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This paper originated from the desire to develop elementary cal-
culus based tools to empower students, not necessarily with a strong
mathematical background, to test predator-prey related models for
boundedness of solutions and for the existence of limit cycles. There
are several well-known methods available to prove, or disprove, the
existence of bounded solutions to systems of differential equations.
These methods rely on Liénard’s theorem or using Dulac or Lyaponov
functions. The level of mathematics required in the study of differ-
ential equations is not addressed in the courses presented on the first
year level, and students in biology, ecology, economics and other fields
are often not suitably equipped to perform these advanced techniques.
The conditions under which a unique limit cycle exists in predator-prey
systems is considered a primary problem in mathematical ecology [1,
2]. A great deal of mathematical effort has gone into trying to es-
tablish simple, yet general, theorems which will allow one to decide
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whether a given set of nonlinear equations has a limit cycle or not [3].
We introduce a method to first determine the boundedness of solution
trajectories in such a way that the transformation to a Liénard system
or the use of a Dulac function can be avoided. Once boundedness of
trajectories has been established, the nature of the equilibrium points
reduces to simple eigenvalue analysis. The Elemental Limit Cycle
method (ELC) provides elementary criteria to evaluate the nature of
the pivotal functions of a system which will indicate boundedness and
may be applicable to more general models.

1 Introduction

Dynamical systems theory originated with the work on celestial me-
chanics by Poincaré in 1899 and is based on analysis, geometry and
topology . Poincaré laid the foundations for qualitative analysis of
nonlinear differential equations, and began to develop a coherent set
of mathematical tools for their study.

The dynamics of various interacting species may, in general, be
modeled by such a nonlinear set of differential equation. There has
been a surge of interest in developing and analyzing models of inter-
acting species in ecosystems, with specific interest in investigating the
existence of limit cycles in systems describing the dynamics of these
species [4]. The original Lotka-Volterra model does not possess any
limit cycles and for this reason has been labeled as ecologically unsta-
ble. This model has subsequently been modified to take disturbances
into consideration that allow populations to return to their original
numbers.

In the search for population models that possess limit cycles we
will focus on the existence of bounded solutions. A system of differ-
ential equations with bounded solutions has the potential for periodic
solutions which, in turn, suggests stability. Ecologically this means
that the species coexist and that extinctions do not occur. In the case
of the system possessing a stable limit cycle it provides a satisfying
explanation for those animal communities in which populations are
observed to oscillate in a rather reproducible periodic manner.

97



Several well-known methods are available to prove or disprove the
existence of bounded solutions. Many of these techniques are perceived
as mathematically challenging, yet often students in biological sciences
and economics are equipped with only one semester of mathematics [5,
6]. The challenges that future biologists faces dictate a change in the
way we prepare undergraduates who wish to pursue a career in the life
sciences. The 21st-century challenges involve complex systems that no
single discipline can fully address [7]. Despite this, most colleges and
universities do not require an in depth knowledge of calculus from
their biology majors [8].

A sound knowledge of calculus and differential equations is re-
quired when attempting to investigate and interpret the results of the
models concerned with population dynamics. Researchers in ecology
and other fields may need to transform a system of differential equa-
tions into a Liénard system, for which there are no set rules as to
which transformation should be used. Similarly, if Dulac or Lyaponov
functions are used, there are no systematic procedures on how these
functions should be chosen. The approach suggested here to deter-
mine whether or not a model has periodic solutions is the applica-
tion of Poincaré-Bendixson theory which, according to Zill and Cullen
[9], is an advanced result that describes the long-term behaviour of a
bounded solution. This theorem relies on the existence of an invariant
region R, which is a region that, whenever a trajectory (x(t), y(t)) en-
ters this region, it remains in R as t→∞. Determining the existence
of such a region is considered to be extremely difficult and therefore
the problem of boundedness of solutions of nonlinear systems of differ-
ential equations is nontrivial. Once the existence of an invariant region
has been established and thus the solution trajectories are bounded,
eigenvalue analysis can be used to determine the nature of the equi-
librium points. The Poincaré-Bendixon Theorem [9] predicts that if a
single equilibrium point exists within this bounded region, then it is
either an attracting spiral point, suggesting a stable population pair,
or an unstable node, resulting in a unique limit cycle. Our purpose in
this paper is therefore to propose a method or technique which greatly
reduces the mathematical difficulties encountered when investigating
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the boundedness of trajectories of predator-prey models, called the El-
emental Limit Cycle method (ELC). The technique replaces the need
to deal with complex Liénard systems, Dulac and Lyaponov functions
and hence the required mathematics becomes accessible to researchers
in a wide range of disciplines.

