
Review Article Biomath Communications 6 (2019)

Biomath Communications

www.biomathforum.org/biomath/index.php/conference

Branching Stochastic Evolutionary

Models of Cell Populations

Ollivier Hyrien1 and Nikolay M. Yanev2

1 Fred Hutchinson Cancer Research Center, Seattle WA, 98109, USA
ohyrien@fredhutch.org

2 Institute of Mathematics and Informatics, Bulgarian Academy of
Sciences, 1113 Sofia, Bulgaria

yanev@math.bas.bg

Abstract. This review paper surveys results on branching stochas-
tic models with and without immigration published during the past
nine years. Studies of this class of stochastic models were motivated
by the quantitative analysis of the dynamics of population of cells of
the central nervous system, called the terminally differentiated oligo-
dendrocytes, and their progenitor cells. We focus on original ideas
specifically developed for Sevastyanov branching processes allowing
the contribution of an external cellular compartment (e.g., stem cells)
via a nonhomogeneous Poisson immigration process. Limiting distri-
butions are discribed in the subcritical, critical and supercritical cases
for various immigration rates.

Keywords: Branching stochastic processes; Models of cell proliferation;
Stem cells; Non-homogeneous immigration; Limiting distributions

AMS Subject Classification: 60J80, 60J85, 92D25

Citation: Ollivier Hyrien, Nikolay M. Yanev, Branching Stochastic
Evolutionary Models of Cell Populations, Biomath Communications 6, pp. 78-95,
https://doi.org/10.11145/bmc.2019.10.229

78

https://doi.org/10.11145/bmc.2019.10.229


1 Introduction

Thomas R. Malthus (1766-1834) was one of the pioneers of Mathe-
matical Biology. Between 1798 and 1826, he published six editions
of “An Essay on the Principle of Population” in which he reported
the observation that populations exhibit a propensity for growth, and
articulated the principle according which they multiply geometrically.
His claim has since been proven correct for populations that develop in
isolation; that is, populations composed of individuals that reproduce
and die independently of their environment.

Several classes of mathematical models are available to practition-
ers to model population dynamics. One of them uses the theory of
branching processes, a family of stochastic processes initiated by Bi-
enaymé [3], and independently formulated by Galton and Watson [5].
The properties of the celebrated Bienaymé-Galton-Watson process are
now well understood, and their applications to biology well accepted
since Kolmogorov’s work who proved the first asymptotic result on the
probability of non-extinction [20].

Kolmogorov also introduced the terminology “branching processes”
when he started a seminar series on this topic at Moscow State Univer-
sity in 1946. The first three fundamental papers on single and multi-
type Markov branching processes that resulted from this initiative are
worth mentioning [21, 22, 28]. Non-Markov branching processes were
subsequently formulated by Bellman and Harris in 1948 [8].

For readers least familiar with these models, branching processes
describe the temporal evolution of populations in which individuals,
more generally objects, may reproduce during or at the end of their
life time. The nature and scale of these objects are virtually unre-
stricted, and include elementary particles (e.g., photons, electrons),
atoms, molecules, genes, cells, viruses, bacteria, animals, plants, in-
formation. As a result, these stochastic models have found many ap-
plications in a variety of fields, including Physics, Chemistry, Biology,
Demography, Economics and Finance, Technology, and Computer Sci-
ence. The theory and applications of branching processes is covered
in many textbooks. We refer to [1, 2, 6, 7, 8, 18, 25, 26] for theoretical
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aspects, and to [7, 18, 19, 29] for applications to biology.
The goal of this paper is to survey recent results on branching

stochastic models based on papers published during the past nine years
(see [9, 10, 11, 12, 13, 14, 15] and [23, 24, 27, 30]). We focus on orig-
inal ideas specifically developed for Sevastyanov branching processes
with a non-homogeneous Poisson immigration. This class of models
was motivated by quantitative studies of cells of the central nervous
system, called the terminally differentiated oligodendrocytes and their
progenitor cells.

