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Abstract. In the paper, we study the usage of numerical meth-
ods in solution of mathematical models of biological problems. More
specifically, Keller-Segel type chemotaxis models are discussed, their
numerical solutions by sweep and Lax-Friedrichs methods are obtained
and interpreted biologically.
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1. Introduction

From microscopic bacteria through to the largest mammals, the
survival of many organisms is dependent on their ability to navigate
within a complex environment through the detection, integration and
processing of a variety of internal and external signals. This move-
ment is crucial for many aspects of behavior, including the location of
food sources, avoidance of predators and attracting mates. The abil-
ity to migrate in response to external signals is shared by many cell
populations, playing a fundamental role coordinating cell migration
during organogenesis in embryonic development and tissue homeosta-
sis in the adult. An acquired ability of cancer cells to migrate is
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believed to be a critical transitional step in the path to tumor malig-
nancy. The directed movement of cells and organisms in response to
chemical gradients, chemotaxis, has attracted significant interest due
to its critical role in a wide range of biological phenomenon (the book
of Eisenbach [1] provides a detailed biological comparison between
chemotactic mechanisms across different cells and organisms).

Extensive research has been conducted into the mechanistic and
signaling processes regulating chemotaxis in bacteria, particularly in
E. coli [2], and in the life cycle of cell slimemolds such as Dictyostelium
discoideum [3]. While the biochemical and physiological bases are less
well understood, chemotaxis also plays a crucial role in the navigation
of multicellular organisms. The nematode worm C. elegans undergoes
chemotaxis in response to a variety of external signals [4] while in
insects, the fruit fly Drosophila melanogaster navigates up gradients
of attractive odours during food location [5] and male moths follow
pheromone gradients released by the female during mate location [6].

Theoretical and mathematical modeling of chemotaxis dates to the
pioneering works of Patlak in the 1950s and Keller and Segel in the
1970s. The review article by Horstmann [7] provides a detailed in-
troduction into the mathematics of the KellerSegel (KS) model for
chemotaxis. In its original form this model consists of four coupled
reaction-advection-diffusion equations. These can be reduced under
quasi-steady-state assumptions to a model for two unknown functions
u and v. The general form of the model is

ut =∇(k1(u, v)∇u− k2(u, v)u∇v) + k3(u, v), (1)

vt =Dv∆v + k4(u, v)− k5(u, v)v,

where u denotes the cell (or organism) density on a given domain
Ω ⊂ Rn and v describes the concentration of the chemical signal.
The cell dynamics derive from population kinetics and movement, the
latter comprising a diffusive flux modeling undirected (random) cell
migration and an advective flux with velocity dependent on the gra-
dient of the signal, modeling the contribution of chemotaxis. k1(u, v)
describes the diffusivity of the cells (sometimes also called motility)
while k2(u, v) is the chemotactic sensitivity; both functions may de-

17



pend on the levels of u and v. k3 describe cell growth and death while
the functions k4and k5 are kinetic functions that describe production
and degradation of the chemical signal. A key property of the above
equations is their ability to give rise to spatial pattern formation when
the chemical signal acts as an auto-attractant, that is, when cells both
produce and migrate up gradients of the chemical signal.

2. Chemotaxis Models

Whilst a number of further approaches have been developed (e.g.
stochastic and discrete approaches such as those in [8-12]), it is the de-
terministic KellerSegel continuum model that has become the prevail-
ing method for representing chemotactic behavior in biological systems
on the population level. A large amount of effort has been expended on
explaining their origin from a mechanistic/microscopic description of
motion. The review by Horstmann [7] considers five methods in detail.
As mentioned above, KellerSegel type equations have become widely
utilized in models for chemotaxis, a result of their ability to capture
key phenomenon, intuitive nature and relative tractability (analyti-
cally and numerically) as compared to discrete/individual based ap-
proaches. Models based on the KellerSegel equations have also been
developed to understand whether chemotaxis may underpin embry-
onic pattern forming processes, such as the formation and dynamics
of the primitive streak (an early embryonic structure that coordinates
tissue movements) [13]. In addition to their utilization within models
for biological systems, a large body of work has emerged on the math-
ematical properties of the KellerSegel equations (1) and, in particular,
on the conditions under which specialization or variations of (1) either
form finite-time blow-up or have globally existing solutions. Childress
and Percus [14] work has been devoted to a special case of (1), in which
the functions kj are assumed to have linear form, a model referred to
as the minimal model.