In the following two sections models suggested by Kuang and
Freedman [10] and Huang and Zhu [11] are discussed with special
cases. Conditions ensuring existence of limit cycles are explored and
Mathematica is used to illustrate the findings. The methods used by
these authors to prove boundedness of solutions are reviewed and then
compared to the ease with which the ELC can be applied in order to
reach the same results.

2 The Kuang and Freedman Model

This section deals primarily with the boundedness of solutions of a
class of Gause-type predator-prey models. The model proposed by
Kuang and Freedman [10], can have a limit cycle and is useful in illus-
trating the development of the ELC method. Kuang and Freedman
consider a Gause-type predator-prey model of the form

ẋ = xg(x)− ξ(y)p(x), x(0) ≥ 0

ẏ = η(y)[−γ + q(x)], y(0) ≥ 0
(1)

where x(t) denotes the number of prey and y(t) denotes the number
of predators at given time t. Furthermore g, ξ, p, η and q are contin-
uous with piecewise continuous first derivatives for t ≥ 0. The usual
predator-prey assumptions as discussed by Freedman [12] are appli-
cable. They transform System (1) into a generalized Liénard system,
which then proves that the system has bounded solutions. A the-
orem by Cherkas and Zhilevich [13] on the existence of limit cycles
in a generalized Liénard system and a theorem by Zhang [14] on the
uniqueness of these limit cycles are applied by Kuang and Freedman
to show that a unique limit cycle exists.

99



2.1 Assumptions applying to the Kuang and
Freedman Model

We now introduce an alternative method of proving that the trajecto-
ries of System (1) are bounded and therefore that an invariant region
exists. It should be noted that similar, but more complex, arguments
have been used by Chen et al. [15] and Huang [16]. The assump-
tions needed to simplify our method are similar to the assumptions of
Kuang and Freedman and are reasonable for a predator-prey model.

For System (1) the function g(x) represents a logistic type or alter-
native growth function for the prey x which is non-negative and has
a maximum, G, over an interval [0, K]. A few possible functions for
g(x) is illustrated in Figure 1.

g(x)=1-(x/K)

g(x)=a-cx-bx²-dx³

g(x)=a+bx-cx²

x

Figure 1: The positive quasi-logistic function g(x))

The function ξ(y) represents the predation rate of the predator popu-
lation y on the prey population x. Suppose that it is bounded by two
linear functions sy and Sy, where s is the minimal predator efficiency
and S is the maximal predator efficiency. Therefore sy ≤ ξ(y) ≤ Sy.

The functions p(x) and q(x) are Holling type I, II or III prey-
dependent functional responses, or any other function that displays
the same bounded characteristics. Each of these functions is bounded
above by some constant, say a1 and a2 respectively. It will be argued
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below that there is no loss of generality to assume that x is always
less than K, therefore p(x) and q(x) are bounded below by the linear
function p(K)x/K and q(K)x/K respectively. The positioning of the
function p(x) is depicted in Figure 2.

a1

p(x)

p(K)x/K

K x

Figure 2: A possible graph of p(x)

Thus p(K)x/K ≤ p(x) ≤ a1 and similarly q(K)x/K ≤ q(x) ≤ a2
for all x in the interval [0, K]. The product −γη(y) is a decreasing
function representing the mortality rate of the predator in the absence
of prey. Assume that there are positive constants n and N so that
−Ny ≤ −γη(y) ≤ −ny as depicted in Figure 3.
From the discussion above and for reference purposes the assumptions
are stated here as (H1) to (H3).