The paper is organized as follows. Section 2 provides a motivating
example for considering Sevastyanov process as a model of cell kinet-
ics. Section 3 defines the (single-type) Sevastyanov process without
immigration. Section 4 extends the definition of the process to allow
for non-homogeneous immigration. This class of stochastic processes
offers a quantitative framework to study the kinetics of cell populations
that are sustained by an influx of cell from an external compartment.
Examples of such situations abound in cell biology. Section 5 presents
properties of population dynamics captured by the model for vari-
ous immigration rates. The section is divided into three subsections
to consider the subcritical, critical, and supercritical cases separately.
Section 6 offers concluding remarks.

2 A motivating example from stem cell

biology

Adult stem cells are multipotent cells responsible for replacing dam-
aged and dead cells of tissues and organs of the body. They are defined
by two criteria: (1) they must be able to undergo self-renewing divi-
sions to produce more stem cells of the same type via symmetric or
asymmetric division; (2) they must be able to differentiate into other
cell types. They share these characteristics with so-called progenitor
cells which are further committed to particular lineages of the body
than stem cells. Some cancer cells associated with particular malig-
nancies (e.g., leukemia) are also able to give rise to all cell types that
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exist in a tumor, and thus possess the characteristics that define nor-
mal stem cells.

Stem cells reside in a specific microenvironment called the stem
cell niche with which they interact to balance stem cell quiescence
with proliferation and differentiation, and to regulate their fate in
response to the varying needs of the body. These niches are placed in
specific anatomic locations to optimize support for regeneration and
maintenance of specific tissues. For instance, hematopoietic stem cells
are located in the bone marrow from where they generate all blood
cells, including red blood cells and lymphocytes. Neural stem cells are
committed to the neuronal lineages (e.g., oligodendrocytes, neurons,
astrocytes) of the central nervous system; their niches may be found in
the subventricular zone along the lateral wall of the lateral ventricles
and in the subgranular zone of the hippocampal dentate gyrus [4].

The factors that control the dynamics and differentiation of stem
cells are not fully understood, and the focus of experimental stud-
ies. In biomedical research, these studies are particularly important
as they may lead to the discovery of novel approaches for treating the
millions of people that become affected by diseases or injuries each
year. Hematopoietic stem cell transplantation is one example of suc-
cessful stem cell-based therapies that was developed following years of
research to treat patients with cancers of the blood or bone marrow.
The rarity of certain stem cells, combined with the fact that they re-
side in niches create bottlenecks that make them difficult to observe in
human studies. Experimental observations are sometime restricted to
output of the stem cell compartment, forcing scientists to infer prop-
erties of these cells from indirect observations. Mathematical models
have been proposed to bridge the gap between observations and the
stem cell compartment. Several classes of models have been devel-
oped to describe cell kinetics, including branching processes which are
designed to capture variation in population growth that occurs from
stochasticity in cell fate decision and life time duration.

In previous work, we have used these models to characterize the
dynamics of multiple cellular systems, including the oligodendrocytes
type-2 astrocytes (O-2A) progenitor cells and their terminally differ-
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entiated progeny, known as oligodendrocytes [16, 17]. These cells pro-
duce the myelin sheath that enwraps axons in the central nervous
system and are involved in signal propagation along the nerves. To
model the dynamics of the population of O-2A progenitor cells, the
model assumes that every cell may either divide into two new O-2A
progenitor cells with probability p2 (0 < p2 ≤ 1) or either die or dif-
ferentiate into an oligodendrocyte with probability p0 = 1− p2 at the
end of its life time or mitotic cycle. In other words, every O-2A pro-
genitor cell produces a random number of offsprings (progeny) ν with
a probability generating function (p.g.f.) h(s) = E(sν) = p0 + p2s

2,
|s| ≤ 1. This single-type model does not distinguish cells based on any
of their characteristics, but assumes that the duration of the life time
is a random variable (r.v.) τ with cumulative distribution function
G(x) = P (τ ≤ x), x ≥ 0.

