica for the analysis of the
considered family of Log–logistic functions.

The module offers the following possibilities:

- generation of the logistic functions under user defined values of
the parameters α and β and number of recursions p;

- calculation of the H-distance dp = ρ(hα,Mp), p = 0, 1, 2, . . . , p
between the Heaviside function hα and the sigmoidal functions M0,
M1, M2, . . . ,Mp;

- software tools for animation and visualization.



Figure 4: An example of the usage of dynamical and graphical repre-
sentation for the family Mi+1(t). For example p = 2; i = 1, α = 0.6,
β = 7; Hausdorff distance d2 = 0.073621. The plots are prepared
using CAS Mathematica.
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