(H1): g(0) > 0 and there exists a K > 0 so that g(x) > 0 over the
interval [0, K), g(K) = 0, and g(x) < 0 if x > K. Let G denote the
maximum value of g(x) over the interval [0, K]

(H2): p(0) = q(0) = 0 and p′(x) > 0 and q′(x) > 0 for all x > 0.
There exist positive numbers a1 and a2 so that p(K)x/K ≤ p(x) ≤ a1
and q(K)x/K ≤ q(x) ≤ a2 for all x in the interval [0, K].

(H3): ξ(0) = η(0) = 0 and ξ′(y) > 0 and η′(y) > 0 for all y > 0. There
exist positive numbers s and S so that sy ≤ ξ(y) ≤ Sy for all y ≥ 0.
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Ny

-Ny

ny

-ny

γ η(y)

-γ η(y)

y

Figure 3: The decreasing function −γη(x) representing the mortality
rate of the predator in the absence of prey.

There exist positive numbers n and N so that −Ny ≤ −γη(y) ≤ −ny
for all y ≥ 0.

2.2 Boundedness of x(t) and y(t) for the Kuang
and Freedman model

We introduce a new function ω(x, y) and show that ω(x, y) has bounded
solutions. It should be obvious that the simplistic choice of ω = x+ y
used below can be modified to accommodate different models.

First note that if x(0) ≥ K, then g(x) ≤ 0 resulting in ẋ < 0.
Therefore x(t) is decreasing and will continue to decrease until x(t) is
less than K. The interaction between xg(x) and p(x)ξ(y) may permit
ẋ to change sign so that x(t) starts increasing. However, since ẋ is
negative at K, x(t) can now never become as large as K again. Hence
x(t) is bounded by K as t→∞. Therefore without loss of generality,
it can be assumed that 0 < x(t) < K as t→∞, as depicted in Figure
4.

Given the assumptions (H1) to (H3), we show that the solutions
x(t) and y(t) of System (1) are bounded as t→∞.
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K

x(0)>K

x(0)<K

t

x(t)

Figure 4: The solution trajectory x(t) remains between 0 and K as
t→∞.

Suppose x(t) and y(t) are solutions of System (1).
Define ω(t, x, y) = x(t) + y(t) then

ω̇ = xg(x)− ξ(y)p(x) + η(y)[−γ + q(x)]

ω̇ ≤ KG− p(K)x

K
sy − γη(y) + a2η(y)

and since 0 < x < K and ny ≤ γη(y) ≤ Ny,

ω̇ ≤ KG− ny + a2
Ny

γ
.

Adding and subtracting x and factoring, it follows that

ω̇ ≤ KG+K − y
(
n− a2

N

γ

)
− x

ω̇ ≤ KG+K −min

{(
n− a2

N

γ

)
, 1

}
(x+ y)

Let A = KG+K and B = min{(n−a2N/γ), 1}, then ω̇+Bω ≤ A.
Applying the positive integrating factor eBt and solving the integral
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yields

eBtω ≤ (A/B) + c,

where c is a constant of integration. Therefore

ω ≤ A/B + ce−Bt.

Now ω(t) is bounded as t→∞ and since x(t) is bounded, y(t) is
bounded as well.

2.3 Eigenvalue analysis for the Kuang and Freed-
man model

Eigenvalue analysis will now be applied to determine the nature of the
roots of the characteristic equation, which will provide information on
the long term behaviour of the system.

It is convenient to use the signs of the determinant and trace of
the Jacobian matrix. In particular, if both the determinant and the
trace of the Jacobian matrix are positive then the equilibrium point
E∗(x∗, y∗) is unstable. It is easily shown that the determinant and the
trace of the Jacobian matrix for System (1) is given by

∆ = p(x∗)q′(x∗)η(y∗)ξ′(y∗) (2)

and
τ = J(x∗) (3)

where

J(x∗) = p(x)
d

dx

(
xg(x)

p(x)

