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Abstract. In this article we will consider the possibility of approx-
imating the input function s(t) (the nutrient supply for cell growth)
of the form s(t) = 1

1+mt
e−mt where m > 0 is parameter.

We prove upper and lower estimates for the one–sided Hausdorff
approximation of the shifted Heaviside function ht∗(t) by means of
the general solution of the differential equation y′(t) = ky(t)s(t) with
y(t0) = y0.

We will illustrate the evolution of the solution y(t) for approximat-
ing and modelling of three data sets: i) ”data on the development of
the Drosophila melanogaster population”, published by Pearl in 1920,,
ii) dataStormIdentifications (Storm worm was one of the most biggest
cyber threats of 2008, and ”cancer data” [49]–[50].
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Numerical examples using CAS Mathematica, illustrating our re-
sults are given.
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1 Introduction

Sigmoidal functions find multiple applications to population dynamics,
analysis of nutrient supply for cell growth in bioreactors, population
survival functions, classical predator–prey models, debugging theory
and others [19]–[47].

Evidently, the Verhulst model can be considered as a prototype
of models used in bioreactor modelling. In batch growth, the rate
of biomass production is given by dx

dt
= κx, where: x = biomass

concentration; κ = specific growth rate; t = time.
The rate κ is a function of nutrient supply and therefore can be a

function of time (i.e., if nutrient supply is changing with time).
In general, κ = F (S, P, I, X, T, osmoticpressure); S = substrate

concentration; P = product concentration; I = inhibitor concentra-
tion.

There, especially in the case of continuous bioreactor, the nutrient
supply is considered as an input function s(t) as follows:

dy(t)

dt
= ky(t)s(t) (1)

where s is additional specified.
To the role and choice of nutrient supply for cell growth in biore-

actors are devoted to a number of studies [1]–[16].
Following the ideas given in [13], in this paper we consider the

following differential model:
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dy(t)
dt

= ky(t)
1

1 +mt
e−mt

y(t0) = y0

(2)

where k and m are parameters.
We prove upper and lower estimates for the one–sided Hausdorff

approximation of the shifted Heaviside function ht∗(t) by means of the
general solution of this differential equation.

We will illustrate the advances of the solution y(t) for approximat-
ing and modelling of:

- ”data on the development of the Drosophila melanogaster popu-
lation”, published by biologist Raymond Pearl in 1920 (see, also Al-
patov, Pearl [17]);

- data Storm Identifications [48], [47]);
- ”cancer data” [49]–[50].

2 Preliminaries

Definition 1. The shifted Heaviside step function is defined by

ht∗(t) =


0, if t < t∗,

[0, 1], if t = t∗,

1, if t > t∗.

(3)

Definition 2. [18] The Hausdorff distance (the H–distance) ρ(f, g)
between two interval functions f, g on Ω ⊆ R, is the distance between
their completed graphs F (f) and F (g) considered as closed subsets of
Ω× R.

More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (4)
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wherein ||.|| is any norm in R2, e. g. the maximum norm ||(t, x)|| =
max{|t|, |x|}; hence the distance between the points A = (tA, xA), B =
(tB, xB) in R2 is ||A−B|| = max(|tA − tB|, |xA − xB|).

3 Main Results

3.1 A New Model

The general solution of the differential equation (2) is of the following
form:

y(t) = y0e
ek
m

Ei(−1−mt)− ek
m

Ei(−1−mt0), (5)

where Ei(.) is the exponential integral function defined by

Ei(z) = −
∫ ∞
−z

e−t

t
dt

(for z > 0), where the principal value of the integral is taken.
It is important to study the characteristic - ”supersaturation” of

the model to the horizontal asymptote.
In this Section we prove upper and lower estimates for the one–

sided Hausdorff approximation of the Heaviside step–function ht∗(t)
by means of families (5).

Without loss of generality, we consider the following class of this
family for:

t0 = 0; y0 = e
ek
m

Ei(−1)

M(t) = e
ek
m

Ei(−1−mt). (6)

The function M(t) and the ”input function” s(t) are visualized on
Fig. 1.

Denoting by t∗ the unique positive solution of the nonlinear equa-
tion:
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Figure 1: The functions M(t)–(red) and s(t)–(green) for k = 100; m =
10.

e
ek
m

Ei(−1−mt∗) − 1

2
= 0. (7)

The one–sided Hausdorff distance d between the function ht∗(t)
and the sigmoid - (6) satisfies the relation

M(t∗ + d) = 1− d. (8)

The following theorem gives upper and lower bounds for d
Theorem 1. Let

α = −1
2
,

β = 1 + k
2

1
1+mt∗

e−mt∗

γ = 2.1β.