The minimal model is derived according to a limited set of con-
jectures and a number of variations have been described based on
additional biological realism. In this thesis, we consider some of these
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variations. The variations are each introduced in a form that includes
a single additional parameter that, under an appropriate limit, reduces
the system to the minimal form. In many cases this modification reg-
ularizes the problem such that solutions exist globally in time. Hence
we call the corresponding parameter for each of the extended mod-
els the regularization parameter. The regularization parameter allows
us to study in detail bifurcation conditions, pattern formation and
properties of the nonuniform solutions. We will not discuss certain
questions such as the convergence of solutions of the variations to the
minimal model in the corresponding limit.

Now it’s the time to talk about variables figuring in chemotaxis
models. Let’s consider first three variables: the cell density, n, the
chemoattractant concentration, c, and the stimulant concentration,
s. The bacteria diffuse, move chemotactically up gradients of the
chemoattractant, replicate and become non motile. The non motile
cells can be thought of as dead, for the purpose of the model. The
chemoattractant diffuses, and is produced and ingested by the bacte-
ria. The stimulant diffuses and is consumed by bacteria. Below we
list five chemotaxis models.

The minimal model

ut =∇(D∇u− χ∇v) , (Model 1)

vt =∇2v + u− v

Signal-dependent sensitivity models
Two versions of signal-dependent sensitivity, the “receptor” model,

ut =∇
(
D∇u− χu

(1 + α v)2 ∇v
)
, (Model 2a)

vt =∇2v + u− v,
where for α → 0 the minimal model is obtained, and the “logistic”
model

ut =n∇
(
D∇u− χu1 + β

v + β
∇v
)
, (Model 2b)

vt =∇2v + u− v
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where for β →∞ the minimal model follows and for β → 0 we obtain
the classical form of χ(v) = 1/v.

Density-dependent sensitivity models
Two models with density-dependent sensitivity, the “volume-filling”
model,

ut =∇
(
D∇u− χu

(
1− u

γ

)
∇v
)
, (Model 3a)

vt =∇2v + u− v

where the limit of γ →∞ leads to the minimal model, and

ut =∇
(
D∇u− χu

(
1− u

γ

)
∇v
)
, (Model 3b)

vt =∇2v + u− v,

where ε→ 0 leads to the minimal model, and finally

ut =∇ (Dun∇u− χu∇v) ,

vt =∇2v + u− v

where the minimal model corresponds to the limit of n→ 0.

The nonlinear signal kinetics model

ut =∇ (D∇u− χu∇v) , (Model 4)

vt =∇2v +
u

1 + ϕu
− v,

which approximates the minimal model for ϕ→ 0.

The cell kinetics model

ut =∇ (D∇u− χu∇v) + ru(1− u), (Model 5)

vt =∇2v + u− v

which in the limit of zero growth, r → 0, leads to the minimal model.
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Parabolic models of chemotaxis
Another version of the Keller-Segel type model describes the evolution
of the density ρ(x, t), t ≥ 0, x ∈ Rd of one type of cells and the
concentration ϕ(x, t) of the chemical attracting substance. A general
form of the system reads{

ρt = ∇ · (∇P (ρ))−∇ · (ρχ (ρ, ϕ)∇ϕ)
ϕt = D∆ϕ+ aρ− bϕ (2)

The motion of cells is described by a continuity equation in which the
flux is biased by diffusion and chemotactic transport up to a gradient
of a nutrient. Denoting the velocity of cells as ~u, the flux equals
ρ ~u = −∇(P (ρ)) + χ (ρ)∇ϕ. Here P denotes a nonlinear diffusion
function due to the presence of a density dependent random mobility
for the cells, while χ(ρ, ϕ) is a chemosensitivity function and describes
the response of cells to the presence of chemoattractant. Considering
different forms of these functions we can obtain many variations of the
above model.

