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Abstract. A recently proposed reaction network induces the clas-
sical Gompertz equations. The network consists of two reactions, one
reaction for a decaying species S and another reaction for a sigmoidally
growing species X catalyzed by species S. The proposed reaction
network provides for a separation of the dynamical evolutions of the
two species. More specifically, the reaction equation for the decay-
ing species S is totally independent on the growing species X, while
species X uses species S simultaneously both as a catalyst and as a
(food) resource. Based on the idea of such a separation, in this work we
propose a class of growth-decay models formulated in terms of reaction
networks that includes the Bateman exponential decay chain for the
evolution of the catalyst/resource species. In this note we show that
the Gompertz-type reaction network can be generalized into a class of
Gompertzian-type growth-decay models by replacing the first species
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from the Bateman exponential decay chain by the second species in
the chain, that now can play the role of a catalyst/resource for the
growing species. A further generalization would be to use the third
species (or the k-th species) in the Bateman decay chain as a cata-
lyst/resource for the growing species. An important advantage of the
new class of models is the possibility of obtaining a prolonged lag time
of the sigmoidal solutions of the growing species.

Key words: Dynamical growth models; logistic function; Gom-
pertz function; Bateman equations; sigmoidal functions; dynamical
systems; reaction networks, first integral; conservation equation.

1 Introduction

A reaction network inducing the classical Gompertz growth model [5]
is recently proposed [11]. The proposed reaction network involves two
reaction equations over two species: a catalyst/resource species S that
declines tending to 0 with t −→∞, and a sigmoidally growing species
X catalyzed by species S. The reaction network provides for sepa-
rate dynamics of the two species S and X, due to the independent
(uncoupled) behavior of species S from that of X. The idea of such
independency is supported by several authors, e.g. [4], [12], [15], [16],
[17], [19]. Based on the idea of such a separation, and noticing that
the resource species S is the first one in the Bateman exponential de-
cay chain [2], in this work we point attention to a general class of
growth-decay models where the resource species is replaced by some
consecutive species appearing further in the Bateman chain. An im-
portant advantage of the proposed class of models is the prolonged lag
phase of the sigmoidally growing species X—a property often needed
when fitting biological data of growth-decay processes, studied e.g. in
microbiology, marine ecology, tumor research, etc. [4], [13], [14], [19].

In Section 2 we recall the classical Gompertz model from the per-
spective of reaction networks theory [3], [10], [11]. In Section 3 we
introduce an extension of the Gompertz model using the Bateman ex-
ponential decay chain and study some simple properties of the induced
dynamical system. Section 4 contains the solutions of the proposed
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Gompertz-type model system. Section 5 describes a further generaliza-
tion of the Gompertzian model combining the latter with the Bateman
exponential decay chain or considering the Gompertzian model as an
operator over an input resource function.

2 The Gompertz reaction network

The classical Gompertz model can be formulated in terms of a reaction
network involving species S,X, P as follows [11]:

S
k1−→ P

S + X
k−→ 2X + S.

(1)

Assume that species S,X, P are homogeneously distributed in a
fixed volume and denote their concentrations resp. by s, x, p. Consider
the following dynamical system of reaction equations for the rates of
concentrations s, x, p of species resp. S,X, P :

s′ = −k1s,
p′ = k1s,
x′ = ksx.

(2)

Based on the general theory of reaction networks [3], [10], assum-
ing mass action kinetics, one arrives to the following:

Proposition 1 [11]. Reaction network (1) induces via mass action
law the system of reaction equations (2).

Assume in system (2) the following initial conditions:

s(0) = s0 > 0; p(0) = p0 ≥ 0; x(0) = x0 > 0. (3)

Proposition 2 [11]. For the initial value problem (2)–(3) we have
the following properties for the variables s, x ∈ [0,∞):
i) a conservation relation:

(k/k1)s = c− lnx, c = (k/k1)s0 + lnx0; (4)

53



ii) the variable x satisfies the classical Gompertz equation.
Proof. Ignoring in (2) the uncoupled equation for p′, we obtain the

dynamical system
s′ = −k1s, x′ = ksx, (5)

which is an S-system [15], [16]. System (5) generates the relation

s′/k1 + x′/(kx) = 0. (6)

Using initial conditions (3), we obtain the first integral (4).
Substituting s from (4) in equation x′ = ksx, we obtain the familiar

Gompertz differential equation

x′ = k1x(c− lnx), x(0) = x0, (7)

for the mass/concentration x of the growth species X. The assumption
x(∞) = 1 determines the constant c as c = 0. The solution of equation
(7) is the familiar Gompertz function

x(t) = x0e
−e−k1t . (8)

The graph of the solution x = x(t) given by (8) is visualized on Fig.
1 for two different values of the rate parameter k1.
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Figure 1: The Gompertz function (8) for s0 = 0.4, x0 = 0.14, k1 = 0.5
and k1 = 5 (the steeper graph)
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3 A Gompertz-Bateman growth-decay

model

The first reaction of reaction network (1) determines the dynamics of
species S showing that the evolution of S does not depend on species
X; mathematically, this is seen from the first equation in system (2).

