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Abstract

Intervals have a double nature: they can be considered as
compact sets of real numbers (set-intervals) or as approximate
numbers. A set-interval is presented as an ordered pair of two
real numbers (interval end-points), whereas an approximate
number is an ordered pair consisting of a real “exact” num-
ber and a nonnegative error bound. Thus, differently to the
case with set-intervals, where both endpoints are real num-
bers, when operating with approximate numbers, one should
know the algebraic properties of the arithmetic operations over
error bounds, that is over nonnegative numbers. This work is
devoted to the algebraic study of the arithmetic operations ad-
dition and multiplication by scalars for approximate numbers,
resp. for errors bounds. Such a setting leads to so-called quasi-
linear spaces. We formulate and prove several new properties of
such spaces, which are important from computational aspect.
In particular, we focus our study on the operation “distance
between two nonnegative numbers”. We show that this oper-
ation plays an important role in the study of the concept of
linear independence of interval vectors, the latter being cor-
rectly defined.
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1 Introduction

Interval analysis is now an established sub-domain of numerical anal-
ysis. In its contemporary form it starts with the work of T. Sunaga
[7], [10]. Related key words are: “interval arithmetic”, “interval com-
putations”, “reliable computing”, etc. The field has a journal [12] and
mailing-list [13] comprising several hundred users. Biannual confer-
ences are organized the last one (12th in the series) taking place in
Lyon, France, in 2010, see: http://scan2010.ens-lyon.fr/. A well
organized and maintained website is [14]. A nice popular introduction
in interval analysis (and related issues) is the article [3]. Currently an
IEEE P1788 Working Group develops a standard for interval arith-
metic [2].

In this work we study some properties of the interval arithmetic
operations for addition/subtraction and multiplication by scalars, re-
maining in the domain of proper intervals. We focus on the inner
interval arithmetic operations for adition/substraction. Recall that
the group analogue of such a setting has been already well explored,
leading to so-called quasivector space, see [8]. In a quasivector space
of group structure linear independence of interval vectors is introduced
in a natural way. Here we show that in a quasilinear space of monoidal
structure linear independence of interval vectors can also be defined
using inner interval operations. This has been done in this work for
first time.

2 Preliminaries

By a one-dimensional interval we shall mean a compact set on the
real line. Intervals have a double nature: they can be interpreted ei-
ther as sets of real numbers (set-intervals) or as approximate numbers.
Set-intervals are presented as ordered pairs of two real numbers inter-
preted as end-points. The interpretation of intervals as set-intervals
is especially useful in the area of global optimization, where one of-
ten needs to work with large intervals. Alternatively, intervals can
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be viewed as approximate numbers, which are ordered pairs consisting
of a real number, interpreted as “main” value (sometimes considered
as “mean”, “probable”, “highly possible”, “true”, etc.) and a non-
negative real number interpreted as an “error bound”. The “approx-
imate number”-concept excludes the consideration of large intervals;
in praxis it also makes no sense to consider approximate numbers con-
taining zero.

2.1 Interval arithmetic in “set-interval” notation

We first introduce interval arithmetic operations for addition/subtraction
(“+”, “−”, etc.) and multiplication by scalars “∗”, as well as the inclu-
sion relation relation “⊆”. We shall formulate these operations using
both the “set-” and the “approximate number”-concepts.

Denote the set of reals by R and the set of all real compact intervals
by IR. Given the endpoints a, a ∈ R, a ≤ a, denote [a, a] = {x |
a ≤ x ≤ a}. For two intervals A = [a, a], B = [b, b] ∈ IR we have:

[a, a] + [b, b] = [a+ b, a+ b],

[a, a] − [b, b] = [a− b, a− b],
[a, a] +− [b, b] = [a+ b ∨ a+ b],

[a, a]−− [b, b] = [a− b ∨ a− b],
α ∗ [b, b] = [αb ∨ αb],

[a, a] ⊆ [b, b] = b ≤ a & a ≤ b.

The notation [α ∨ β] means the (interval) set of all reals between
α and β; this notation is useful whenever one does not know whether
α ≤ β or α > β.

The operations “+”, “−” will be referred as outer addition/subtraction,
whereas the operations “+−”, “−−” will be referred as inner addi-
tion/subtraction [5].
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2.2 Interval arithmetic in “approximate-number”
notation

(Narrow) intervals can be interpreted as approximate numbers; such
are for example floating point numbers. An approximate number is
an ordered pair consisting of a real number considered as “exact” and
an error bound. In the case of floating-point numbers the “exact” real
number is a machine number and an error bound is, e. g. the dis-
tance between the neighboring two machine numbers. Error bounds,
sometimes called computational errors or just errors, are (real) non-
negative numbers.