Typical examples for the function P (ρ) defining the diffusive flux
are given by

• Fick’s law (classical linear diffusion): P (ρ) = ερ, ε > 0

• Darcy’s law (porous medium type diffusion): P (ρ) = εργ, ε > 0,
γ > 1.

The porous medium type diffusion reflects the density dependent ran-
dom motility, which models volume filling effects due to the finite vol-
ume and finite compressibility of cells [15],[16],[17]. In the case of the
chemosensitivity function the simplest form corresponds to the sensi-
tivity of cells independent on the concentration of the chemical, i.e.
χ(ρ, ϕ) = χ0 is constant, where χ0 > 0 for positive chemotaxis. How-
ever, various modifications were introduced to model quorum sensing,
volume filling or signal limiting responses. For example

• Signal dependent sensitivity function:

– “receptor”: χ(ρ, ϕ) =
χ1

(χ2 + ϕ)2
, χ1, χ2 > 0,
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– “logistic”: χ(ρ, ϕ) =
χ1 + χ2

χ0 + ϕ
, χ0 > 0

• Density dependent sensitivity function (“volume filling”):

χ(ρ, ϕ) = χ0(1− ρ

ρmax

), χ0, ρmax > 0

One of the characteristic features of the system (2) is the balance be-
tween pressure forces, which are modeled by diffusion, and chemotaxis.
More precisely, expanding the equation for ρ in (2) with constant func-
tion χ(ρ, ϕ) = χ we get

ρt = ∆P (ρ)− ρχ∆ϕ− χ∇ρ∇ϕ.

Contribution of the “Laplacian” terms have different signs. This sug-
gests to think of diffusion as stabilizing force, while chemotaxis can
be seen to have a destabilizing effect. Balance between these two pro-
cesses can result in some steady spatial patterns in ρ and ϕ, or in some
unsteady traveling wave solutions. On the other hand, if the chemo-
tactic force is sufficiently strong, there is a possibility of a blow-up
of solutions in finite time. The blow-up of solutions may in fact can
happen, for example in a simplified version of Keller-Segel type model
in two space dimensions, where the parabolic equation for the concen-
tration of chemical is substituted by an elliptic one and the decay of
ϕ is dropped. If the initial mass is larger than some threshold values,
then the solution concentrates into a Diracs delta in finite time.

The blow-up phenomenon is sometimes considered as the weakens
of the classical Keller- Segel system. This motivates the introduction
of nonlinear diffusion P (ρ) and chemosensitivity function χ(ρ, ϕ), to
achieve a more refined balance between diffusion and chemotaxis and
guarantee the global existence of solution.

Macroscopic, parabolic type of models describe very well the ag-
gregation phenomenon but fail when the network structures have to be
reproduced. This was observed while studying the experiments on the
vasculogenesis process. The Patlak-Keller-Segel model cannot explain
this process as well as cannot describe the “run and tumble” movement
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of, for example, Eusterichia Coli. This is because it is mainly directed
to the long time scales evolutions. As a consequence, in recent years
there is a tendency to use hyperbolic systems, which correspond to
models at the lower, mesoscopic scale. The main difference between
the two approaches is that diffusion systems describe the evolution
via the density of the population whereas hyperbolic models are based
on the individual movement behavior. They take into account the
fine structure of the problem and are able to capture the particular
features of the modeled quantity. Moreover, they account for finite
propagation speed. Lower level of description implies also that some
relevant model parameters, for example turning rates, can be mea-
sured from the individual movement patterns. This results in more
realistic description on phenomenon occurring at short time scales.
This two classes of systems are linked by long time asymptotics.