Every cell is assumed to evolve independently of every other cell.
However, the random variables τ and ν may be either dependent or
independent. From a biological standpoint, the assumption that τ
and ν are dependent is most natural because it allows the duration of
the life time to be stochastically longer or shorter depending on the
ultimate fate of the cell (e.g., division versus death or differentiation).
Experimental studies have shown that the time to death, the time to
differentiation, and the time to division of O-2A progenitor cells were
not identically distributed, which this assumption captures. It leads
to the Sevastyanov process, which is formally defined in Section 3.

3 The Sevastyanov process (as model of

cell proliferation)

The Sevastyanov process introduced in Section 2 generalizes by al-
lowing the number of offspring of every cell to be arbitrary. Thus,
define pk = P{ν = k}, k = 0, 1 . . . , with

∑∞
k=0 pk = 1, and write

h(s) =
∑∞

k=0 pks
k. To allow dependencies between the life time and

offspring, the process assumes that the joint distribution of (τ, ν)
is given by P{τ ≤ x, ν = k} =

∫ x
0
pk(u)dG(u). Define the as-
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sociated conditional offspring p.g.f. h(u, s) =
∑∞

k=0 pk(u)sk, with
h(u, 1) = 1 for every u ≥ 0. The pair (G, h) defines the character-
istics of the Sevastyanov process. When τ and ν are independent, we
have h(u, ·) ≡ h(·), u ≥ 0, and the Sevastyanov process reduces to
the Bellman-Harris process. If, in addition, G(x) = 1 − e−x/M , the
process is a Markov branching process, whereas when G(x) = 1{x≥1},
it becomes a (discrete-time) Bienaymé-Galton-Watson process. When
started from a single cell, the sample path (trajectory) of the process
produces a genealogical tree rooted at the initiator cell, and, when
started from multiple cells, it generates a genealogical forest.

Let {Z(t), t ≥ 0} denote the total number of cells alive at time
t. Its p.g.f. F (t, s) = E[sZ(t)|Z(0) = 1], t ≥ 0, |s| ≤ 1, satisfies the
non-linear integral equation

F (t, s) = s(1−G(t)) +

∫ t

0

h(u, F (t− u, s))dG(u), F (0, s) = s.

Let a(u) = h′s(u, 1) and b(u) = h′′ss(u, 1) denote the conditional first
two factorial moments of the progeny size of any cell that divides at age
u. Let h(s) =

∫∞
0
h(u, s)dG(u), |s| ≤ 1, denote the (unconditional)

p.g.f. of the progeny size of any cell, where a = h′(1) and b = h′′(1).
Put M = Eτ =

∫∞
0
udG(u) < ∞, Ma =

∫∞
0
ua(u)dG(u) < ∞, Mb =∫∞

0
b(u)dG(u) <∞, M1(t) = E[Z(t)], M2(t) = E[Z(t)(Z(t)− 1)], and

W (t) = Var[Z(t)].
Let α denote the Malthusian parameter of the process. It is defined

as the solution to the equation∫ ∞
0

e−αxa(x)dG(x) = 1,

and enables classifying the Sevastyanov process as subcritical if a < 1
(α < 0), critical if a = 1 and b > 0 (α = 0), and supercritical if a > 1
(α > 0). All three cases are treated in this paper.

When (a, b) = (1, 0), we have that Z(·) ≡ 1 almost surely, and the
total population size is an ordinary renewal process. In all other cases,
the average population size grows or decays exponentially quickly as
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t → ∞: E[Z(t)] ∼ Cαe
αt, where Cα ∈ (0,∞) (Malthusian average

growth of population).
When α ≤ 0, we have that P{Z(t) → 0} = 1; i.e., the population

almost surely (a.s.) becomes eventually extinct in both the subcritical
and critical cases. In the supercritical case (α > 0), we have P{Z(t)→
0} = q, where q, the probability of extinction, is the (unique) solution
to the equation h(q) = q that belongs to the interval [0, 1). The
population has therefore a strictly positive probability of (indefinite)
survival.