Denote the set of nonnegative reals by R+ = {a ∈ R | a ≥ 0}.
Given two intervals a′ ∈ R, a′′ ∈ R+, denote (a′; a′′) = {x | |x− a′| ≤
a′′}.

Given (a′; a′′), (b′; b′′) ∈ IR with a′, b′ ∈ R, a′′, b′′ ∈ R+, we have:

(a′; a′′) + (b′; b′′) = (a′ + b′; a′′ + b′′),

(a′; a′′) − (b′; b′′) = (a′ − b′; a′′ + b′′),

(a′; a′′) +− (b′; b′′) = (a′ + b′; |a′′ − b′′|),
(a′; a′′)−− (b′; b′′) = (a′ − b′; |a′′ − b′′|),

α ∗ (b′; b′′) = (αb′; |α|b′′),
(a′; a′′) ⊆ (b′; b′′) = |b′ − a′| ≤ b′′ − a′′.

We note that in the above definition of the operations “+−”, “−−”
the expression |a′′ − b′′| appears which is the “distance” between the
nonnegative numbers |a′′ and b′′|. We next show that this “distance”
defines a natural operation arising in the additive set of real numbers
and shall explore its algebraic properties. To this end we next recall
the operation addition of real numbers.

2.3 Interval arithmetic and functional ranges

To have an idea of the utilization of the interval arithmetic operations,
we briefly discuss their relation to functional ranges.
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Let f, g be two continuous functions defined on the interval X ∈
I(R). The ranges of f, g are f(X) = {f(x) | x ∈ X}, resp. g(X) =
{g(x) | x ∈ X}. Assume that these ranges are known, we want to find
out the range of the sum f + g. We can easily see that for the range
of the sum f + g we have the inclusion: (f + g)(X) ⊆ f(X) + g(X),
where “+” is the (outer) interval addition. However, we would like to
find out a more “sharp” relation, possibly equality relation. To this
end we note that in the special case when f, g are equally monotone
functions we have: (f + g)(X) = f(X) + g(X). We also note that
the relation (f + g)(X) = f(X) + g(X) is true for any two equally
monotone functions f, g. Hence this relation can be used to define the
operation (outer) addition of intervals as follows.

Definition EM. Given A,B ∈ I(R) take any two equally mono-
tone functions f, g such that f(X) = A, g(X) = B. Then (f + g)(X)
depends only on the choice of A,B. We thus define (outer) addition
of A,B by means of the relation: A+B = (f + g)(X).

Note that for “smooth” functions and “narrow” intervals X “half”
of the practical situations are such that functions f, g are equally
monotone functions. In the other “half” of the situations the func-
tions f, g are differently monotone functions on X.

Note also that in practice, monotonicity is a rather weak restriction
— because if X is small enough, we usually deal with functions f, g
that are monotone on X.

Now let us assume that f, g are differently monotone functions on
X? In this case we have of course (f + g)(X) ⊆ f(X) + g(X) but this
inclusion could be very “rough”. For example: {x+ (−x) | x ∈ X} ⊆
X + (−X) = X −X. Note that ω(X −X) = 2ω(X).

Definition DM. Given A,B ∈ I(R) take any two differently
monotone functions f, g such that the sum f + g is monotone and
f(X) = A, g(X) = B. Note that the interval range (f + g)(X)
depends only on the choice of A,B. Thus we define the operation:
A +− B = (f + g)(X) and call this operation “inner addition” of the
intervals A,B ∈ I(R).
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Propositions for the computation of ranges can now be formulated,
such as:

(f + g)(X) =

{
f(X) + g(X) if f, g are equally monotone;
f(X) +− g(X) if f, g are differently monotone,

etc. The above considerations demonstrate the use of interval opera-
tions. For more results within these lines consult [6].

3 Intervals as approximate numbers

To compute with approximate numbers one should know the arith-
metic operations on non-negative numbers and the properties of these
operations. Such computations require suitable definitions and study
of the arithmetic operations and order relations over the set of non-
negative numbers. In the sequel we discuss the algebraic properties of
non-negative numbers starting from familiar properties of real num-
bers. We restrict ourselves in the algebraic study of the arithmetic op-
erations addition and multiplication by scalars for non-negative num-
bers. Such a setting leads to so-called quasilinear (interval) spaces. In
particular, we focus our study on the operation “+−” defined as the
distance between two nonnegative real numbers: A+−B = |A−B| in
combination with the familiar order relation. This operation plays an
important role in the computation with error bounds and approximate
numbers. We study the algebraic properties of this operation. Based
on this study we formulate and prove some new algebraic properties
of non-negative numbers, which are important from computational
aspect.