)
(4)

where x = x∗ and we may therefore conclude that if both ∆ > 0 and
τ > 0 then the equilibrium E∗(x∗, y∗) is unstable and a limit cycle
exists. In the following example the respective conditions for the exis-
tence, uniqueness and instability of the equilibrium in the population
quadrant is stated, followed by a numerical and graphical representa-
tion of the results.
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2.4 Wang and Sun model

The Wang and Sun model [17] is a special case of the Kuang and
Freedman [10] model supporting a Holling type -(n + 1) functional
response:

ẋ = γx(1− h(x))− xny

(a+ xn)

ẏ = y[−β +
µxn

(a+ xn)

(5)

with an added condition namely

h(0) = 0, h(k)(x) ≥ 0, 1 ≤ k ≤ (n+ 3) (6)

for any n ∈ N+ and all x ∈ R+ where N+ and R+ are the integer set
and positive real number set respectively.

Wang and Sun use a Dulac function, which is deemed ”very techni-
cal and difficult”, as well as a transformation into a generalized Liénard
system to prove that, under certain conditions, this model possesses a
unique limit cycle. The difficulty in finding a suitable Dulac function
is due to the fact that there are no set guidelines available on how to
choose such a function.

The main result achieved by Wang and Sun [17] states that under
Assumption (6), the System (5) has a unique limit cycle if and only if
its only positive equilibrium is unstable, that is, if P0 > 0 where

P0 = γ[(1−n)a−(1−n)ah(x0)+xn0−xn+1
0 h′(x0)−ax0h′(x0)−xn0h(x0)]

(7)
The expression for P0 originates from the complicated choice of a Dulac
function. Since System (5) is a special case of System (1) set

g(x) = γ(1− h(x)) p(x) = xn/(a+ xn) q(x) = µxn/(a+ xn)
ξ(y) = y η(y) = y γ = β

It is easily shown that the assumptions (H2) and (H3) are satisfied.
The function g(x) = γ(1 − h(x)) is in functional form like a quasi-
logistic equation. To satisfy the assumption (H1), it is reasonable
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to assume that (1 − h(0)) > 0 and there exists a K > 0 such that
(1 − h(x)) > 0 if 0 ≤ x ≤ K, (1 − h(K)) = 0 and (1 − h(x)) < 0 if
x > K. If this is the case, it can then be concluded that the solutions
of the Wang and Sun model are bounded. Furthermore System (5)
has equilibrium points at E0(1, 0) and E∗(x∗, y∗) of which the latter
lies in the population quadrant with

x∗ =

√
βa

µ− β

and

y∗ =
−
√
aγ(β + aβ − µ)µ√
β(µ− β)3/2

Substituting x∗ and y∗ into equations (2), (3) and (4) results in

J(x∗) = −(γµ2 + 2γβ2 − 3γµβ + 2aγβ2 + aγµβ)

µ2 − µβ

and for E∗ to be unstable we require that

∆ =
−2γβ(β − µ+ aβ)

µ
> 0

and

τ = −(µ2 + 2β2 − 3µβ + 2aβ2 + aµβ)

µ2 − µβ
> 0.

Let h(x) = x2 and n = 2 satisfying Condition (6). Furthermore let
γ = 3, a = 0.05, β = 3 and µ = 4 > 0, so that the inequalities above
are satisfied and System (5) becomes

ẋ = 3x(1− x2)− x2y

0.05 + x2

ẏ = y

[
−3 +

4x2

0.05 + x2

]
.

The determinant ∆ = 3.825 and the trace τ = 0.375 are both positive,
so that the equilibrium point (0.387, 1.317) is unstable and thus a limit
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2.5
y

Figure 5: Limit cycle for the Wang and Sun model with initial value
(2, 1).

0.0 0.5 1.0 1.5 2.0 2.5
x0.0

0.5

1.0

1.5

2.0

2.5
y

Figure 6: Limit cycle for the Wang and Sun model with initial value
(0.5, 1.5).

cycle exists. Also note that P0 = 0.075, satisfying Condition (7) and
confirming the result of Wang and Sun. Typical solution trajectories
for the Wang and Sun model are shown in Figures 5 and 6.