The second reaction shows that species S is a catalyst in the reac-
tion, thus again S is not influenced (consumed) by X. For comparison,
in the logistic reaction network S + X−→2X species X uses S as a
food resource and the dynamics of both species are interconnected,
namely the biomass of X gains as much as the biomass of S loses.

Differently to species S, in network (1) the dynamics of X strongly
depends on S, since S acts as catalyst on the reproduction of X. Let
us note once more that species X does not influence the (bio)mass of
S during the process of reproduction, that is X does not consume S
as food but uses S merely as a catalyst.

The idea of building a model of two interacting species S,X, such
that the dynamics of the catalyst species S is separately determined
independently on that of the growing species X, is inherently incor-
porated in the classical Gompertz model (1). This idea is further
developed in the present work as follows.

Reaction S
k1−→ P says that at time moment t0 a concentration

quantity s0 instantly appears in the environment of the growing species
X and the process immediately starts. Such an instant appearance
of S, thereby homogeneously distributed in the volume, seems not
very realistic. We shall next modify the reaction S−→P so that the
catalyst species arrives smoothly in time in the form of a wave, possibly
starting from an arbitrary small value greater or equal zero. In order

to simulate such a situation, let us look at reaction S
k1−→ P as a

first step (chain-link) of an n-step exponential growth-decay Bateman
chain [2]:

S
k1−→ P

k2−→ Q
k3−→ R

k4−→ ... (9)

The Bateman chain (9) suggests that, instead of the first species S in
the chain, we may use some species next in the chain to play the role
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of a catalyst for the growing species X. To be more specific, we shall
use for that purpose the second species P in the Bateman chain. In
other words, consider the case of a two-step Bateman chain:

S
k1−→ P

k2−→ Q (10)

and use species P from reaction network (9) to play the role of the
catalyst species in the second reaction of Gompertz reaction network
(1). Thus, we obtain the following reaction network:

S
k1−→ P

k2−→ Q

P + X
k−→ 2X + P,

(11)

to be further referred as Gompertz-Bateman model of order 1 (the
classical Gompertz model being a Gompertz-Bateman model of order
0).

As usually, assume that species S, P,X are homogeneously dis-
tributed in a fixed volume and denote their concentrations (masses)
resp. by s, p, x. Consider then the following dynamical system of
reaction equations for the rates of variables s, x, p:

s′ = −k1s,
p′ = k1s− k2p,
x′ =kxp.

(12)

On the base of the reaction networks theory [3], [10], assuming
mass action kinetics, we arrive at the following:

Proposition 3. Reaction network (11) induces the dynamical
system of reaction equations (12).

Let us equip system (12) with the following initial conditions to
hold in the interval [0,∞):

s(0) = s0 > 0; p(0) = p0 ≥ 0; x(0) = x0 > 0. (13)

Proposition 4. The dynamical system (12) with initial conditions
(13) induces the conservation relation

(k/k2)(p + s) = c− lnx, c = (k/k2)(p0 + s0) + ln x0. (14)
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Proof. To prove (14) note that system (12) implies

p′ + s′ = −k2p = −k2[x′/(kx)],

hence
(k/k2)(p

′ + s′) = −[x′/x]. (15)

Integrating (15) we obtain (14) as a first integral.

4 Solutions to Gompertz-Bateman growth-

decay model of order 1

Let us now concentrate on the solutions for the variables s, p, x of ini-
tial value problem (12)–(13). The solutions for functions s and p are
well-known as being part of the Bateman equations [2]. More specif-
ically, we recall that in the interval [0,∞) the following expression
holds true for s:

s(t) = s0e
−k1t. (16)

For the variable p the expression holds true:

p =

{
(k1/(k2 − k1))s0(e

−k1t − e−k2t) + p0e
−k2t, k1 6= k2

e−k1t(p0 + k1s0t), k1 = k2
(17)
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Figure 2: The function p for k1 = 1, k2 = 1.2, p0 = 0.1, s0 = 1.74
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The graph of solution p for k1 = 1, k2 = 1.2, p0 = 0.1, s0 = 1.74 is
presented on Fig. 2.

For the variable x the following propositions hold true:
Proposition 5. The initial value dynamical problem (12)–(13)

possesses an unique solution for the variable x in the interval [0,∞),
which is a solution to the differential equation: x′ = kxp, wherein p is
defined by expression (17). Hence, the Gompertz-Bateman model (11)
can be formulated as a differential equation for the growth function x
as follows:

x′ = kxp =

{
kx[(k1/(k2 − k1))s0(e

−k1t − e−k2t) + p0e
−k2t], k1 6= k2

kxe−k1t(p0 + k1s0t), k1 = k2
(18)

Expression (18) induces the following growth rate per capita (also
known as Gompertz “mortality law”):

x′

x
= kp =

{
k[(k1/(k2 − k1))s0(e

−k1t − e−k2t) + p0e
−k2t], k1 6= k2

ke−k1t(p0 + k1s0t), k1 = k2
(19)

An explicit expression for the solution x can be obtained from the
conservation relation (14), written in the form

lnx = c− (k/k2)(p + s), c = (k/k2)(p0 + s0) + ln x0. (20)

Substituting the expressions for s and p, namely (16) and (17), in (20),
we obtain the following

Proposition 6. The Gompertz-Bateman growth function x de-
fined as solution of differential equation (18) can be expressed as fol-
lows:

x(t)=

x0e
ke−(k1+k2)t(−ek2tk2s0+e(k1+k2)t(k2−k1)(p0+s0)+e

k1t(k2p0+k1(−p0+s0)))
k2(k2−k1) , k1 6=k2,

x0e
k(p0+s0−e−k1t(p0+s0+k1s0t))

k1 , k1 =k2.