For simplicity we start with enlisting the algebraic properties of the
familiar system (R,+,≤) involving the set of real numbers together
with the arithmetic operation addition “+” and the order relation
preceding “≤”. Parts of the material in this section is developed in
detail in [9].
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3.1 Algebraic properties of (R,+,≤)

We recall briefly the algebraic properties of real numbers with respect
to addition. As we know (R,+) is an additive group, that is

i) “+” is a closed (total) operation;
ii) “+” is associative: (a+ b) + c = a+ (b+ c);
iii) there is an identity (null) element 0, such that a+ 0 = a for all

a;
iv) for every a there exists an additive inverse (opposite) element

−a, such that a+ (−a) = 0.

Property iv) induces operation subtraction a − b = a + (−b) and,
consequently, the property subtractability, in the sense that equation
a+ x = b has an unique solution for all a, b ∈ R, namely x = b− a =
b+ (−a).

Using algebraic terminology we can say: due to property i) (R,+)
is a magma; due to properties i)–ii) (R,+) is a semigroup; due to i)–iii)
(R,+) is a monoid; and due to i)–iv) (R,+) is a group. Every group
obeys also property:

v) cancellation law: a+ x = b+ x =⇒ a = b.

An algebraic system may also satisfy:

vi) commutative law: a+ b = b+ a.

The additive system of reals (R,+) satisfies all enlisted properties
i)– vi) and thus is a commutative (abelian) group.

Order isotonicity. In system (R,+,≤) the preceding order “≤”
is consistent with addition, in the sense that for a, b, c ∈ R we have
a ≤ b =⇒ a+ c ≤ b+ c. As a consequence we have for a, b, c, d ∈ R:
a ≤ b, c ≤ d =⇒ a+ c ≤ b+ d.

Inverse isotonicity of addition. If a, b, c ∈ R, then a+ c ≤ b+ c =⇒
a ≤ b, in particular: a+ c = b+ c =⇒ a = b (cancellation law).
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3.2 Real numbers in signed-magnitude form

Denote by R+ = {a ∈ R | a ≥ 0} the set of non-negative real numbers
and let Λ = {+,−}. A real number a ∈ R is usually presented in
the form ±A, that is as an ordered pair of the form (A;α), with
A = |a| ∈ R+ and α = σ(a) ∈ Λ, where

σ(a) =

{
+ if a ≥ 0;
− if a < 0.

We have

a = (A;α) ∈ {(X; ξ) | X ∈ R+, ξ ∈ Λ} = R+ ⊗ Λ.

When computing with real numbers we usually use the above
presentation a = (A;α) which will be further referred as signed-
magnitude form, briefly sm-form. Practically this means that we
perform some operations separately on the nonnegative component
(magnitude) A ∈ R+ and on the sign α. Thus we have to know the
algebraic properties of nonnegative real numbers, in particular those
of the additive system (R+,+). In computational sciences nonnegative
real numbers are often related to computational errors (error bounds);
thus instead of “nonnegative real numbers” we shall sometimes speak
of “errors”, “error numbers” or briefly “e-numbers”.

An important difference between R and R+ with respect to addi-
tion is that R is an additive group whereas R+ is a semigroup. There
are no inverse elements in (R+,+); consequently no operation subtrac-
tion and generally no solution to an equation of the form a + x = b.
To underline this difference in the sequel we shall denote the elements
of R by lower-case letters a, b, c, ..., whereas the elements of R+ by
upper-case letters, A,B,C, ....

The set of pairs R+ ⊗ Λ admits both elements (0; +) and (0;−),
which both correspond to the element 0 ∈ R. Assuming (0; +) =
(0;−), we obtain a bijection between R and R+ ⊗ Λ. This allows us
to identify a real number with its sm-form a = (A;α).
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3.3 Addition of reals in signed-magnitude form

Let us formulate addition of real numbers using the sm-form a =
(A;α) minding the isomorphism (R,+,≤) ∼= (R+ ⊗ Λ,+,≤). Since
addition of real numbers with the same sign and with a different sign
are handled differently, to add (A;α), (B; β) ∈ R+ ⊗ Λ we consider
separately the cases α = β and α 6= β. In the case α = β we have
(A;α) + (B;α) = (A+B;α). Here “A+B” is the operation addition
in R+ which is the restriction of addition in R. For simplicity we use
same notation for addition and order both in R and R+.