This two-pronged approach can be applied to a diverse range of
predator-prey models used in various fields of research. The same
procedure can be used, making it possible to confirm the existence (or
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nonexistence) of an invariant region by identifying the various func-
tions comprising the system. We require that one of the solutions
is bounded. The boundedness of x(t) is usually due to the density-
dependent prey growth rate g(x) in the form of a logistic growth func-
tion or any other form that curbs the growth rate of the prey so that
Malthusian growth does not occur. If this behaviour can be identified,
then the problem of proving boundedness is greatly simplified by the
implementation of the ELC. The investigation of the existence of limit
cycles in models is then greatly simplified to simple eigenvalue anal-
ysis. The use of a standardized test in terms of the determinant and
the trace makes this even simpler. We demonstrate this on another
well known model introduced by Huang and Zhu [11].

3 The Huang and Zhu model

Huang and Zhu [11] assume that in the following model the functions
g, ξ, η, q, φ and ψ are defined such that existence, uniqueness and con-
tinuability for all t ≥ 0 are satisfied for initial value problems.

ẋ = φ(x)(g(x)− ξ(y))

ẏ = η(y)[−γ + q(x) + ψ(y)]
(8)

As before x(0) > 0 and y(0) > 0. In essence, the assumptions that
Huang and Zhu place on the functions g, ξ, η, q, φ and ψ are the same
as those used by Kuang and Freedman [10]. Obviously, p(x) is no
longer present and the addition of the functions φ(x) and ψ(y) needs
attention. Therefore, assumptions (H1) to (H3) must be modified:

(H1a): g(0) > 0 and there exists a K > 0 so that g(x) > 0 over the
interval [0, K), g(K) = 0, and g(x) < 0 if x > K. Let G denote the
maximum value of g(x) over the interval [0, K].

(H1b): φ(0) = 0, φ′(x) ≥ 0 and there exists positive constants r and
R so that rx ≤ φ(x) ≤ Rx for all x in the interval [0, K].

(H1c): q(0) = 0 and q′(x) > 0 for all x > 0. There exist a positive
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number a2 so that q(K)x/K ≤ q(x) ≤ a2 for all x in the interval
[0, K].

(H2a): ψ(0) = 0 and ψ′(y) ≤ 0 for all y > 0.

By the Huang and Zhu assumptions the maximum value of ψ(y) is H
for all y > 0.

(H2b):ξ(0) = η(0) = 0 and ξ′(y) > 0 and η′(y) > 0 for all y > 0. There
exist positive numbers s and S so that sy ≤ ξ(y) ≤ Sy for all y ≥ 0.
There exist positive numbers n and N so that −Ny ≤ −γη(y) ≤ −ny
for all y ≥ 0.

Note that the parameter K in (H1b) is the same parameter as the one
in (H1a). Finding the equilibrium points of System (8) results in one
more condition:

Let η(y)[−γ + q(x) + ψ(y)] = 0.
If η(y) = 0 then y = 0 and therefore if φ(x)(g(x)− ξ(0)) = 0 it leads
to φ(x)g(x) = 0 therefore φ(x) = 0 ⇒ x = 0 or g(x) = 0 ⇒ x = 0
or x = K. All these options will lead to the extinction of one or both
species.
So say −γ + q(x) + ψ(y) = 0 and let φ(x)(g(x)− ξ(y)) = 0.
If φ(x) = 0, then x = 0. Therefore −γ + q(0) +ψ(y) = 0⇒ ψ(y) = γ,
which is not possible since ψ(0) = 0 and ψ(y) ≤ 0. If φ(x) 6= 0 then
say that g(x)− ξ(y) = 0.
Therefore to ensure the existence of a unique equilibrium point
E∗(x∗, y∗) in the population quadrant we must therefore assume that:
g(x)− ξ(y) = 0 and x > 0, and q(x)+ψ(y) = γ is defined for allx > 0,
y ≥ 0 and γ ≥ 0. This results in condition:

(H3a): There exists a x∗ ∈ (0, K) and y∗ ≥ 0 satisfying the equations
q(x) + ψ(y) = γ and g(x)− ξ(y) = 0 simultaneously.