(9)

For the one–sided Hausdorff distance d between ht∗(t) and the
sigmoid (6) the following inequalities hold for the condition: γ > e1.05:

dl =
1

γ
< d <

ln γ

γ
= dr. (10)

Proof. Let us examine the function:
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Figure 2: The functions F (d) and G(d) for k = 100; m = 10.

F (d) = M(t∗ + d)− 1 + d. (11)

From F ′(d) > 0 we conclude that function F is increasing.
Consider the function

G(d) = α + βd. (12)

From Taylor expansion we obtain G(d)− F (d) = O(d2).
Hence G(d) approximates F (d) with d→ 0 as O(d2) (see Fig. 2).
In addition G′(d) > 0.
Further, for γ > e1.05 we have

G(dl) < 0; G(dr) > 0.

This completes the proof of the theorem.
Approximations of the ht∗(t) by model (6) for various k, m and L

are visualized on Fig. 3–Fig. 4.

4 Some applications

The proposed model can be successfully used to approximating data
from Population Dynamics, Debugging Theory and Theory of Com-
puter Viruses Proppagation. .
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Figure 3: The model (6) for k = 100;m = 10; t∗ = 0.148284; Hausdorff
distance d = 0.128078; dl = 0.0854317; dr = 0.210165.

Figure 4: The model (6) for k = 100; m = 15; t∗ = 0.0786205;
Hausdorff distance d = 0.0986342; dl = 0.059118; dr = 0.1672.
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4.1 Approximating the ”data on the development
of the Drosophila melanogaster population”

We will illustrate the advances of the solution y(t) for approximat-
ing and modelling of ”data on the development of the Drosophila
melanogaster population”, published by biologist Raymond Pearl in
1920 (see, also [17]).

We consider the following data:

data Pearl

:= {{9, 39}, {12, 105}, {15, 152}, {18, 225}, {21, 390}, {25, 547},

{29, 618}, {33, 791}, {36, 877}, {39, 938}}.

After that using the model

M∗(t) = ωe
ek
m

Ei(−1−mt)

for ω = 1040.42, k = 2.37757 and m = 0.09 we obtain the fitted model
(see, Fig. 5).

4.2 Approximating the data Storm Identifications

[48], [47])

Storm worm was one of the most biggest cyber threats of 2008. In
[48] are noticed particular periods during which their Storm specimen
published different IDs every 10 minutes, that behavior cannot account
for the very large number of IDs.

We analyze the following data:

data Storm Identifications :=
{{1, 0.843}, {4, 0.926}, {5, 0.954}, {6, 0.967}, {7, 0.976},

{8, 0.981}, {9, 0.985}, {10, 0.991}, {22, 0.995}, {38, 0.997},

{51, 0.998}, {64, 0.9985}, {74, 0.999}, {83, 1}, {100, 1}}.
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Figure 5: The fitted model M∗(t).

After that using the model M∗(t) for ω = 1, k = 0.0583363 and
m = 0.169 we obtain the fitted model (see, Fig. 6).

4.3 Application of the new cumulative sigmoid for
analysis of the ”cancer data”

.
We will illustrate the advances of the modified inverse Rayleigh

cumulative sigmoid for approximation and modelling of ”cancer data”
(for some details see, [49]–[50]).

days 4 7 10 12 14 17 19 21
R(t) 0.415 0.794 1.001 1.102 1.192 1.22 1.241 1.3

Table 1: The ”cancer data” [49]–[50]
The model M∗(t) based on the data from Table 1 for the estimated

parameters:

ω = 1.38611; m = 0.13; k = 0.522489
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Figure 6: The fitted model M∗(t).

is plotted on Fig. 7.
As should expected, the experiments conducted (see, Sections 4.1

- 4.3) show a very good approximation of data from the field of popu-
lation dynamics and computer viruses propagation, with suggested in
this article, modified logistic model.

5 Conclusion.

A special choice of nutrient supply for cell growth in a continuous
bioreactor is introduced.

We prove upper and lower estimates for the one–sided Hausdorff
approximation of the shifted Heaviside function ht∗(t) by means of
the general solution of the differential equation y′(t) = ky(t)s(t) with
y(t0) = y0, where s(t) = 1

1+mt
e−mt.

We propose a software module within the programming environ-
ment CAS Mathematica for the analysis of the considered family of
functions.
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Figure 7: The model M∗(t) based on the ”cancer data”.

The module offers the following possibilities:
- calculation of the H-distance between the ht∗ and the model M(t)

(6);
- generation of the functions under user defined values of the pa-

rameters k and m;
- numerical solution of the differential model (2) and opportunities

for comparison with other logistics models;
- software tools for animation and visualization.
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