To add (A;α), (B; β) ∈ R+ ⊗ Λ in the case α 6= β we need the
operation |A−B| in R+. Since there is no subtraction in R+ we shall
denote A +− B = |A − B| and define operation “+−” correctly as
follows:

Definition 1. C-addition of A,B ∈ R+ is defined by

A+− B =

{
Y |B+Y=A if B ≤ A;
X|A+X=B if A ≤ B.

(1)

Note that if both solutions X, Y exist in (1) (which only happens
when A = B), then they coincide and X = Y = 0. If A 6= B then
exactly one of the equations A + X = B, B + Y = A is solvable.
Operation (1) is well defined in R+; we call it “c-addition” (“c” stands
for “conditional”).

Define a mapping µ : R+ ⊗ Λ
2 −→ Λ as follows:

µ((A;α), (B; β)) =

{
α if B ≤ A,
β if B > A.

In the case α 6= β we have (A;α) + (B; β) = (A +− B; µ(a, b)).
Summarizing, we have

a+ b = (A;α) + (B; β) =

{
(A+B;α) if α = β;
(A+− B; µ(a, b)) if α 6= β,

which can be compactly written as

(A;α) + (B; β) = (A+αβ B; µ(a, b)). (2)
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In (2) we assume that for α, β ∈ Λ a binary boolean operation “·”
is defined by α · β = αβ = {+, α = β; −, α 6= β}. In addition we
assume ++ = +.

Formula (2) shows that addition of two real numbers in sm-form
induces the operation c-addition in the set of nonnegative reals. C-
addition is defined as solution of an algebraic equation of the form
A + X = B and therefore c-addition appears naturally in R+ in the
same manner as subtraction appears in R. This fact should be taken
into account when studying the algebraic properties of R+ w. r. t.
addition.

Let us mention that c-addition plays an important role in real
analysis. In particular, this operation appears whenever the triangle
inequality |a + b| ≤ |a| + |b| is used. Indeed, in the nontrivial case
when a, b are of different signs the triangle inequality obtains the form
||a| − |b|| ≤ |a| + |b|, that is |a| +− |b| ≤ |a| + |b|. In the case of
e-numbers the latter reads as A+− B ≤ A+B.

In the sequel we focus our attention on the operation c-addition (1).
The operation c-addition “+−” coincides with the so-called inner (or
non-standard) addition (or inner subtraction) of symmetric intervals.

In the next section we review some of the properties of nonnegative
real numbers relative to addition and multiplication by scalars focusing
on the operation c-addition.

4 Properties of e-numbers relative to ad-

dition and order

4.1 E-numbers: addition and order

We first review the algebraic properties of the system of e-numbers
(R+,+,≤) in comparison with the properties of (R,+,≤) as reviewed
in subsection 3.1.

Properties i)–iii) are satisfied in R+. Property iv) fails as there is
no additive inverse (opposite) in (R+,+), so equation A+X = 0 has
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no solution when A 6= 0. Subtractability does not hold as well, as
A + X = B does not possess a solution in general. The cancellation
property v) A + X = B + X =⇒ A = B and commutativity vi)
A+B = B + A hold true.

Order isotonicity also takes place in R+. Namely, for A,B,C,D ∈
R+ we have A ≤ B ⇐⇒ A+ C ≤ B + C, and A ≤ B, C ≤ D =⇒
A+ C ≤ B +D.

Summarizing, we can say that (R+,+,≤) is an ordered cancellative
commutative monoid. The monoid (R+,+,≤) possesses the following
two properties:

P1. For A,B ∈ R+, A 6= B, exactly one of the equations A+X =
B, B + Y = A is solvable.

P2. For A,B ∈ R+ A+B = 0 implies A = B = 0.

Properties P1 and P2 permit us to correctly define operation c-
addition by means of (1). We next consider some of the algebraic
properties of c-addition, that is of the system (R+,+−,≤).