Huang and Zhu prove, with eigenvalue analysis, that the equilib-
rium E∗(x∗, y∗) will be unstable if three inequalities are satisfied. They
then proceed to use phase portrait analysis to identify an annular re-
gion in the xy-plane, containing the point (x∗, y∗), where the solution
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trajectories of the System (8), either crosses from the exterior to the
interior of the region, or stays on the boundary. This makes the annu-
lar region an invariant region so that the solutions are bounded. By
the Poincaré-Bendixson theorem this implies that at least one limit
cycle exists around the equilibrium point. They also prove that this
limit cycle is unique. For a detailed discussion the reader is referred
to Huang and Zhu [11].

3.1 Boundedness of x(t) and y(t) for the Huang
and Zhu model

Using the method used in Section 2.2 we now prove the boundedness
of the solutions of System (8) and once this has been done, the same
results follow with regards to the existence of at least one limit cycle
in the invariant region. As before, say x(t) and y(t) are solutions of
System (8). As in the case of Kuang and Freedman in the previous
section, it can be assumed that x(t) is bounded, that is 0 < x(t) < K
as t becomes large. Given the assumptions (H1a) to (H1c), (H2a)
and (H2b), we show that the solutions x(t) and y(t) of System (8) are
bounded as t→∞.

Define ω(t, x, y) = x(t) + y(t) then

ω̇ = ẋ+ ẏ

= φ(x)g(x)− φ(x)ξ(y) + η(y)(−γ + q(x) + ψ(y))

≤ RxG− rxsy + η(y)(−γ + a2 +H)

≤ RKG+Ny(−γ + a2 +H) +Nx−Nx
≤ RKG+NK −Ny(γ − a2 −H)−Nx
≤ (RKG+NK)−N min{(γ − a2 −H), 1}(x+ y)

≤ A−Bω

where A = RKG+NK and B = N min{(γ − a2 −H), 1}.
Thus we have ω̇+Bω ≤ A resulting in ω ≤ A/B+ce−Bt and if t→∞
then ω ≤ A/B and assuming that B > 0 implies that ω is bounded
and since x(t) is bounded it follows that y(t) is also bounded. This
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once again proves the existence of an invariant region for the System
(8) and once again eigenvalue analysis can be applied to determine the
nature of the roots of the characteristic equation. This will provide
the information needed to decide if the existence of a limit cycle is
possible.

3.2 Eigenvalue analysis for the Huang and Zhu
model

If it can be shown that a single, unstable, equilibrium point exists in
the population quadrant then, by Poincaré-Bendixson Theory, there
must exist at least one periodic solution which is a limit cycle [9]. By
assumption (H3a) the equilibrium point E∗(x∗, y∗) exists in the pop-
ulation quadrant and is unique.
We show that the equilibrium point E∗(x∗, y∗) in the population quad-
rant is unstable if the following conditions are met:

g′(x∗)ψ′(y∗) + q′(x∗)ξ′(y∗) > 0

φ(x∗)g′(x∗) + η(y∗)ψ′(y∗) > 0

g(x∗) > 0

(9)

The Jacobian of System (8) is given by

J(x,y)=

[
φ′(x)(g(x)−ξ(y))+φ(x)g′(x) −φ(x)ξ′(y)

η(y)q′(x) η′(y)(−γ+q(x)+ψ(y))+η(y)ψ′(y)

]
and since by assumption (H3a)
g(x∗)− ξ(y∗) = 0 and q(x∗) + ψ(y∗) = γ

J(x∗, y∗) =

[
φ(x∗)g′(x∗) −φ(x∗)ξ′(y∗)
η(y∗)q′(x∗) η(y∗)ψ′(y∗)

]
.

For E∗ to be unstable, the determinant and the trace of J(x∗, y∗) must
both be positive.
Therefore observe that:

∆ = φ(x∗)g′(x∗)η(y∗)ψ′(y∗) + η(y∗)q′(x∗)φ(x∗)ξ′(y∗)
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which is positive if

φ(x∗)η(y∗)(g′(x∗)ψ′(y∗) + q′(x∗)ξ′(y∗)) > 0

g′(x∗)ψ′(y∗) + q′(x∗)ξ′(y∗) > 0

and
τ = φ(x∗)g′(x∗) + η(y∗)ψ′(y∗) > 0.

