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Abstract

The cumulative distribution function (cdf) corresponding
to the ”four parameter extended type I half–logistic modified
Weibull (TIHLMW) distribution” is [1]:

M(t) =
1− e−λ(α1t+θtβ1 )

1 + e−λ(α1t+θtβ1 )
,
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where λ, θ, β1 are positive shape parameters and α1 is a scale
parameter. Also of interest to the specialists is the task of ap-
proximating the Heaviside function ht0(t) where t0 is the ”me-
dian” by the new cumulative function in the Hausdorff sense.
Following the results given in [2] we will generate the ”new 6–
parameters G–family of cdf – Q(t) with baseline cdf – M(t)”:

Q(t) = e
− 2αβe−λ(α1t+θt

β1 )

1−e−λ(α1t+θt
β1 )

2− e
− 2βe−λ(α1t+θt

β1 )

1−e−λ(α1t+θt
β1 )

α

We also study the ”saturation” by this family and ”confidential
curves” Q1(t) and Q2(t) for which Q1(t) ≤ Q(t) ≤ Q2(t)

Some numerical examples with real data from Biostatistics,
Growth theory and Computer viruses propagation, using CAS
MATHEMATICA illustrating our results are given.

It is shown that the study of the two characteristics - ”confi-
dential curves” and ”super saturation” is a must when choosing
the right model.

1 Introduction and Preliminaries

Definition 1. Consider the following cumulative distribution func-
tion (cdf) corresponding to the ”Four parameter extended type I half–
logistic modified Weibull (TIHLMW) distribution” [1]:

M(t) =
1− e−λ(α1t+θtβ1 )

1 + e−λ(α1t+θtβ1 )
, (1)

where λ, θ, β1 are positive shape parameters and α1 is a scale param-
eter.
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Definition 2. The shifted Heaviside step function is defined by

ht0(t) =


0, if t < t0,

[0, 1], if t = t0,

1, if t > t0

(2)

Definition 3. [3] The Hausdorff distance (the H–distance) ρ(f, g) be-
tween two interval functions f, g on Ω ⊆ R, is the distance between
their completed graphs F (f) and F (g) considered as closed subsets of
Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R2, e. g. the maximum norm ||(t, x)|| =
max{|t|, |x|}; hence the distance between the points A = (tA, xA), B =
(tB, xB) in R2 is ||A−B|| = max(|tA − tB|, |xA − xB|).

Definition 4. In [2] Bantan, Jamal, Chesneau and Elgarhy introduced
a new power family of distributions with c.d.f.

Q(t) = eαβ(1−
1

G(t))
(

2− eβ(1−
1

G(t))
)α

(3)

where α, β ∈ R+ and G(t) is a c.d.f. of a baseline continuous distribu-
tion. The following result shows some inequalities involving Q(t) (see,
Proposition 1 [2]):

eαβ(1−
1

G(t))
(
2−G(t)β

)α ≤ Q(t) ≤ 2αeαβ(1−
1

G(t)). (4)

In this paper we study some properties of the cdf – M(t) and the
family (3) with baseline cdf – G(t) = M(t).
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2 Main Results.

When studying the intrinsic properties of the families M(t) and Q(t)
(with baseline cdf – M(t)), it is also appropriate to study the ”satu-
ration” to the horizontal asymptote.

2.1 The cdf M(t).

In this Section we study the one–sided Hausdorff approximation of the
Heaviside step–function ht0(t) by means of family (1).

Let t0 is a positive root of the nonlinear equation M(t0)− 1
2

= 0.

The one–sided Hausdorff distance d satisfies the relation

M(t0 + d) =
1− e−λ(α1(t0+d)+θ(t0+d)β1 )

1 + e−λ(α1(t0+d)+θ(t0+d)β1 )
= 1− d. (5)

We illustrate the ”saturation” with the cdf (1) for various α1, β1, λ, θ
(see, Fig. 1)

2.1.1 Some Applications.

Example 1. Here we will present a new analysis of Conficker propa-
gation in 2008 and we explore the Network Telescope project’s daily
dataset [4], [5] collected on November 21, 2008.