3. Numerical Solutions of Chemotaxis Models

Difference scheme
Finding an analytical solution to a system of partial differential equa-
tions is not trivial, and may not always be intuitively revealing. Thus
we seek numerical approximations to the PDEs. A finite difference
method replaces partial derivatives with approximations, which cre-
ates a finite dimensional system that can be solved using a computer.
There are various finite difference schemes with different orders of ac-
curacy.

Consider one-dimensional parabolic-elliptic KS model

∂u

∂t
= uxx − χ (uvx)x , u(x, 0) = u0(x) ≥ 0 , 0 < l < x , 0 < t < T

(3)

vxx = −u , 0 < x < l , 0 < t < T (4)

u(0, t) = φ(t) , u(l, t) = ψ(t) , v(0, t) = µ(t) , v(l, t) = ν(t) , 0 < x < l.
(5)

To build a difference scheme of the system (3) - (5), we require that
the functions u(x, t), v(x, t) are sufficiently smooth. We introduce an
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even grid with step h in variable x and step τ in t , i.e.

ωh = {xj = jh , j = 0, 1, . . . , N , hN = l }
ωτ = { tn = nτ , j = 0, 1, . . . , K , τ K = T }

The difference scheme corresponding to system (3) - (5) has the fol-
lowing form

yn+1
j − ynj

τ
=
ynj+1 − 2ynj + ynj−1

h2
− χ

(ynj+1 − ynj−1)

2h

(znj − znj−1)

h
− (6)

− χ ynj
znj+1 − 2znj + znj−1

h2
, j = 1, . . . , N − 1 , n = 0, . . . , K − 1

y0
j = u0(xj), , j = 0, 1, . . . , N , yn0 = φ(tn), ynN = ψ(tn), , n = 0, 1, . . . , K,

znj−1 − 2znj + znj+1

h2
= −ynj , j = 1, ..., N − 1 , n = 0, ..., K − 1 (7)

zn0 = µ(tn) , znN = ν(tn) , n = 0, 1, . . . , K.

This is an explicit difference scheme. Here the difference equation (6)
approximates the differential equation (3) at the point (xj, tn) with
the first order in τand the second order in h. The difference equation
(7) approximates the differential equation (4) at the point (xj, tn) with
second order in h.

Note, that difference scheme (7) has a tridiagonal matrix, so it can
be solved by the sweep method, which is a partial version of Gauss
elimination method. Recall, that for the systems of linear algebraic
equations with a tridiagonal matrix

ajyj−1 − cjyj + bjyj+1 = −fj , j = 1, 2, ...N − 1,

y0 = k1y1 + µ1 , yN = k2yN−1 + µ2

conditions of stability for the sweep method look like this

aj 6= 0 , bj 6= 0 , | cj| ≥ |aj|+ |bj| , j = 1, 2, . . . , N − 1,

|k1| ≤ 1 , |k2| < 1
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It is proved in classical books in numerical methods, that schemes like
(6), (7) are conditionally stable for each fixed n and they can be solved
by the sweep method starting from n = 0.

When solving the scheme (6), (7), we apply the principle of frozen
coefficients. Suppose, that

znj − znj−1 = ξnj = const,

znj−1 − 2znj + znj+1 = δnj = const.

Then the difference scheme (6), (7) gets the following form

yn+1
j − ynj

τ
=
ynj+1 − 2ynj + ynj−1

h2
− χξnj

ynj+1 − ynj−1

2h2
−
χδnj
h2

ynj ,

j = 1, . . . , N − 1 , n = 0, . . . , K − 1

y0
j = u0(xj) , j = 0, 1, . . . , N, yn0 = φ(tn), ynN = ψ(tn) , n = 0, 1, . . . , K.

Thus, the system of difference schemes (6), (7) can be solved as follows:

1) find the values of z0
j on the zero layer from the difference scheme

(7);

2) find the values of y1
j on the first layer from the difference scheme

(6), using the values of z0
j , δ

0
j , ξ

0
j and y0

j :

y1
j = (1− 2η − χηδ0

j )y
0
j + (η +

1

2
χτηξ0

j )y
0
j−1 + (η − χτηξ0

j )y
0
j+1,

where η = τ
h2

;

3) find the values of z1
j on the first layer from the difference scheme

(7), using the values y1
j .