Furthermore if g′(x∗) < 0 then τ < 0, since by assumption ψ′(y∗) < 0
so that g′(x∗) > 0. So that E∗ will be unstable if Conditions (9) are
met. In the following example the respective conditions for the exis-
tence, uniqueness and instability of the equilibrium in the population
quadrant is stated, followed by a numerical and graphical representa-
tion of the results.

3.3 Huang, Wang and Zhu model

A special case of the Huang and Zhu model is suggested by Huang,
Wang and Zhu [18].

ẋ = x(a1 + a2x− a3x2)− sxy
ẏ = y(−1 + x− y)

(10)

in which it is assumed that a1 ≥ 0, a3 > 0, s > 0 and the sign of
a2 is undetermined. This model supports a Holling type I functional
response in the form of sx and a quadratic function g(x) defined in
such a way that it satisfies assumption (H1a). The function g(x) is a
quadratic function with one positive root K = (a2+

√
a22 + 4a1a3)/2a3

and maximum value of a1 + a22/4a3. System (10) has six equilibrium
points namely: E0 = (0, 0), E1 = (x1, 0), E2 = (x2, 0), E3 = (x3, x3 −
1), E4 = (x4, x4 − 1) and E5 = (0,−1) where:

x1,2 =

(
a2 ∓

√
a22 + 4a1a3

)
/2a3

x3,4 = (a2 − s)∓
√

(a2 − s)2 + 4(a1 + s)a3/2a3

It is easy to confirm that E3 will always be a saddle point and can
therefore not have bounded solutions. The only other equilibrium
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point that might lead to co-existence of both species is E4. To ensure
the existence of a unique equilibrium point in the population quadrant,
both x4 and x4 − 1 must be positive. Let x4 > 1, that is

(a2−s)+
√

(a2−s)2+4(a1+s)a3>2a3

s2 − 2sa2 + 4a3s+ a22 + 4a1a3>s
2−2sa2+4sa3+a22−4a2a3+4a23

a1 + a2>a3

This then becomes an additional assumption along with a1 ≥ 0, a3 >
0 and s > 0. Now the unique equilibrium point in the population
quadrant is E∗(x∗, y∗) with

x∗ = ((a2 − s) +
√
β)/2a3

and
y∗ = x∗ − 1

where
β = (a2 − s)2 + 4(a1 + s)a3.

To confirm the existence of an invariant region rewrite System (10)
by identifying the components and comparing them to the Huang and
Zhu model as set out in Section 3.1.

g(x) = a1 + a2x− a3x2 ⇒ g′(x) = a2 − 2a3x
φ(x) = x⇒ φ′(x) = 1 q(x) = x⇒ q′(x) = 1
ξ(y) = sy ⇒ ξ′(y) = s η(y) = y ⇒ η′(y) = 1
γ = 1 ψ(y) = −y ⇒ ψ′(y) = −1

The function g(x) is a quadratic function with one positive root
K = a2 +

√
a22 + 4a1a3/2a3 and it is bounded with a maximum value

a1 + a22/4a3. Therefore there exists a K so that g(x) > 0 on [0, K),
g(K) = 0 and g(x) < 0 on (K,∞) and as before x(t) is bounded by
K. Since φ(x) = q(x) = x both φ and q are also bounded by K. All
conditions (H1a) to (H1c) and (H1a) and (H1b) are met and as before
an invariant region exists. Satisfying the Conditions (9) to ensure an
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unstable equilibrium the following must be upheld:

−(a2 − 2a3x
∗) + s > 0

x∗(a2 − 2a3x
∗)− y∗ > 0

a2 − 2a3x
∗ > 0

Substituting x∗ and y∗ , into the conditions above we find that the
equilibrium E∗ will be an unstable equilibrium if:√

β > 0 (11)

(a2 − s+
√
β)(s−

√
β) > a2 − s+

√
β − 2a3 (12)

s−
√
β > 0 (13)

are all satisfied.
Firstly observe that β = (a2−s)2 +4(a1 +s)a3 > 0 for all a1 ≥ 0, a3 >
0, s > 0 and for any value a2. So that