The following limiting results were proven under additional condi-
tions [26]:

1) If α < 0 then lim
t→∞

P{Z(t) = n|Z(t) > 0} = dk,
∑∞

k=1 dk = 1

(conditional limiting distribution).

2) If α = 0 then lim
t→∞

P{Z(t)/Dt ≤ x|Z(t) > 0} = 1 − e−x, x ≥
0, D = M/Ma.

3) If α > 0 then lim
t→∞

Z(t)/EZ(t) = ζ a.s. and L2, Eζ = 1.

4 Sevastyanov process with non-homoge-

neous immigration (as model of cell

proliferation induced by stem cells)

The Sevastyanov process without immigration describes the dynamics
of a population that evolves in complete isolation from external popu-
lations, a potential limitation when studying the dynamics of cellular
systems that develop in vivo. For example, the model presented in
Section 2 does not allow the differentiation of stem cells into O2-A
progenitor cells, an assumption mostly only valid for in vitro studies.
The model can be meaningfully extended by appending an immigra-
tion component to the branching process, thereby allowing a cellular
influx from other compartments into the population of interest. The
goal of this section is to define such a process.
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Let (Sk, Ik), k = 1, 2 . . . denote independent and identically dis-
tributed (i.i.d.) random vectors where the ordered sequence 0 < S1 <
S2 . . . represent time points generated by a Poisson process Π(0, t),
and where Ik, k = 1, 2 . . . , is a sequence of non-negative integer val-
ued r.v.. In our oligodendrocyte example, the r.v. Ik represents the
number of stem cells immigrating into the population of O-2A pro-
genitor cells at time Sk by differentiating. Thus, at every time Sk, a
random number Ik of i.i.d. Sevastyanov processes are initiated by the
pool of immigrating stem cells.

The model that describes the arrival of new cells into the popu-
lation of interest is called the immigration process. The assumption
that Π(0, t) is Poisson entails that P{Π(0, t) = n} = e−R(t)Rn(t)/n!,
n = 0, 1, 2 . . . , where R(t) =

∫ t
0
r(x)dx denotes the mean measure of

the process, and r(x) > 0 is its local intensity or immigration rate.
This rate is allowed to be time-dependent, a feature that may be
necessary in biological applications in order to capture some of the
non-stationarity exhibited by population dynamics.

Let {Y (t), t ≥ 0} denote the number of cells in the population
at time t as described by the combination of the immigration and
Sevastyanov processes. We refer to this composite model as the Sev-
astyanov branching process with non-homogeneous Poisson immigra-
tion (SBPwNPI), and note that Y (t) can be expressed as

Y (t)=

Π(0,t)∑
k=1

Ik∑
j=1

Z(k,j)(t−Sk) if Π(0, t)>0, and Y (t)=0 if Π(0, t)=0,

where {Z(k,j)(t), t ≥ 0}, j, k = 1, 2 . . . , denote i.i.d. Sevastyanov pro-
cesses with characteristics (G, h). Write g(s) = E(sIn) =

∑∞
k=0 qks

k

for the p.g.f. of the number of immigrants at any time Sk, and put
γ = g′(1−) < ∞ and γ2 = g′′(1−) < ∞ for the associated first and
second order factorial moments. Then, the p.g.f. of Y (t), defined by
Φ(t; s) = E(sY (t)|Y (0) = 0), satisfies the following equation:

Φ(t; s) = exp

{
−
∫ t

0

r(t− u)(1− g(F (u; s)))du

}
,
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with Φ(0; s) = 1. Introduce the joint p.g.f.

Φ(s1, s2; t, u) = E[s
Y (t)
1 s

Y (t+u)
2 |Y (0) = 0] (t, u ≥ 0).