4.2 The system (R+,+−,≤)

The following properties of c-addition “+−” follow from Definition (1):
i) “+−” is a closed (total) operation;
ii) “+−” is “c-associative”: (A +− B) +− C = A +− (B +− C), if

B ≥ A and B ≥ C;
iii) A+− 0 = A for all A ∈ R+;
iv) there is an additive inverse; namely for all A ∈ R+ the element

A is opposite to A itself, that is A+− A = 0;
v) “c-cancellation law”: A+−X = B+−X =⇒ A = B or X+X =

A+B;
vi) “commutative law”: A+− B = B +− A, for all A,B ∈ R+.

Remark. Property v) says that cancellationA+−X = B+−X =⇒
A = B holds true under the condition X + X 6= A + B. The case
X + X = A + B (or X = 0.5(A + B) if multiplication by scalars is
available) is clearly exceptional, which gives us the right to call this
property a “conditional cancellation” (briefly: c-cancellation).
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The next property links c-addition and the order relation.

Conditional inclusion isotonicity w. r. t. c-addition. LetA,B,C,D ∈
R+ be such that A ≥ B,C ≤ D. We have: if A ≤ C, then A+−C ≤
B +− D, if B ≥ D, then A+− C ≥ B +− D.

In the special case D = C we obtain the following corollary. Let
A,B,C ∈ R+ be such that A ≥ B. We have: if A ≤ C, then A +−

C ≤ B +− C, if B ≥ C, then A+− C ≥ B +− C.

4.3 The extended additive monoid (R+,+,+−,≤)

As mentioned, subtractability does not hold neither in (R+,+), nor
in (R+,+−). However, the operation c-addition “+−” allows solving
equations of the form A + X = B in certain cases. Namely, using
“+−” we can solve equation A + X = B when A ≤ B and we can
solve equation B +X = A when A ≥ B. Thus c-addition plays a role
in (R+,+) analogous to the role of subtraction in the group (R,+).

We have shown that the algebraic system (R+,+,≤) possesses null
and c-addition; thus the system can be fully denoted as (R+,+,+−,≤)
or as (R+,+, 0,+−,≤). To emphasize that system (R+,+,≤) includes
c-addition we shall call it extended additive e-numbers system.

Note that the solution of A + X = B (when existing) can be
expressed in terms of c-addition, and the solution of A +− X = B
can be expressed in terms of usual addition. Thus, solutions of both
A + X = B and A +− X = B become possible under certain con-
ditions. This property is called “conditional subtractability”, briefly
“c-subtractability”. We formulate it as follows:

C-subtractability. i) For A,B ∈ R+, such that A ≤ B, the unique
solution of A + X = B is X = B +− A. ii) Equation A +− X = B
has a solution X = A + B for A,B ∈ R+. If A,B ∈ R+ are such
that A ≥ B > 0, then equation A +− X = B has one more solution
X = A+− B.

We shall next focus our attention on the algebraic properties of e-
numbers with respect to both addition and multiplication by scalars.
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5 The quasilinear e-numbers space

5.1 Addition and c-addition of e-vectors

The above considerations can be generalized component-wise for n-
vectors, that is elements of the systems (Rn,+,≤), resp. (R+n,+,≤),
noticing that then the order relation “≤” is not total (linear) but
partial. Here Rn is the set of real vectors a = (a1, a2, ..., an), and R+n

is the set of n-tuples A = (A1, A2, ..., An), Ai ≥ 0.

Component-wise generalizations of previous definitions such as a =
(A;α) ∈ Rn with A = (A1, A2, ..., An) ∈ R+n, α = (α1, α2, ..., αn) ∈
Λn, etc. are obvious. We define addition and c-addition in R+n as
follows.

Definition 2. For A = (A1, A2, ..., An), B = (B1, B2, ..., Bn) ∈
R+n, we define A+B and A+− B by means of:

A+B = (A1, A2, ..., An) + (B1, B2, ..., Bn) = (A1 +B1, ..., An +Bn),

A+− B = (A1, A2, ..., An) +− (B1, B2, ..., Bn) = (A1 +− B1, ..., An +− Bn).

Remark. Note that for A,B ∈ R+n, n ≥ 2 the expression

A+− B =

{
Y |B+Y=A if B ≤ A;
X|A+X=B if A ≤ B

does not describe A+− B in the case when neither A ≤ B nor B ≤ A
hold in R+n.

