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Abstract. In this paper we study the one–sided Hausdorff approxima-
tion of the shifted Heaviside step function by a class of the Zubair–G
family of cumulative lifetime distribution with baseline Burr XII c.d.f.
The estimates of the value of the best Hausdorff approximation ob-
tained in this article can be used in practice as one possible additional
criterion in ”saturation” study.

As an illustrative examples we consider the fitting of the new model
using experimental oil palm data [1], [2] and ”cancer data” [21], [22].

Numerical examples, illustrating our results are presented using
programming environment CAS Mathematica.
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1 Introduction

In [3], a new family of lifetime distributions, called the Zubair–G fam-
ily of distributions is introduces.

The new family is defined by the following cumulative distribution
function (cdf)

F (t;λ) =
eλG

2(t) − 1

eλ − 1
, (1)

where λ > 0.

If, G is the (cdf) of the baseline model, then the distribution func-
tion (1) will be the (cdf) of the Zubair–G family.

Some comments on a Zubair-G Family of cumulative lifetime dis-
tributions with baseline Weibull (cdf) can be found in [4].

For example, if G(t) be (cdf) of the Burr XII distribution given by

G(t) = 1− 1(
1 +

(
t
b

)c)k (2)

then the (cdf) of the Z–Burr distribution has the form

F (t) =
e
λ

1− 1

(1+( tb)
c
)
k

2

− 1

eλ − 1
(3)

where a > 0 and b > 0.

We consider the following class of this family with application to
the population dynamics and debugging theory:

M(t) =
e
λ

1− 1

(1+( tb)
c
)
k

2

− 1

eλ − 1
, (4)

with
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t0 = b


 1

1−
√

1
λ

ln eλ+1
2

 1
k

− 1


1
c

; M(t0) =
1

2
. (5)

In this note we study the Hausdorff approximation of the shifted
Heaviside step function

ht0(t) =


0, if t < t0,

[0, 1], if t = t0,

1, if t > t0

by this family.

Definition 1. [5] The Hausdorff distance (the H–distance) ρ(f, g) be-
tween two interval functions f, g on Ω ⊆ R, is the distance between
their completed graphs F (f) and F (g) considered as closed subsets of
Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R2, e. g. the maximum norm ||(t, x)|| =
max{|t|, |x|}; hence the distance between the points A = (tA, xA), B =
(tB, xB) in R2 is ||A−B|| = max(|tA − tB|, |xA − xB|).

As an illustrative example we consider the fitting the new model
against experimental oil palm data [1], [2].

2 Main Results

The one–sided Hausdorff distance d between the function ht0(t) and
the sigmoid - ((4)–(5)) satisfies the relation

M(t0 + d) = 1− d. (6)
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The following theorem gives upper and lower bounds for d

Theorem. Let

p = −1
2
,

q = 1 +
ckλ(1+eλ)

√
1
λ
ln eλ+1

2

(
1−
√

1
λ
ln eλ+1

2

) k+1
k

b(eλ−1) ×

((
1

1−
√

1
λ
ln eλ+1

2

) 1
k

− 1

) c−1
c

,

r = 2.1q.

(7)

For the one–sided Hausdorff distance d between ht0(t) and the sig-

moid ((4)–(5)) the following inequalities hold for: q >
e1.05

2.1

dl =
1

r
< d <

ln r

r
= dr. (8)

Proof. Let us examine the function:

F (d) = M(t0 + d)− 1 + d. (9)

From F ′(d) > 0 we conclude that function F is increasing.

Consider the function

G(d) = p+ qd. (10)

From Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d→ 0 as O(d2) (see Fig. 1).
In addition G′(d) > 0.

Further, for q >
e1.05

2.1
we have G(dl) < 0 and G(dr) > 0.

This completes the proof of the theorem.
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Figure 1: The functions F (d) and G(d) for b = 0.05; c = 1.9; k =
1.6; λ = 0.9.

3 Numerical examples.

The model ((4)–(5)) for b = 0.05; c = 1.9; k = 1.6; λ = 0.9, t0 =
0.0635798 is visualized on Fig. 2.

From the nonlinear equation (6) and inequalities (8) we have: d =
0.0860937, dl = 0.0406867, dr = 0.130273.

The model ((4)–(5)) for b = 0.03; c = 1.91; k = 1.5; λ = 0.85,
t0 = 0.0398088 is visualized on Fig. 3.

From the nonlinear equation (6) and inequalities (8) we have: d =
0.0668717, dl = 0.0268802, dr = 0.0972085.

The model ((4)–(5)) for b = 0.01; c = 1.95; k = 2; λ = 0.95,
t0 = 0.0107492 is visualized on Fig. 4.

From the nonlinear equation (6) and inequalities (8) we have: d =
0.0228, dl = 0.00664579, dr = 0.0333205.
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Figure 2: The model ((4)–(5)) for b = 0.05; c = 1.9; k = 1.6; λ = 0.9,
t0 = 0.0635798; H–distance d = 0.0860937, dl = 0.0406867, dr =
0.130273.

Figure 3: The model ((4)–(5)) for b = 0.03; c = 1.91; k = 1.5; λ =
0.85, t0 = 0.0398088; H–distance d = 0.0668717, dl = 0.0268802,
dr = 0.0972085.
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Figure 4: The model ((4)–(5)) for b = 0.01; c = 1.95; k = 2; λ =
0.95, t0 = 0.0107492; H–distance d = 0.0228, dl = 0.00664579, dr =
0.0333205.

From the above examples, it can be seen that the proven estimates
(see Theorem) for the value of the Hausdorff approximation is reliable
when assessing the important characteristic - ”saturation”.

4 Applications

4.1 Population Dynamics

Consider the model:

M(t) = ω
e
λ

1− 1

(1+( tb)
c
)
k

2

− 1

eλ − 1
. (11)

The model (11) based on the data of Table 1 for the estimated
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Y ear Weight The appropriate fitting by function (11)
4 11.78 11.6502
5 18.43 18.6774
6 25.21 25.2094
7 30.78 30.2353
8 33.03 33.6174
9 35.66 35.7011
10 36.96 36.9164
11 37.97 37.6026
12 38.04 37.9832
13 39.20 38.1926
14 36.50 38.3075
15 37.21 38.3706
16 39.97 38.4054
17 38.45 38.4248

Table 1: The oil palm yield data [1], [2]

parameters:

ω = 38.45; b = 15.765; c = 1.53476; k = 11.8289; λ = 2.12748

is plotted on Fig. 5.

For the predictive power (PP) criterion:

PP =
17∑
i=4

(
M(ti)− yi

yi

)2

we find PP = 0.0066476.
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Figure 5: The model M(t) based on the data of Table 1.

4.2 Tumor Growth

Here we give an application of the new cumulative sigmoid for analysis
of the following ”cancer data” (for some details see, [21], [22]).

days 4 7 10 12 14 17 19 21
R(t) 0.415 0.794 1.001 1.102 1.192 1.22 1.241 1.3

Table 2: The ”cancer data” [21], [22].

Consider the model (11) based on the data of Table 2 for the esti-
mated parameters:

ω = 1.39576; c = 1.45283; b = 4.45283; k = 1.45079; λ = 0.475223

is plotted on Fig. 6.

For the predictive power (PP) criterion:

PP =
∑
i

(
M(ti)− yi

yi

)2
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Figure 6: The model M(t) based on the ”cancer data”.

we find PP = 0.00107871.

From the conducted experiments it can be concluded that the ex-
amined model can be successfully used in the field of Population dy-
namics.

For some approximation, computational and modelling aspects, see
[6]–[17].

Some software reliability models, can be found in [18]–[20].
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