Then,

Φ(t, u; s1, s2) = exp

{
−
∫ t

0

r(x)[1− g(F (t− x, u; s1, s2))]dx (1)

−
∫ t+u

t

r(y)[1− g(F (t, u− y; 1, s2))]dy

}
,

where F (t, u; s1, s2) = E[s
Z(t)
1 s

Z(t+u)
2 |Y (0) = 0], t, u ≥ 0, satisfies the

integral equation

F (t, u; s1, s2) =

∫ t

0

h(F (t− x, u; s1, s2))dx

+s1

∫ t+u

t

h(y;F (t+ u− y; s2))dy

+s1s2[1−G(t+ u)].

Define the moments A(t) = E[Y (t)], B(t) = E[Y (t)(Y (t) − 1)], and
V (t) = Var[Y (t)], studied in Section 5.

5 Asymptotic behaviour of the SBPwNHPI

This section presents results on limiting distributions of the population
size process {Y (t), t ≥ 0} as t → ∞. We consider all three (sub-, su-
per, and critical) cases, and let the immigration rates assume different
forms.

5.1 Subcritical populations

Assume first that the average number of progeny per cell is smaller
than 1: a < 1, or, equivalently, α < 0.
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Theorem 1. Assume that r(t) ∼ reρt for some given constant r > 0.
(i) If ρ < 0, then lim

t→∞
P{Y (t) = k|Y (t) > 0} = qk > 0, k = 1, 2 . . ..

ii) If ρ > 0, then as t→∞:
(a) LLN: ζ(t) = Y (t)/A(t)→ 1 a.s. and L2;
(b) CLT: X(t) = [Y (t) − A(t)]/

√
V (t) → N(0, σ2) in distribution

where

0 < σ2 =

∫∞
0
e−ρu[γM2(u) + γ2M

2
1 (u)]du∫∞

0
e−ρu[γM2(u) + γM1(t)(u) + γ2M2

1 (u)]du
< 1.

Theorem 2. Let r(t) ∼ rtθ with r > 0.
(i) If θ < 0 then lim

t→∞
P{Y (t) = k|Y (t) > 0} = qk > 0, k = 1, 2, . . . ,

where

Ψ∗(s) =
∞∑
k=1

qks
k = 1−

∫∞
0

(1− g(F (u, s)))du∫∞
0

(1− g(F (u, 0)))du
, 0 ≤ s ≤ 1.

(ii) If θ > 0, then as t→∞:
(a) LLN: ζ(t) = Y (t)/A(t)→ 1, in L2. The convergence is almost

surely if θ > 1.
(b) CLT: X(t) = [Y (t) − A(t)]/

√
V (t) → N(0, σ2) in distribution

as t→∞, where

0 < σ2 = 1−
γ
∫∞

0
M1(u)du∫∞

0
[γM2(u) + (γ + γ2)M2

1 (u)]du
< 1.

Theorem 3. Assume lim
t→∞

r(t) = r > 0. Then, there exists a stationary

limiting distribution

lim
t→∞

P{Y (t) = k} = Qk > 0, k = 0, 1, 2 . . . ,

where

Ψ∗(s) =
∞∑
k=0

Qks
k = exp

{
−r
∫ ∞

0

[1− g(F (u, s))]du

}
, |s| ≤ 1.
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Corollary. Assume G(t) = 1− e−t/M , t ≥ 0. Then, {Z(t), t ≥ 0} is a
Markov branching process, and

Ψ∗(s) = exp

{
−r
∫ 1

s

1− g(x)

f(x)
dx

}
,

where f(s) = (h(s)− s)/M , and M = Eτ =
∫∞

0
udG(u) <∞.

5.2 Critical populations

We now consider the critical case where a = 1 (i.e., α = 0) and
assume that the rate of the Poisson process is either such that r(t) ∼
tδLR(t) as t → ∞ for some smoothly varying function (s.v.f.) LR(t),
or
∫∞

0
r(t)dt = R ∈ (0,∞). In cell biology, the critical case describes

(homeostatic) populations of cells that produce on average one cell
upon completion of their life time. Since a =

∫∞
0
a(u)dG(u) = 1, the

distribution function Ga(t) =
∫ t

0
a(u)dG(u), t ≥ 0, is proper on [0,∞).