Let a = (a1, a2, ..., an), b = (b1, b2, ..., bn) ∈ Rn be two real vectors
presented in sm-form, that is ai = (Ai;αi), bi = (Bi; βi), i = 1, . . . , n.
From (2) we have:

ai + bi = (Ai;αi) + (Bi; βi) = (Ai +αiβi Bi; µ(ai, bi)), (3)

wherein

µ(ai, bi) = µ((Ai;αi), (Bi; βi)) =

{
αi if Bi ≤ Ai,
βi if Bi > Ai.
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Hence, to be able to perform addition of real numbers in sm-form
we need the following operation between two vectors of nonnegative
components1 A = (A1, A2, ..., An), B = (B1, B2, ..., Bn) ∈ R+n:

A+λ B = (A1, A2, ..., An) +λ (B1, B2, ..., Bn)

= (A1 +λ1 B1, A2 +λ2 B2, ..., An +λn Bn), (4)

where λ = (λ1, λ2, ..., λn) ∈ Λn is a boolean vector (n-tuple) of signs
±.

Definition (4) generalizes the definitions of A+B and A+−B given
in Definition 2.

Using the general definition (4) of A +λ B we can write down the
sum of two real vectors in sm-form briefly as follows:

a+ b = (A;α) + (B; β) = (A+αβ B; µ(a, b)), (5)

wherein A,B ∈ R+n, α, β, µ ∈ Λn. By αβ we mean the sign vector

αβ = (α1, α2, ..., αn)(β1, β2, ..., βn) = (α1β1, α2β2, ..., αnβn).

5.2 Multiplication by scalars

We now focus our attention to multiplication by scalars. Introduc-
ing in Rn multiplication by scalars from the real ordered field R =
(R,+, ·,≤), we arrive to the familiar vector space (Rn,+,R, ·,≤). Mul-
tiplication of a real vector a = (A;α) ∈ Rn in sm-form by a scalar
c ∈ R is given by

c · (A;α) = (|c| · A;σ(c)α). (6)

In (6) σ(c) is the sign of the scalar c, resp. σ(c)α is equal to either α or
−α depending on the sign of c. Relation (6) shows that multiplication
of a real vector by scalars induces a new “quasivector” multiplication

1We should be careful with using the term vector for an n-tuple of e-numbers
as such n-tupples are not elements of a vector space
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by real scalars “∗” in the “e-numbers space” (R+n,+,R, ∗,≤) to be
defined as follows

Definition 3. Quasivector multiplication by real scalars “∗” is
defined as

c ∗ A = |c| · A, c ∈ R, A ∈ R+n. (7)

Componentwise, (7) reads:

c ∗ A = |c| · A = |c| · (A1, A2, ..., An)

= (|c|A1, |c|A2, ..., |c|An).

Using quasivector multiplication by scalars “∗” relation (6) be-
comes

c · (A;α) = (c ∗ A;σ(c)α), c ∈ R, A ∈ R+n. (8)

The quasivector multiplication by scalars “∗” possesses the follow-
ing properties.

Proposition 1. For A,B ∈ R+n, all s, t ∈ R and λ ∈ Λn:

s ∗ (t ∗ A) = (st) ∗ A, (9)

1 ∗ A = A, (10)

s ∗ (A+λ B) = s ∗ A+λ s ∗B, (11)

(s+ t) ∗ A = s ∗ A+σ(s)σ(t) t ∗ A, (12)

A ≤ B =⇒ γ ∗ A ≤ γ ∗B, (13)

(−1) ∗ A = A, (14)

Proof. Properties (9), (10), (13) and (14) follow trivially from
Definition (7). To prove relations (11–12) we start from analogous
relations for real vectors a, b ∈ Rn written in sm-form: a = (A;α), b =
(B; β), namely the familiar distributive relations s(a + b) = sa + sb
and (s+ t)a = sa+ ta, s, t ∈ R.
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We first prove (11). To this end we write consecutively:

s(a+ b) = sa+ sb;

s((A;α) + (B; β)) = s(A;α) + s(B; β);

s(A+αβ B;µ(a, b)) = (s ∗ A; σ(s)α) + (s ∗B; σ(s)β);

(s ∗ (A+αβ B); σ(s)µ(a, b)) = (s ∗ A+αβ s ∗B; µ′);

s ∗ (A+αβ B) = s ∗ A+αβ s ∗B,

obtaining finally (11): s ∗ (A+λ B = s ∗ A+λ s ∗B.