√
β exists and is positive. Thus

Condition (11) is satisfied.
Condition (12) will be satisfied if:

sa2 − β + 2s
√
β −

√
βa2 − s2 − (a2 − s+

√
β − 2a3)>0

−β + (2s− a2 − 1)
√
β + (s− a2 + 2a3 + sa2 − s2)>0

−(a2−s)2−4(a1+s)a3+(2s−a2−1)
√
β+s−a2+2a3+sa2−s2>0

−s2+2sa2−a22
2a3

− 4(a1+s)a3
2a3

+
(2s−a2 − 1)

√
β

2a3
+
s−a2+sa2−s2

2a3
+1>0

−s2 + 3sa2 − a22 + s− a2
2a3

− 2(a1 + s) +
(2s− a2 − 1)

√
β

2a3
+ 1>0

(a2 − s)(2s− a2 − 1)

2a3
+

(2s− a2 − 1)
√
β

2a3
+ 1− 2a1 − 2s>0

(2s− a2 − 1)
(a2 − s) +

√
β

2a3
+ (1− 2a1 − 2s)>0

(2s− a2 − 1)x∗ + (1− 2a1 − 2s)>0
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This is the same result achieved by Huang, Wang and Zhu by trans-
forming System (10) into a system of Liénard equations [18]. For
Condition (13) consider

s−
√
β > 0⇒ s2 > β ⇒ s(2a2 − 4a3) > a22 + 4a1a3

and assuming that a3 < a2/2 then

s >
a22 + 4a1a3
2a2 − 4a3

.

The main result of Huang, Wang and Zhu states that: ”When a1+a2 >
a3 and s > 1, the necessary and sufficient condition, if there exists one
and only one limit cycle, is (2s− a2 − 1)x∗ + (1− 2a1 − 2s) > 0.” We
can now extend on that theorem as follows:

Given that a1 ≥ 0, a3 > 0, s > 0 and a1 + a2 > a3, System (10) will
possess at least one limit cycle if

(2s− a2 − 1)x∗ + (1− 2a1 − 2s) > 0 (14)

and

s >
a22 + 4a1a3
2a2 − 4a3

. (15)

To illustrate graphically, choose parameters for each of the variables
so that the equations in (14) and (15) are satisfied. The choice is not
a true reflection of any ecological data but rather for demonstrative
purposes.
Let a1 = 10; a2 = 7; a3 = 2 and s = 32. Then the carrying capacity
of the prey is K = 5.34, the equilibrium point E∗ = (1.5, 0.5) and a
limit cycle is evident as shown in Figure 7.

4 Conclusion

Recently many disciplines lean towards predator-prey models when
cyclic behaviour in their fields of research is observed. However,
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Figure 7: Limit cycle for the Huang, Wang and Zhu model with initial
value (1, 2) and E∗ = (1.5, 0.5).

the study of differential equations covered in elementary mathemat-
ics courses does not equip students in the fields of biology, ecology
or economics to investigate stability or possible existence of limit cy-
cles in their models. Traditional methods usually employed include
choosing suitable Dulac functions where a certain degree of luck or
clever insight is needed. Performing transformations to systems of
generalized Liénard equations, where results concerning boundedness
are well known, is certainly not always accessible to the less experi-
enced who may not be familiar with these techniques. Furthermore, if
Poincaré-Bendixson theory is to be applied, the challenge is to show
that an invariant region exists. Zill and Cullen [9] state the follow-
ing categorically: ”The problem of finding an invariant region for a
nonlinear system is an extremely difficult one.” However, once the ex-
istence of an invariant region has been established, the investigation
of stability or the existence of limit cycles reduces to basic eigenvalue
analysis. The ELC addresses these problems by simply identifying
the properties of the functions comprising the predator-prey system
of differential equations in order to prove or disprove the existence of
an invariant region. The technique determines the boundedness of so-
lutions almost at a glance and will therefore be accessible to scholars

116



from disciplines other that mathematics.
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