Define Ma =
∫∞

0
ua(u)dG(u) =

∫∞
0
udGa(u).

Theorem 4. Assume that M and Ma are finite. Then, as t → ∞,

A(t) = E[Y (t)] ∼ γ
M

Ma

R(t) and B(t) ∼ γM2b

M3
a (δ + 2)

R(t)t. Further-

more, depending on the rate at which r(t) increases or decreases, the
asymptotic behavior of A(t) is as follows:

r(t) ↓ 0,

∫ ∞
0

r(t)dt = R ∈ (0,∞) ⇒ A(t)→ γ
M

Ma

R. (2)

r(t) ∼ r

t
, r > 0, ⇒ A(t) ∼ γ

M

Ma

r log t. (3)

r(t) ∼ tδLR(t), δ ∈ (−1, 0] ⇒ A(t) ∼ γ
M

Ma

t1+δ

1 + δ
LR(t). (4)

r(t) ↑ r > 0, ⇒ A(t) ∼ γ
M

Ma

rt. (5)

r(t) ∼ tδLR(t), δ > 0 ⇒ A(t) ∼ γ
M

Ma

t1+δ

1 + δ
LR(t). (6)
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Theorem 5. Let t→∞.

(i) If
∫∞

0
r(t)dt = R ∈ (0,∞), then

D(t) = P{Y (t) > 0} =
2RγMa

bt
(1 + o(1)).

(ii) If r(t) ∼ r
t
, then P{Y (t) > 0} =

4Maγr log t

bt
(1 + o(1)).

(iii) If r(t) ∼ tδLR(t), δ ∈ (−1, 0], then

P{Y (t)>0} =
2Maγr(t) log t

b
(1 + o(1)).

(iv) If r(t) ↑ r > 0 or r(t) ∼ tδLR(t), δ > 0, then P{Y (t) > 0} → 1.

Theorem 6. Suppose that r(t) ↓ 0 and
∫∞

0
r(t)dt = R ∈ (0,∞).

Then, D(t) = P{Y (t) > 0} ∼ 2RγMa

bt
and

lim
t→∞

P {Y (t)D(t) ≤ x|Y (t) > 0} = 1− e−
γMR
Ma

x, x ≥ 0.

This result extends Kolmogorov and Yaglom’s classical results in
the Markov case without immigration.

Theorem 7. Suppose that r(t) ∼ tδLR(t) and δ ∈ (−1, 0]. Then,

lim
t→∞

P

{
log Y (t)

log t
≤ x

∣∣Y (t) > 0

}
= x, x ∈ [0, 1].

Theorem 8. Suppose that r(t) ↑ r > 0, θ = Mb/2M2
ar, and κ =

2γMa/b. Then,

lim
t→∞

P

{
Y (t)

rt
≤ x

}
=

1

θκΓ(κ)

∫ x

0

uκ−1e−u/θdu, x ≥ 0.

This limiting distribution includes that established in the homoge-
neous Markov case by Sevastyanov (1957) as particular case.
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Theorem 9. Suppose that r(t) ∼ tδLR(t), δ > 0. Then, as t→∞:

(i) LLN: Y (t)/A(t)→ 1 in probability.

(ii) CLT: X(t) = (Y (t)− A(t))/
√
V (t)

D−→ N(0, 1).

The second result of Theorem 9 states that, as t gets large,

Y (t)

r(t)t
∼ N

(
γµ

Ma(δ + 1)
,

b(δ + 1)

Ma(δ + 2)r(t)

)
,

an approximation useful for asymptotic estimation and statistical in-
ference.