We analyze the following data

data Conficker :=

{{0.1, 10}, {1, 150}, {2, 300}, {3, 600}, {4, 2500}, {5, 5000},

{6, 7500}, {7, 13000}, {8, 19000}, {9, 25000}, {10, 31000},

{11, 37000}, {12, 44000}, {13, 52000}, {14, 58000}, {15, 66000},

{16, 74000}, {17, 81000}, {18, 86000}, {19, 89000}, {20, 92000},

{21, 92500}}
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Figure 1: a) α1 = 2.2, β1 = 6, λ = 0.2, θ = 0.9; t0 = 1.2104; Hausdorff
distance d = 0.2133056; b) α1 = 1.2, β1 = 12, λ = 0.1, θ = 0.6;
t0 = 1.25856; Hausdorff distance d = 0.112747; c) α1 = 1.1, β1 =
20, λ = 0.05, θ = 0.4; t0 = 1.21794; Hausdorff distance d = 0.0714225.
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Figure 2: The fitted model M∗(t).

Figure 3: The fitted model M∗(t).

The M∗(t) = ωM(t) for ω = 92500; α1 = 0.05; β1 = 2.69138;
λ = 0.1 and θ = 0.0123854 is visualized on Fig. 2.

Example 2. We analyze the data given in [6].

The M∗(t) = ωM(t) for ω = 0.98; α1 = 0.01; β1 = 2.55582;
λ = 0.4136371 and θ = 16, 6566 is visualized on Fig. 3.
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Figure 4: The fitted model Q∗(t).

2.2 Some properties of the family (3) with base-
line cdf M(t).

Formally, we will generate the ”new” cdf – Q(t) with baseline cdf –
M(t):

Q(t) = e
− 2αβe−λ(α1t+θt

β1 )

1−e−λ(α1t+θt
β1 )

(
2− e

− 2βe−λ(α1t+θt
β1 )

1−e−λ(α1t+θt
β1 )

)α

(6)

Example 3. We examine the data for the growth of red abalone
Haliotis Rufescens in Northern California [7].

For this data the fitted model Q∗(t) = ωQ(t) for ω = 194; α1 = 0.6;
β1 = 0.2; λ = 0.361; θ = 2.3; α = 0.0496998 and β = 57.7664 is
visualized on Fig. 4.

We study the Hausdorff approximation of the Heaviside step func-
tion ht0(t) where t0 is the ”median” by family of type (6).

Following the ideas given in [2] we find the two–sided bounds:

Q1(t) ≤ Q(t) ≤ Q2(t) (7)

where
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Figure 5: a) The two-sided bounds (7) for α1 = 1.2; β1 = 7; λ =
0.1; θ = 0.6 and α = 0.5; β = 1; b) The model Q(t) for α1 = 1.2; β1 =
7; λ = 0.1; θ = 0.6 and α = 0.5; β = 1; H–distance d = 0.153005
.

Q1(t) = e
− 2αβe−λ(α1t+θt

β1 )

1−e−λ(α1t+θt
β1 )

2−

(
1− e−λ(α1t+θtβ1 )

1 + e−λ(α1t+θtβ1 )

)β
α

,

Q2(t) = 2αe
− 2αβe−λ(α1t+θt

β1 )

1−e−λ(α1t+θt
β1 ) .

The obtained two-sided estimations in particular case for α1 =
1.2; β1 = 7; λ = 0.1; θ = 0.6 and α = 0.5; β = 1 are given in Fig. 5 a.

Let t0 is the value for which Q(t0) = 1
2
.

8



The Hausdorff distance d between the function ht0(t) and Q(t)
satisfies the relation

Q(t0 + d) = 1− d. (8)

For fixed α1 = 1.2; β1 = 7; λ = 0.1; θ = 0.6 and α = 0.5; β = 1
from the nonlinear equation (8) we have d = 0.153005 (see, Fig. 5 b).

2.3 Concluding remarks.

The results obtained in this article can be successfully continued for
generating of some new models based on known in literature ”G-
families of cumulative distribution functions”.

The new model (6) has been applied widely in life testing experi-
ments.

From Fig. 5 it can be seen that these estimations can be used
as ”confidence bounds”, which are extremely useful for the specialists
in the choice of model for cumulative data approximating in areas
of Biostatistics, Population dynamics, Growth theory, Debugging and
Test theory, Computer viruses propagation, Financial and Insurance
mathematics.

Exploring both features - ”confidential curves” and ”super satura-
tion” is a must when choosing the right model.

For other results, see [8]–[35].
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