To prove (12) we write consecutively:

(s+ t)(A;α) = s(A;α) + t(A;α);

((s+ t) ∗ A; σ(s+ t)α) = (s ∗ A;σ(s)α) + (t ∗ A;σ(t)α)

= (s ∗ A+σ(s)σ(t) t ∗ A; µ(sa, ta)),

giving the needed (12): (s+ t) ∗ A = s ∗ A+σ(s)σ(t) t ∗ A. �

Remark. The first five properties (9–13) are characteristic for a
general quasilinear space such as the space of intervals and the space of
convex bodies. The last one is characteristic for symmetric quasilinear
spaces such as the e-numbers(equivalently: symmetric intervals) and
symmetric convex bodies. Note also that relation (12) reads:

(s+ t) ∗ A =

{
s ∗ A+ t ∗ A if st ≥ 0;
s ∗ A+− t ∗ A if st < 0,

showing that the familiar second distributive law holds under the re-
striction st ≥ 0. Relation (12) is called “quasidistributive law”. Some-
times the quasidistributive law is postulated in the form s ∗ A + t ∗
A if st ≥ 0; then the remaining part s∗A+− t∗A if st < 0, is derived
as a logical consequence.

5.3 Linear combinations and linear dependency

Recall that k real vectors c1, c2, ..., ck ∈ Rn are linearly dependent if
there exist k real numbers α1, α2, ..., αk ∈ R, not all equal to zero, such
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that

k∑
i=1

αici = α1c1 + α2c2 + ...+ αkck = 0.

W.l.g. we shall assume that α1 ≥ 0.

Our next aim is to suitably modify this definition for e-vectors. To
this end let us represent in sm-form the linear combination of k real
vectors that appears in the above definition, namely:

c =
k∑
i=1

αici = α1c1 + α2c2 + ...+ αkck, (15)

wherein ci = (ci
(1), ci

(2), ..., ci
(n)) ∈ Rn, αi ∈ R, i = 1, ..., k. We

substitute each component of ci by its sm-form: ci = (Ci; γi), resp.
ci

(j) = (Ci
(j); γi

(j)), j = 1, ..., n, i = 1, ..., k. As we are interested in
the linear combination of nonnegative vectors, we assume that γi

(j) =
+, j = 1, ..., n, i = 1, ..., k, so that ci

(j) = (Ci
(j); +), j = 1, ..., n, i =

1, ..., k. In vector notation the latter reads: ci = (Ci; +), i = 1, ..., k.

For simplicity we start with k = 2, that is with a linear combination
involving two real vectors ci ∈ Rn, i = 1, 2. Using the formulae for
addition of two vectors in sm-form (3), (4) and for multiplication by
scalars (6) we obtain in vector notation (5):

c = α1c1 + α2c2 = α1(C1; +) + α2(C2; +)

= (α1 ∗ C1; σ(α1)) + (α2 ∗ C2; σ(α2)) (16)

= (α1 ∗ C1 +λ2 α2 ∗ C2; µ2),

where λ2 = σ(α1)σ(α2) ∈ Λ, µ2 = µ(α1c1, α2c2) ∈ Λn.

The above equality is written component-wise as follows:

α1c
(j)
1 + α2c

(j)
2 = (α1 ∗ C1

(j); σ(α1)) + (α2 ∗ C2
(j); σ(α2))

= (α1 ∗ C1
(j) +σ(α1)σ(α2) α2 ∗ C2

(j); µ2
(j)), j = 1, ..., n,(17)
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where µ2
(j) is given by

µ2
(j) =

{
σ(α1) if α1 ∗ C1

(j) ≥ α2 ∗ C2
(j);

σ(α2) otherwise.

With respect to the sign of the linear combination c = (C;µ2) some
of its component may be negative as we have assumed σ(α1) = +,
but α2 may be negative and σ(α2) = −. However, w. l. g. we
shall consider only linear combinations which are nonnegative, c =
α1c1 +α2c2 ≥ 0, so that c = (C; +) and therefore µ2 = + is a constant
sign vector.

We define “linear dependence” for two vectors C1, C2 ∈ R+n as
follows.

Definition. Two vectors C1, C2 ∈ R+n are “linearly dependent” if
there exists a nonzero pair (α1, α2) 6= 0, α1, α2 ∈ R, α1 ≥ 0, such that

α1 ∗ C1 +σ(α2) α2 ∗ C2 = 0.

We next proceed similarly with a linear combination of three real
e-vectors c1, c2, c3 ∈ Rn. Assuming again that all ci are nonnegative
and σ(α1) = +, σ(µ2) = +, we have:

c = α1c1 + α2c2 + α3c3 = (α1 ∗ C1; σ(α1)) + (α2 ∗ C2; σ(α2)) + (α3 ∗ C3; σ(α3))

= (α1 ∗ C1 +σ(α1)σ(α2) α2 ∗ C2;µ2) + (α3 ∗ C3; σ(α3))

= ((α1 ∗ C1 +σ(α2) α2 ∗ C2) +σ(α3) α3 ∗ C3; µ3),

wherein the sign vector µ3 has the following components:

µ3
(j) =

{
µ2

(j) if (α1 ∗ C1 +σ(α2) α2 ∗ C2)
(j) ≥ α3 ∗ C3

(j);
σ(α3) otherwise.