It can be proved that this scheme is conditionally stable. And this
is significant drawback of this scheme. Below the result of the C++
code for this simulation is presented (figure 1).
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Figure 1: Sweep method implementation result

Lax-Friedrichs method
The Lax-Friedrichs (LxF) method [18], [19] is a basic method for the
solution of hyperbolic partial differential equations. Its use is limited
because its order is only one, but it is easy to program, applicable
to general PDEs, and has good qualitative properties because it is
monotone.

In this section we apply the second order Lax-Friedrichs scheme
to simulate the KS-type liquid model found in Tyson [20]. The pa-
rameters of the KS equations of the model are also taken from [20].
Consider the simplest liquid model

∂u

∂t
= duuxx − α

[
u

(1 + v)2vx

]
x

, x ∈ [a, b] , t > 0

∂v

∂t
= vxx +

u2

µ+ u2

(8)

Again u represents cell density, v represents the chemoattractant con-
centration defining cell movement in response to chemical gradients,
α is the chemotaxis coefficient, µ is the saturation level of chemoat-
tractant production and du is the diffusion ratio between cells and
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chemoattractant [20]. This simple liquid model implies a uniform dis-
tribution of the stimulant, which remains constant throughout the
experiment.

According to LxF scheme the solution of a PDE is approximated on
a mesh with constant increments ∆x in space and ∆t in time: unm ≈
u (m∆x , n∆t). For the one-way wave equation (Burgers equation)
ut + aux = 0, the LxF method is

un+1
m − 0.5(unm+1 + unm−1)

∆t
+ a

unm+1 − unm−1

2∆x
= 0

The numerical solution converges as the increments go to zero if∣∣∣∣a ∆t

∆x

∣∣∣∣ = |aλ| ≤ 1.

In LxF method the key observation is that the approximations un+1
j

with odd indices j are computed using only approximations unj with
even indices i and vice versa. The method computes un+1

m by first using
unm−1 and unm to take a half step in both space and time with LxF to

get u
n+1/2
m−1/2 and similarly uses unm and unm+1 to get u

n+1/2
m+1/2. These two

first order results are then used along with unm to compute a second
order result un+1

m . If we take another half step with LxF instead of a
whole step, we get a first order result un+1

m and a method that we call
the two-step LxF method. Thus our LxF scheme for the system (9) is
given by,

un+1
j = unj − α

∆t

∆x

[
)

fj+ 1
2
− )

fj− 1
2

]
+
du ∆t

∆x2

[
unj+1 − 2unj + unj−1

]
vn+1
j = vnj +

∆t

∆x2

[
vnj+1 − 2vnj + vnj−1

]
+ ∆t

(unj )2

µ+ (unj )2

(9)
where the numerical flux defined at xj± 1

2
is,

)

f
j± 1

2
=

1

2

[
f(u−

j± 1
2

) + f(u+
j± 1

2

)− αj± 1
2
(u+

j± 1
2

− u−
j+ 1

2

)
]
.
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Note that

f(u−
j± 1

2

) ≈
pj± 1

2

(1 + v
j± 1

2

)2 u
−
j± 1

2

,

f(u+
j± 1

2

) ≈
pj± 1

2

(1 + v
j± 1

2

)2 u
+
j± 1

2

,

αj+ 1
2

=

∣∣∣∣∣∣∣
(vx)j+ 1

2(
1 + vj+ 1

2

)2

∣∣∣∣∣∣∣ ,
where

p
j+ 1

2
=

(vx)j − (vx)j+1

2
,

vj+ 1
2

=
vj + vj+1

2

and

u+
j+ 1

2

=
3uj+1 − uj+2

2
,

u−
j+ 1

2

=
3uj − uj−1

2
.