(21)
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Figure 3: The solution x for k1 = 1, k2 = 0.8, s0 = 1.74, p0 =
0.1, x0 = 0.1.
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Figure 4: The solution x for k1 = 1, k2 = 0.8, s0 = 1.74, p0 =
0.1, x0 = 0.001.
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Figure 5: The solutions x for two sets of parameters: i) k1 = 1, k2 =
0.8, s0 = 1.74, p0 = 0.1, x0 = 0.1, and ii) for k1 = 1, k2 = 0.8, s0 =
1.74, p0 = 0.01, x0 = 0.01.
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The solutions x for various values of the parameters and the initial
conditions are visualized on Figures 3–5. The sigmoidal behavior of
function x and its lag phase are clearly expressed.

5 Notes on the Gompertz-Bateman model

We briefly present two ideas for possible generalizations of the Gompertz-
Bateman model arising from the perspective of reaction networks the-
ory.

5.1 A note on a generalization of the Gompertz-
Bateman model

Based on the idea of a separation of the dynamics of the declining
(resource) species from that of the growth species, the Gompertz-
Bateman model of order 1 can be naturally generalized by replacing
the second species P by the n-th consecutive species in the Bateman
chain arriving thus to the following reaction network:

S
k1−→ P1

k2−→ P2
k3−→ ...

kn−→ Pn
kn+1−→ Q

Pn + X
k−→ 2X + Pn.

(22)

to be further referred as Gompertz-Bateman model of order n. Under
such terminology the classical Gompertz model should be considered
as a Gompertz-Bateman mode of order 0.

5.2 The Gompertzian model as an operator

The Gompertz-Bateman model of order n (23) suggests that the last
reaction of the model of the form

Pn + X
k−→ 2X + Pn (23)

can be looked as an operator reaction transforming an input species
Pn into an output species X. In terms of dynamical reaction equations
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the “Gompertzian” differential operator

x′ = kxp (24)

acts on a given input function p, producing an output function x. Such
a setting raises the question of admissible input functions p that pro-
duce meaningful solutions x with required properties, e.g. bounded,
sigmoidal, etc.

6 Concluding remarks

The idea of building a model of two interaction species S and X, where
the dynamics of the catalyst species S is separately determined and
independent from that of the growing species X, is incorporated in
the classical Gompertz model. This idea can be further developed by
looking for various possibilities for the dynamics of the catalyst species
S. Reaction S−→P used in the classical Gompertz model says that
in time moment t0 a quantity s0 appears in the environment of the
growth species and the process immediately starts. Such an instant
appearance seems not quite realistic. In this work, we modify the re-
action S−→P so that the catalyst species penetrates the environment
of the growing species smoothly in time in the form of a wave. In order
to simulate such a situation, we look at the reaction S−→P as at a
first chain-link of an n-step exponential growth-decay Bateman chain.
We then generalize the classical Gompertz growth-decay model by re-
placing the first species from the Bateman exponential decay chain by
involving the second species in the chain, that now plays the role of a
catalyst/resource for the growing species X. A further generalization
would be to use the third species (or the k-th species) in the Bateman
exponential decay chain as a catalyst/resource for the growing species.

When studying the classical Gompertz growth models from the
perspective of the reaction networks theory we are surprised by the
interesting reaction mechanism of the model. Based on this mech-
anism, in the paper we define a new class of Gompertz-like models.
We propose an one-dimensional differential equations for the growth

61



(resp. decay) species, by finding a first integral leading to a conser-
vation relation. Another consequence is the resulting new form of
the Gompertzian mortality law. The proposed reaction networks are
simple and may seem trivial but are of some importance to those
who construct new models to study biological growth processes whose
underlying mechanism is unknown. The proposed reaction network
realization of the Gompertz growth model can be interpreted from
the perspective of demographic and socio-economic sciences. It is re-
markable that the Gompertz reaction network comprises a reaction
equation describing biological activity that is characteristic for highly
organized biological organs, organisms or populations. This explains
why using the Gompertz model in areas, such as marine and plant
ecology, demographic studies and cancer research, is so successful [4],
[12], [13], [14], [19]. The reaction network approach clearly explains
the close links between the Gompertz model and the Verhulst logistic
model [1], [11]. Let us also mention that sigmoidal Gompertzian type
functions find numerous applications in fitting real-life biological, eco-
logical, socio-economic etc. experimental measurement data [6]–[9],
[17], [19].
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