Theorem 10. Suppose that r(t) = L(t)/t for some s.v.f. L(·). Then,
P{Y (t) > 0} ∼ KL∗(t)/t, where K ∈ (0,∞), L∗(t) = L1(t) +

R(t), L1(t) = L(t) log t, and R(t) =

∫ t

0

L(x)x−1dx. Furthermore,

if L1(t)/R(t)→ ρ ∈ [0,∞) as t→∞, then:

lim
t→∞

P

{
Y (t)

Ct
≤ x|Y (t) > 0

}
=

ρ

1 + ρ
+

1

1 + ρ
(1− e−x), (7)

where C = MMb/2M
2
a ∈ (0,∞), and

lim
t→∞

P

{
log Y (t)

log t
≤ x|Y (t) > 0

}
=

ρx

1 + ρ
1{0≤x≤1} +

ρ

1 + ρ
1{x≥1}. (8)

Remark. This last theorem shows that two distinct limiting distri-
butions may hold under a same set of conditions using two different
normalizations. It also shows that the growth rates of sample paths
that do not become extinct fall into two separate categories: (1) with
probability 1

1+ρ
, the growth is linear with an exponentially distributed

slope; (2) with probability ρ
1+ρ

, the growth is parabolic with power

uniformly distributed on (0, 1). A potential explanation of the dif-
ference between the two categories is that the first one may contain
long-lived cells whereas the second one may include short-lived cells.
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5.3 Supercritical populations

We finally consider the supercritical case a > 1 (equivalently, α > 0),
which is appropriate to model the dynamics of populations in which
cells produce more than one offspring on average upon completion of
their life time.

Theorem 11. Let r̂(α) = lim
t→∞

∫ t
0
r(u)e−αudu < ∞. Then A(t) ∼

γCr̂(α)eαt as t→∞ and ζ(t) = Y (t)/A(t)
L2→ ζ where

C =

∫∞
0
e−αt(1−G(t))dt∫∞

0
xe−αxa(x)dG(x)

<∞,

ζ is a r.v. with Eζ = 1 and

Var(ζ) =
r̂(2α) [γW + (γ + γ2)C2]

[Cγr̂(α)]2
<∞,

where

W =
C2
∫∞

0
(b(x) + a(x))e−2αxdG(x)− 1

1−
∫∞

0
a(x)e−2αxdG(x)

> 0.

Remark. If r(t) = O(eρt) for some constant ρ < α, then r̂(α) <∞.

Theorem 12. Assume r(t) ∼ reρt with ρ ≥ α. Then, as t→∞:

(i) LLN: ζ(t) = Y (t)/A(t)
L2−→ 1 and ζ(t)

a.s.−→ 1, where

A(t) ∼ eρtγr

∫ ∞
0

e−ρuM(u)du

if ρ > α, and A(t) ∼ teαtγrC if ρ = α.

(ii) CLT:

(A) If α ≤ ρ ≤ 2α, then X(t) = [Y (t) − A(t)]/
√
V (t)

D−→
N(0, 1);

(B) If ρ > 2α, then X(t)
D−→ N(0, σ2) where

σ2 = 1−
γr
∫∞

0
e−ρuM(u)du

r
∫∞

0
e−ρu[γW (u) + (γ + γ2)M2(u)]du

<∞.
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6 Concluding remarks

We have presented a summary of results on SBPwNHPI established
over the past few years, a class of branching stochastic processes that
find many applications in cell biology which support its specific struc-
ture. We considered and compared its theoretical properties in all
three cases (sub-, super-, and critical), and presented several limiting
distributions, both conditional or non-conditional, as well as with or
without a norming function. Some of these results are akin to a LLN
and CLT.

Importantly, our survey demonstrated the richness of behaviors
that this process is able to exhibit. This diversity is primarily gen-
erated by two factors: (1) the intensity of the reproduction law (i.e.,
whether the process is subcritical, critical, or supercritical), as cap-
tured by the Malthusian parameter α; and (2) the immigration rate
r(·) which may dictate whether a population will avoid extinction, for
instance. While cell populations may have a propensity for grow, they
are also known for their tendencies to converge to equilibrium via a
process called homeostasis. SBPwNHI are designed to capture cellu-
lar dynamics during specific phases of population growth; for example
during the recovery phase subsequent to injury or stress [12]. One
possible exception where growth may be unlimited is populations of
cancer cells [19].
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