Instead of periodic boundary conditions here we enforce zero Neumann
boundary conditions. We have x ∈ [a, b], thus the boundary conditions
take the form,

ux(a, t) = ux(b, t) = 0

(vx)j=1 = (vx)j=M+1 = 0

We apply ux(x = a, t) ≈ u2−u1
∆x

= 0 and ux(x = b , t) ≈ uM+1−uM
∆x

= 0,
therefore at all the time level we apply the following zero Neumann
boundary condition, uM+1 = uM , u1 = u2. Similarly we have vM+1 =
vM , v1 = v2 for the chemotaxis variable.

Numerical simulation
We execute a numerical test on the liquid model (8) with the Lax-
Friedrichs scheme (9). The initial condition for the cell density is
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taken as u(x, 0) = u0 + rp with u0 = 1 and randomized perturbation
of size rp = 10−1. The initial condition for the chemical concentration
is v(x, 0) = 0. The computational domain is [a; b] = [0; 10]. The time
step size used is ∆t = 1

4
∆x2 with total mesh points M = 25. The

parameter values used in system (8) are α = 0, µ = 1, du = 0.33.
Initial conditions and parameter values were taken from Tyson [20].
Below the result of the Wolfram Mathematica code for this simulation
is presented (figure 2).

The results of this simulation can be seen in the figure 2. Since the
cells are randomly distributed throughout the domain, we initially see
many peaks and troughs in cell density. At this point the cells have
just begun to secrete chemoattractant.

Figure 2: Sweep method implementation result

Biological interpretation
As time moves on the cells continue to produce chemoattractant. In
figure 2 we see that the many initial peaks in cell density have quickly
given way to a lesser number of peaks with increased amplitudes. The
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difference in amplitudes can be explained by competition between the
cell groups. A group of cells with higher density will produce more
chemoattractant than a group of cells with lower density, thus attract-
ing cells to the higher density group at a faster rate.

As time continues to move on, we see a reduction in the number of
peaks in cell density. While the populations of high cell density con-
tinue to produce high levels of chemoattractant, diffusion is working
against them, dissipating the concentrations of chemoattractant. If a
group of cells is not producing enough chemoattractant to overpower
the diffusion process that group will start to lose cell population to a
group of cells whose chemoattractant production surpasses the diffu-
sion rate. Thus we see a reduction in the number of populations with
high cell density.

We see also the further effects of competition between groups of
cells. Again the number of populations of high cell density is reduced,
with one group out-pacing the other in cell density. Since the amount
of chemoattractant in the dish has no way to dissipate, eventually cells
saturate and their movement is no longer governed by chemotaxis. The
process of diffusion will then take over, meaning cells will travel down
the concentration gradient to areas of lesser cell density.

Conclusion

The aim of this work was to analyze and solve particular mathe-
matical models describing the phenomenon of chemotaxis. Since the
cells density depends on the nutrient concentration and vice versa,
there exists a coupling between equations describing their evolution in
time. The considered models have the form of a system of ordinary
and partial differential equations of a reaction-diffusion type. These
kinds of system play an important role in cancer modeling.

These so-called multiscale models are far more accessible to the
biologist both in terms of understanding and in terms of experimental
validation. Mathematical models of cancer are often complex and are
unlikely to be amenable to standard mathematical analysis and there-
fore are nearly always solved by means of computational solution.
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Such computational solutions, either numerical or simulation-based,
require a great deal of computing power, which has only recently be-
come widely available. It seems clear that we have now seen the emer-
gence of computational models as the dominant tool in mathematical
models of chemotaxis. In presented work, two main results can be
mentioned:

1. One Keller-Segel type model of chemotaxis is solved numerically
by means of sweep method.

2. One, Keller-Segel type liquid model is solved numerically by Lax-
Friedrichs method. Then the results (also Wolfram illustrations)
are interpreted biologically.

In future, a peculiar numerical and mathematical analysis for gradient-
based slope limiters for the partial differential equations on surfaces
is desired. We are optimistic that this is a very promising stabiliza-
tion method for the numerical treatment of surface-based chemotaxis
problems in medicine and biology.
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