The sign µ3 of c may not be positive in general. However, as in the
case k = 2, we again assume w. l. g. that c is positive and thus
µ3 = 0, that is c = (C; +).

The above calculations suggest that we can define “linear depen-
dence” for three vectors C1, C2, C3 ∈ R+n as follows:
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Definition A. The e-vectors C1, C2, C3 ∈ R+n are “linearly depen-
dent” if there exists a nonzero triple (α1, α2, α3) 6= 0, α1, α2, α3 ∈ R,
α1 ≥ 0, such that

(α1 ∗ C1 +σ(α2) α2 ∗ C2) +σ(α3) α3 ∗ C3 = 0.

Since the coefficients α2, α3 are arbitrary reals, their signs are also
arbitrary, so that the above Definition A is equivalent to the following
one:

Definition B. The e-vectors C1, C2, C3 ∈ R+n are “linearly depen-
dent” if there exists a nonzero triple (α1, α2, α3) 6= 0, α1, α2, α3 ∈ R,
and signs λi ∈ Λ, i = 1, 2, such that

(α1 ∗ C1 +λ1 α2 ∗ C2) +λ2 α3 ∗ C3 = 0. (18)

Definition B is generalized for arbitrary number k of e-vectors as
follows:

Definition C. The e-vectors C1, C2, ..., Ck ∈ R+n are “linearly de-
pendent” if there exists a nonzero vector (α1, α2, ..., αk) 6= 0, α1, α2, ..., αk ∈
R, and signs λi ∈ Λ, i = 1, 2, ..., k − 1, such that

α1 ∗ C1 +λ1 α2 ∗ C2 +λ2 ...+λk−1 αk ∗ Ck = 0, (19)

with order of executions of the operations “+λi” in (19) from left to
right.

Definition C can be generalized for interval vectors. Indeed, we can
think of the e-vectors C1, C2, ..., Ck ∈ R+n as of symmetric interval
vectors (having midpoints zero). Now let us think of Ck as of intervals
with arbitrary midpoints, that is C1, C2, ..., Ck ∈ IRn, where Ck =
(Ck

′;C ′′k ) with C1
′, C2

′, ..., Ck
′ ∈ Rn, C ′′1 , C

′′
2 , ..., C

′′
k ∈ R+n. Then we

have:

Definition D. The intrval vectors C1, C2, ..., Ck ∈ IRn are “lin-
early dependent” if there exists a nonzero vector (α1, α2, ..., αk) 6= 0,
α1, α2, ..., αk ∈ R, and signs λi ∈ Λ, i = 1, 2, ..., k − 1, such that

α1 ∗ C1 +λ1 α2 ∗ C2 +λ2 ...+λk−1 αk ∗ Ck = 0, (20)
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with order of executions of the operations “+λi” in (20) from left to
right.

Note that the condition (20) reduces to two separate conditions,
one for the midpoints (which is the well-known condition for real vec-
tors) and one for the radii, which is condition (19) for e-numbers.

6 Conclusions

In the present work we show that:
i) addition of real numbers naturally induces the operation c-addition

of non-negative numbers (distance, modulus of the difference);
ii) the operation c-addition of non-negative numbers enriches the

additive monoidal system of non-negative numbers up to a structure
close to a group where many typically group operations can be per-
formed under certain conditions;

iii) the operation c-addition of non-negative numbers is fundamen-
tal in real analysis, in interval analysis, and resp. in error analysis;

iv) the introduction of the operation “multiplication (of nonnega-
tive numbers) by (real) scalars” leads to a special algebraic structure
“quasilinear space”, close but yet different from linear spaces;

v) using the c-associative property one naturally arrives to the
concept of linear independency of e-vectors, resp. interval vectors.

Our approach in this work is based on the “approximate-number”-
concept. An attempt to define linear independence of interval vec-
tors based on the “set-interval”-concept has been made in [1]. Our
approach based on the “approximate number”-concept proves to be
more natural and methodologically simpler; it leads to simpler defini-
tions and expressions. To study comparatively the two approaches is
a future task.
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